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We study threshold phenomengpbiased boolean functions in this lecture. As an application,
this kind of analysis gives us tools to investigate threshold phenomena in random graph structures.
This approach to random graph structures has a very different flavor from the techniques developed
in the random graph community. Before we begin our discussion, let us recall some of the key
results aboup-biased boolean functions from the last class. Fo{T', F'}; — % (recall that this
meansPr[T| = p andPr[F| =1 —p = q),

o [=2 s f(S) - ¢s, Wheregy is thep-biased mapping defined in the previous lecture.
D" f = Y5, F(S) - dsgiy- Also, DI f = /pa(f(2=1) = f(2=D)))

Infi(f) = B,[(Dif)*] = Ygs (S)?

L(f) = i Infilf) = Xscp 1S1(5)?

If f:{T,F};, — {-1,1}, and is monotone (which means flippifigto 7" in the inputs can
only flip f’s value froml to —1), theninf;(f) = 2\/p_qf(i)

1 Russo-Margulis Lemma

Imagine fixing some monotone functigh: {7, F'}" — {—1,1}, and varyingp. Monotonicity
ensures that gsgoes from0 to 1, Pr,[f = —1] increases frond to 1 (unlessf is a constant). See
Figure 1.

We want to study the behavior of this “probability-plot”. In particular, we want to find out if
the function turns “mostly™1 from “mostly” 1 in a very small interval (which is like a threshold
phenomenon); or whether the change is more gradual. For example, think of the function as
indicating connectedness in a graph (thinklodnd F' as corresponding to the edge being present
or not). If we can prove that this function has a “probability-plot” like that of a step function, we
would have shown the threshold phenomena for connectedness in random graphs.

For studying such behavior gtbiased functions, the following theorem is of central impor-
tance.

Theorem 1.1 (“Russo-Margulis Lemma”) If f : {T, F} — R,

d L
GElfl = ;f(z)



Figure 1: Plots oPr,[f = —1] v/sp

Hence,
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Moreover, if f is monotone,

E _ 1 — Infi(f) :L
g Tl =—1=3 qu N

Proof: In input, identify7” with —1 and " with 1. Now think of f : {—1,1}" — R in the usual
way under the uniform distribution. Recall that

Tl pr( ) y~1 2pz[f(y)]
Therefore,

Tl%pf(f) = Ey~1,2pf[f(y)] = E,[f]
AlsO, Ti_apf = Y gcpm(1 = 20)*1/(S)xs. Therefore,

Tyof(T) = > (1-2p)51f(S)

SC[n]
d d R
@Ep[f] = d—p(%}(l—?p)sf(S))

=—2Z|S| 2p)°1£(8)
- Y Y- ) (1)

=1 S>¢

Now note thally o,D;f = S ¢.,(1 — 2p)15171£(S)x (3. Therefore,
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Y (1=2p)7f(S) = TiogyDif(
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- Ep[Dz‘f] ' '
= B(f() ~ f))
Substituting inta(1),

Gl = 22 BLUE) - fat)

2 Threshold phenomena for monotone functions

We will now formalize the notion of threshold phenomena.

Definition 2.1 Given a non-trivial (non-constant) monotoffie {7, F'}" — {—1, 1}, define criti-
cal probability p.(f) to be thep such thatPr, [f = —1] =

Definition 2.2 f has a “sharp threshold” ifdipPr[f = —1] at the the critical probabilityp,. is
“large” compared to ming., q.).

Now recall thatdipPr[f =—1] = % So equivalent to the definition, we waj( f) to be
“large”. This would imply that in a small interval aroupd (say p., p.(1 + d)]), the change in the

probability (which would equak L, (f)d) is huge.

Remark 2.3 We measure the “largeness” of the derivative with respegi.tbecause we want it
to be “sharp” irrespective of scaling. So jf. happens to be small, the change occurs in a small
interval like [p., p.(1 + 9)].

If f does not have a “sharp” threshold, it is said to be “coarse”. Usually, “coarse” will mean
L, (f) = O(1) and “sharp” will correspond tb,_(f) = w(1).

We illustrate these concepts with a few examples and then inspect graph threshold properties
in this framework.



o f(z) ==z p.= 3. 1L, (f) = 1. So this function is “coarse”

e f = Majority. p. = % L,.(f) ~ \/g\/ﬁ So Majority has a “sharp” threshold. In general,
let f beT if more thanpn of the inputs ard’, and I’ otherwise. Then. = po. L,,(f) =~

2\/]90610\/%\/%. So it sharp as long as > w(2)

As described earlier, it is easy to model random graphs in the framewgrbiased boolean
functions. Let the vertex set of the graphWBeletn = ("2/'). We can then identify: € {T', F'}"
with a graph oV (T' corresponds to the edge being present Arabrresponds to the edge being
absent). Moreover, if x is drawn fromzabiased distribution, we get the random gragtV, p).
Now any boolean function indicates a collection of graphs. For examplef@@y= —1is x
contains a clique of sizé2lnwv|. It is well known thatp, = 1. Also, it can be shown that

2
I (f) = 6(log” n). So this property of graphs has a “sharp” threshold p At 3 we will almost
2

surelynothave a clique of siz€2Inv | and atp > % we will almost surely see a clique of that size.
The above discussion motivates another definition.

Definition 2.4 f : {T, F}(2) — {T, F'} is a monotone graph property if :
1. fis monotone
2. fis not constant

3. fisinvariant under permutation of the vertices.

Some examples of monotone graph properties are connectedness, contains a k-clique, contains
a hamiltonian path, iBIOT k-colorable, contains at Iea§(‘2/) edges.

Remark 2.5 Note that monotone graph properties are “weakly symmetric” or “transitive”, and
therefore all coordinates have the same influence.

Observation 2.6 The KKL theorem tells us that for any balanced function, if all the coordinates
have the same influence then(f) > Q(Var[f]) - logn. Therefore, ifp. = 3, we getl, (f) >
2

2
Q(logn), and so we have a sharp threshold.

The only caveat to the above observation is that the KKL/Friedgut theorem relied on the hyper-
contractivity theorem fo{7’, F'} 1. The conditiorp. = 1 is therefore crucial. In general, to make

2
such an argument work in thebiased framework for any arbitrapy,, we would need a-biased
version of hypercontractivity.



3 p-biased Hypercontractivity and KKL/Friedgut

Recall that the hypercontractivity theorem stated thdt:if —1, 1} — R is a multilinear polyno-
mial of degree at most, thenvr > 2, ||| < (r — 1)%|| f||3

Thep-biased version of the above theorem was proved by Oleszkiewicz.
Theorem 3.1 Let f : {7, F}; — R of degree< d (i.e. f(S) = 01if |S| > d). Thenvr > 2,
17112 < CCr.p)?Ilf 15, whereC(r,p) = =0 6 = 2. 4
possible.

= 1 and the constant'(r, p) is best

Note app — 0, C(r,p) — (%1_2/7').
Now for the KKL/Friedgut theorems.

Theorem 3.2 Let f : {T, F}; — {~1,1} and lete > 0. Thenf is e-close to a(})°"*(/)/)-junta.

Theorem 3.3 Let f : {T, F}; — {T, F'}. Thendi € [n] with Inf;(f) > SVarlf)) logn

log min(p,q)

So the bottomline is the following corollary.

Corollary 3.4 Let f : {T, F}; — {T, F'} be a monotone graph property, apdbe the critical
probability. Then KKL implied, (f) > Q(—6% ). So we have a sharp threshold unlgssr

log min(p,q)

1
qe < NIE)




