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1 Applications of Majority Is Stablest

We recall the statement of the Majority Is Stablest Theorem, and a corollary of it.

Theorem 1.1 (Majority Is Stablest) Fix 0 < ρ < 1. Let f : {−1, 1}n → [−1, 1] have E[f ] = 0
and be (ε, 1

log(1/ε)
)-quasirandom. Then

Sρ(f) ≤ 2

π
arcsin ρ + O

(
log log 1/ε

log 1/ε

)
.

That is, Sρ(f) ≤ Sρ(Majn) + O(1) as n →∞.

For a different range of ρ, a reverse inequality holds.

Corollary 1.2 (“Reverse” Majority Is Stablest) Fix −1 < ρ < 0. Let f : {−1, 1}n → [−1, 1]
be (ε, 1

log(1/ε)
)-quasirandom. Then

Sρ(f) ≥ 2

π
arcsin ρ−O

(
log log 1/ε

log 1/ε

)
.

That is, Sρ(f) ≥ Sρ(Majn)−O(1) as n →∞.

Why can we omit the condition that E[f ] = 0 in the corollary? A partial answer is that in the
theorem, we had to rule out the constant functions, since when f is constant,

Sρ(f) =
∑

S

ρ|S|f̂(S)2 = f̂(∅)2 = 1 >
2

π
arcsin ρ + O

(
log log 1/ε

log 1/ε

)

for all ρ < 1. As the corollary proves a lower bound on stability, the constant functions are no
longer a problem.
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1.1 Condorcet’s Paradox

Recall our discussion of Condorcet’s paradox in Lecture 4. We looked at three-party elections
that are determined by a social choice function f : {−1, 1}n → {−1, 1} applied to each pair
of candidates. We noted that when f is majority, an irrational outcome was possible, in that
candidates A, B, and C could be ranked A > B > C > A in a cycle. Further, recall we defined
Rationality(f) to be the probability that no cycles are produced with f , when the “voters” decide
between pairs of candidates uniformly at random (i.e. to decide between each pair of candidates,
we draw random x ∈ {−1, 1}n and evaluate f(x)). It was shown that

Rationality(f) =
3

4
− 3

4
S−1/3(f).

Therefore, another corollary of the Majority Is Stablest theorem applies to voting paradoxes:

Corollary 1.3 There is a function α such that for all ε > 0, if a Boolean f is such that Infi(f) ≤ ε,
then

Rationality(f) ≤ 3

4
− 3

4
· 2

π
arcsin

(
−1

3

)
+ α(ε) ≈ Rationality(Majn),

where α(ε) → 0 as ε → 0.

Therefore, functions with small variable influences cannot be significantly “more rational” than
Majority. The corollary follows from the definition of quasirandomness and the fact that attenuated
variable influences are smaller than non-attenuated influences.

1.2 Testing For Stability and Hardness of Approximating Max Cut

The very definition of noise stability naturally suggests a function test. Namely, the

Noise Stability Test: For a Boolean function f with parameter −1 < ρ < 0:

1. Pick x ∈ {−1, 1}n uniformly at random.

2. Pick y ∼ρ x, i.e. y is a ρ-correlated copy of x.

3. Query f(x) and f(y).

4. ACCEPT if and only if f(x) 6= f(y).

Observation 1.4 The probability that a function f passes the above test is 1
2
− 1

2
Sρ(f).

Proof: Recall that Sρ(f) = Ex,y∼ρx[f(x)f(y)], so Prx,y∼ρy[f(x) 6= f(y)] = (1−Sρ(f))

2
.2

Using the observation and the Reverse Majority Is Stablest Theorem, we deduce that
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• Pr[Dictator passes] = 1
2
− 1

2
ρ,

• Pr[Constant function passes] = 0,

• If f is (ε, δ)-quasirandom, then

Pr[f passes] ≤ 1

2
− 1

2

(
2

π
arcsin ρ

)
+ α(δ, ε),

=
1

π
arccos ρ + α(δ, ε),

where α(δ, ε) → 0 as δ, ε → 0.

Picking a ρ that maximizes the difference between the dictator and quasirandom probabilities,
we find that when ρ0 ≈ −0.69,

• a dictator passes with probability exactly 0.845, and

• a quasirandom function (with negligible ε and δ) passes with probability at most 0.7424.

So the Noise Stability Test can be used to distinguish between dictators and quasirandom functions,
a problem that came up in Lecture 6 concerning the unique games conjecture. In that lecture, we
used the Hast-Odd Test to prove a hardness of approximation result for 3-Lin. Here, we’ll use
the Noise Stability Test to sketch a proof of a hardness of approximation result for the Max Cut
problem.

