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We study threshold phenomena inp-biased boolean functions in this lecture. As an application,
this kind of analysis gives us tools to investigate threshold phenomena in random graph structures.
This approach to random graph structures has a very different flavor from the techniques developed
in the random graph community. Before we begin our discussion, let us recall some of the key
results aboutp-biased boolean functions from the last class. Forf : {T, F}n

p → < (recall that this
meansPr[T ] = p andPr[F ] = 1− p = q),

• f =
∑

S⊆[n] f̃(S) · φS, whereφS is thep-biased mapping defined in the previous lecture.

• D
(p)
i f =

∑
S3i f̃(S) · φS\{i}. Also,D(p)

i f =
√

pq(f(x(i=F ))− f(x(i=T )))

• Infi(f) = Ep[(Dif)2] =
∑

S3i f̃(S)2

• Ip(f) =
∑n

i=1 Infi(f) =
∑

S⊆[n] |S|f̃(S)2

• If f : {T, F}n
p → {−1, 1}, and is monotone (which means flippingF to T in the inputs can

only flip f ’s value from1 to−1), thenInfi(f) = 2
√

pqf̃(i)

1 Russo-Margulis Lemma

Imagine fixing some monotone functionf : {T, F}n → {−1, 1}, and varyingp. Monotonicity
ensures that asp goes from0 to 1, Prp[f = −1] increases from0 to 1 (unlessf is a constant). See
Figure 1.

We want to study the behavior of this “probability-plot”. In particular, we want to find out if
the function turns “mostly”−1 from “mostly” 1 in a very small interval (which is like a threshold
phenomenon); or whether the change is more gradual. For example, think of the function as
indicating connectedness in a graph (think ofT andF as corresponding to the edge being present
or not). If we can prove that this function has a “probability-plot” like that of a step function, we
would have shown the threshold phenomena for connectedness in random graphs.

For studying such behavior ofp-biased functions, the following theorem is of central impor-
tance.

Theorem 1.1 (“Russo-Margulis Lemma”) If f : {T, F} → <,

d
dp

Ep[f ] = − 1

pq

n∑
i=1

f̃(i)
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Figure 1: Plots ofPrp[f = −1] v/sp

Hence,
d
dp

Pr[f = −1] =
d
dp

[1
2
− 1

2
Ep[f ]] =

1

2
√

pq

n∑
i=1

f̃(i)

Moreover, iff is monotone,

d
dp

Pr[f = −1] =
1

2
√

pq

n∑
i=1

Infi(f)

2
√

pq
=

1

4pq
Ip(f)

Proof: In input, identifyT with −1 andF with 1. Now think of f : {−1, 1}n → < in the usual
way under the uniform distribution. Recall that

T1−2pf(x) = Ey∼1−2px[f(y)]

Therefore,
T1−2pf(~1) = Ey∼1−2p~1

[f(y)] = Ep[f ]

Also, T1−2pf =
∑

S⊆[n](1− 2p)|S|f̂(S)χS. Therefore,

T1−2pf(~1) =
∑

S⊆[n]

(1− 2p)|S|f̂(S)

⇒ d
dp

Ep[f ] =
d
dp

(
∑

S⊆[n]

(1− 2p)|S|f̂(S))

= −2
∑

S⊆[n]

|S|(1− 2p)|S|−1f̂(S)

= −2
n∑

i=1

∑
S3i

(1− 2p)|S|−1f̂(S) (1)

Now note thatT1−2pDif =
∑

S3i(1− 2p)|S|−1f̂(S)χS\{i}. Therefore,
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∑
S3i

(1− 2p)|S|−1f̂(S) = T1−2pDif(~1)

= Ep[Dif ]

= Ep[
1
2
(f(x(i=F ))− f(x(i=T )))]

Substituting into(1),

d
dp

Ep[f ] = −2
n∑

i=1

Ep[
1
2
(f(x(i=F ))− f(x(i=T )))]

=
−1√
pq

n∑
i=1

Ep[
√

pq(f(x(i=F ))− f(x(i=T )))]

=
−1√
pq

n∑
i=1

Ep[D
(p)
i f ]

=
−1√
pq

n∑
i=1

f̃(i)

2

2 Threshold phenomena for monotone functions

We will now formalize the notion of threshold phenomena.

Definition 2.1 Given a non-trivial (non-constant) monotonef : {T, F}n → {−1, 1}, define criti-
cal probabilitypc(f) to be thep such thatPrpc [f = −1] = 1

2

Definition 2.2 f has a “sharp threshold” if d
dp

Pr[f = −1] at the the critical probabilitypc is
“large” compared to min(pc, qc).