Recall that every function test has associated with it a constraint satisfaction problem, where
each constraint represents one of the possible choices of queries, and the constraint is satisfied if
and only if the test accepts on those queries. If we translate the Noise Stability Test over to con-
straint satisfaction, observe that the resulting constraints are all of the form “x 6= y”, for Boolean
variables x, y. As usual, we consider the decision problem of finding a setting to the variables that
maximizes the number of constraints satisfied, given a set of inequality constraints.

First, notice that the problem of inequality constraints is analogous to the well-known Max Cut
problem: construe the variables as nodes, and each inequality constraint as an edge between two
nodes.

Using the framework of Lecture 6, one can prove the following.

Theorem 1.5 Assume the Unique Games Conjecture. Then ∀η > 0 and−1 < ρ < 0, it is NP-hard
given a graph G to distinguish between the following two cases:

• maxcut(G) ≥ 1
2
− 1

2
ρ, and

• maxcut(G) < 1
π

arccos ρ + η.
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In particular, for ρ0 = 0.69, it’s hard to approximate Max Cut to within the ratio
1
π

arccos ρ0+η

1/2−1/2ρ0
>

0.742
0.845

≈ 0.878.

What’s even more interesting is that there is a polynomial time algorithm for Max Cut that
approximates within a ratio that’s arbitrarily close to the above hardness result.

Theorem 1.6 (Goemans-Williamson’95) For all η > 0 and −1 < ρ < 0, there is a polyno-
mial time algorithm which given G with maxcut(G) ≥ 1

2
− 1

2
ρ, finds a cut of fractional size

≥ 1
π

arccos ρ− η. Furthermore, the algorithm is a 0.878-approximation for Max Cut.

Thus when the max cut has at least a (1 − ε) fraction of edges crossing it, the Goemans-
Williamson algorithm finds a cut that has at least a 1−O(

√
ε) fraction of edges crossing it.

2 Introduction to p-Biased Fourier Analysis

Much of the Fourier analysis we have covered in this course can be generalized to functions f :
Xn → R, where Xn is just assumed to be a product probability space. (Confer with question 1 on
Homeworks 4 and 5.) For example, we could have

• X = {1, 2, 3} where each is chosen with probability 1/3.

• X = {T, F}p, where Pr[X = T ] = p and Pr[X = F ] = 1− p. This is called the p-biased
distribution.

• X = (R, Gaussian).

Of course, we have been studying {T, F}1/2 all along. The main result we proved that was actually
specific to {T, F}1/2 was the hypercontractivity theorem (Lecture 16). Over the next few lectures,
we’ll look at Fourier analysis of Boolean functions on p-biased distributions.

3 Basic Definitions

Let’s start laying the groundwork with definitions. Let p ∈ (0, 1), write q = 1− p, denote {T, F}p

for the product distribution Pr[T ] = p, Pr[F ] = q. We begin with a re-definition of a character.

Definition 3.1 The p-biased character φ : {T, F}p → R is given by φ(T ) := −
√

q
p
, φ(F ) :=

√
p
q
.

Observe that in the p = 1/2 case, we have φ(T ) = −1 and φ(F ) = 1, as expected. Each
character has
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Observation 3.2 For x ∼ {T, F}p,

• E[φ(x)] = p ·
(
−

√
q
p

)
+ q

(√
p
q

)
= −√pq +

√
pq = 0.

• E[φ2(x)] = p
(

q
p

)
+ q

(
p
q

)
= p + q = 1.

Definition 3.3 For S ⊆ [n], define φS : {T, F}n
p → R by

φS(x) =
∏
i∈S

φ(xi),

and define φ∅ ≡ 1.

Notation: We write Ep[X(x)] to mean Ex∼{T,F}n [X(x)], for a random variable X .

Definition 3.4 For f, g : {T, F}n
p → R, define the p-biased inner product as

〈f, g〉p = Ep[f(x)g(x)].

The characters behave under this inner product as one would expect:

Proposition 3.5

〈φS, φT 〉 =

{
1 if S = T ,
0 otherwise.

Proof: If S = T , then

〈φS, φT 〉 = Ep[
∏
i∈S

φ(xi)
2]

=
∏
i∈S

Ep[φ(x)2] by independence of xi’s

=
∏
i∈S

1 = 1, by the observation.

If S 6= T , then

〈φS, φT 〉 = Ep[
∏
i∈S

φ(xi)
∏
i∈T

φ(xi)].

Let j ∈ S∆T . Since φ(xj) appears only once among the terms in Ep[· · · ], this term is independent
of the other terms being multiplied. Therefore

Ep[
∏
i∈S

φ(xi)
∏
i∈T

φ(xi)] = E[φ(xj)] · Ep[· · · ] = 0,
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since E[φ(xj)] = 0. 2

At this stage, we must give a note of WARNING to the reader: there are p ∈ (0, 1) for which their
p-biased characters have φ2

i (x) 6= 1, and φS(x) · φT (x) 6= φS∆T (x). That is, certain inequalities in
the original case do NOT hold in general!

Corollary 3.6 {φS}S⊆[n] forms an orthonormal basis for the 2n dimensional inner product space
of functions {T, F}n

p → R, with respect to 〈·, ·〉p.

Having established the character functions on sets, there is a natural definition of Fourier coef-
ficients in the p-biased setting.

Definition 3.7 For a fixed p ∈ (0, 1), f : {T, F}n
p → R, and S ⊆ [n], we write f̃(S) = 〈f, φS〉p.

Finally, we have the p-biased Fourier expansion of a function f :

Proposition 3.8 f =
∑

S f̃(S)φS , as functions {T, F}n
p → R.

3.1 Comparison With Our Former Setting

Many propositions that held under our old Fourier analysis still hold in the p-biased world. For
example:

Proposition 3.9 (Parseval’s Identity) Ep[f(x)2] =
∑

S f̃(S)2.

Proposition 3.10 (Plancherel’s Identity) 〈f, g〉p =
∑

S f̃(S) · g̃(S).

We leave the proofs as an exercise. Essentially, these results still hold because they only relied
on the orthonormality of the characters. The expectation and variance have analogous formulas for
functions f : {T, F}n

p → R; these formulas follow readily from the definitions.

Definition 3.11 Varp(f) = Ep[f
2]− Ep[f ]2.

Proposition 3.12 Ep[f ] = f̃(∅) and Varp(f) =
∑

S 6=∅ f̃(S)2.

While much stays the same, a few of the notions from our old setting require some modification.
In particular, the definition of the differential operator changes a bit.

Definition 3.13 For i ∈ [n], define the operator Di on functions {T, F}n
p → R by

(Dif)(x) =
√

pq · [f(x(i=F ))− f(x(i=T ))
]
.
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The motivation for our definition of Di is to preserve the following property, that now holds
for all p-biased Fourier transforms.

Proposition 3.14 Dif =
∑

S3i φS\{i}.

Proof: By definition, Di is a linear operator (Di(f + cg) = Dif + cDig). Since every function f

can be written in the form f =
∑

S f̃(S)φS , by linearity of Di it suffices for us to check that

DiφS =

{
φS\{i} if x ∈ S

0 otherwise,

for all S ⊆ [n].

• If i /∈ S, then φS doesn’t depend on the ith coordinate at all, so φS(x(i=F )) = φS(x(i=T ))
and (Dif)(x) = 0.

• If i ∈ S, then

DiφS =
√

pq
[
φS(x(i=F ))− φS(x(i=T ))

]

=
√

pq
[
φS\{i} · φ(F )− φS\{i} · φ(T )

]
by definition

= φS\{i}
√

pq

[√
p

q
−

(
−

√
q

p

)]

= φS\{i}
√

pq

[
p + q√

pq

]
= φS\{i}.

2

Corollary 3.15 Ep[(Dif)2] =
∑

S3i f̃(S)2.

The proof of the corollary is similar to that in the original setting. Naturally, as another ana-
logue we make the definition

Infi(f) := Ep[(Dif)2].

Exercise: If f : {T, F}n
p → {−1, 1} then Infi(f) = 4pqPrp[f(x) 6= f(x(i))] = 2Prp[f(x) 6=

f(xR(i))], recalling that x(i) is our notation for x with the ith coordinate flipped, and xR(i) is notation
for x with the ith coordinate assigned T with probability p, F with probability q.

Proposition 3.16 If f : {T, F}n
p → {−1, 1} and is monotone (flipping F to T can only flip f ’s

value from 1 to −1), then Infi(f) = 2
√

pqf̂(i).
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Proof:

f̂(i) = Ep[Dif ]

= Ep[
√

pq
[
f(x(i=F ))− f(x(i=T ))

]
.

Since f is monotone, the quantity
[
f(x(i=F ))− f(x(i=T ))

]
is either 2 or 0 on all x. (In particular,

it can’t be −2.) Therefore the above is equal to

=
Ep[(Dif)2]

2
√

pq
=

Infi(f)

2
√

pq
.

2
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