Now recall that d
dp

Pr[f = −1] = Ipc (f)

4pcqc
. So equivalent to the definition, we wantIpc(f) to be

“large”. This would imply that in a small interval aroundpc (say [pc, pc(1 + δ)]), the change in the
probability (which would equal≈ Ipc(f)δ) is huge.

Remark 2.3 We measure the “largeness” of the derivative with respect topc because we want it
to be “sharp” irrespective of scaling. So ifpc happens to be small, the change occurs in a small
interval like [pc, pc(1 + δ)].

If f does not have a “sharp” threshold, it is said to be “coarse”. Usually, “coarse” will mean
Ipc(f) = O(1) and “sharp” will correspond toIpc(f) = ω(1).

We illustrate these concepts with a few examples and then inspect graph threshold properties
in this framework.
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• f(x) = x1. pc = 1
2
. Ipc(f) = 1. So this function is “coarse”

• f = Majority. pc = 1
2
. Ipc(f) ≈

√
2
π

√
n. So Majority has a “sharp” threshold. In general,

let f beT if more thanp0n of the inputs areT , andF otherwise. Thenpc = p0. Ip0(f) ≈
2
√

p0q0

√
2
π

√
n. So it sharp as long asp0 ≥ ω( 1

n
)

As described earlier, it is easy to model random graphs in the framework ofp-biased boolean
functions. Let the vertex set of the graph beV . Let n =

(|V |
2

)
. We can then identifyx ∈ {T, F}n

with a graph onV (T corresponds to the edge being present andF corresponds to the edge being
absent). Moreover, if x is drawn from ap-biased distribution, we get the random graphG(V, p).
Now any boolean function indicates a collection of graphs. For example, sayf(x) = −1 is x
contains a clique of sizeb2 ln vc. It is well known thatpc = 1

2
. Also, it can be shown that

I1
2
(f) = θ(log2 n). So this property of graphs has a “sharp” threshold : Atp ≤ 1

2
we will almost

surelynothave a clique of sizeb2 ln vc and atp ≥ 1
2

we will almost surely see a clique of that size.
The above discussion motivates another definition.

Definition 2.4 f : {T, F}(V
2) → {T, F} is a monotone graph property if :

1. f is monotone

2. f is not constant

3. f is invariant under permutation of the vertices.

Some examples of monotone graph properties are connectedness, contains a k-clique, contains
a hamiltonian path, isNOT k-colorable, contains at least1

2

(
V
2

)
edges.

Remark 2.5 Note that monotone graph properties are “weakly symmetric” or “transitive”, and
therefore all coordinates have the same influence.

Observation 2.6 The KKL theorem tells us that for any balanced function, if all the coordinates
have the same influence thenI1

2
(f) ≥ Ω(V ar[f ]) · log n. Therefore, ifpc = 1

2
, we getI1

2
(f) ≥

Ω(log n), and so we have a sharp threshold.

The only caveat to the above observation is that the KKL/Friedgut theorem relied on the hyper-
contractivity theorem for{T, F}1

2
. The conditionpc = 1

2
is therefore crucial. In general, to make

such an argument work in thep-biased framework for any arbitrarypc, we would need ap-biased
version of hypercontractivity.
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3 p-biased Hypercontractivity and KKL/Friedgut

Recall that the hypercontractivity theorem stated that iff : {−1, 1}n → < is a multilinear polyno-
mial of degree at mostd, then∀r ≥ 2, ‖f‖2

r ≤ (r − 1)d‖f‖2
2

Thep-biased version of the above theorem was proved by Oleszkiewicz.

Theorem 3.1 Let f : {T, F}n
p → < of degree≤ d (i.e. f̃(S) = 0 if |S| ≥ d). Then∀r ≥ 2,

‖f‖2
r ≤ C(r, p)d‖f‖2

2, whereC(r, p) = θ
1
r′ −θ

1
r′

θ
1
r−θ

1
r

, θ = p
q
, 1

r′ +
1
r

= 1 and the constantC(r, p) is best

possible.

Note asp → 0, C(r, p) → (1
p

1−2/r
).

Now for the KKL/Friedgut theorems.

Theorem 3.2 Letf : {T, F}n
p → {−1, 1} and letε > 0. Thenf is ε-close to a(1

p
)O(Ip(f)/ε)-junta.

Theorem 3.3 Letf : {T, F}n
p → {T, F}. Then∃i ∈ [n] with Infi(f) ≥ Ω(V ar[f ])

log 1
min(p,q)

· log n
n

So the bottomline is the following corollary.

Corollary 3.4 Let f : {T, F}n
p → {T, F} be a monotone graph property, andpc be the critical

probability. Then KKL impliesIp(f) ≥ Ω( log n

log 1
min(p,q)

). So we have a sharp threshold unlesspc or

qc ≤ 1
nθ(1)
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