Analysis of Boolean Functions (CMU 18-859S, Spring 2007

Lecture 22: Majority is the Stablest
Apr. 5, 2007

Lecturer: Ryan O’'Donnell Scribe: Elaine Sh

In this lecture, our goal is to prove the “Majority is StalifeBheorem for balanced functions
f:{=1,1}" — [-1,1] with low influence. We shall first prove the “Invariance Pipie” for
multilinear polynomials with low influence and bounded aEgrThe Invariance Principle shows
that to prove that “Majority is Stablest” Theorem on unifopnobability distribution o —1, 1},
it suffices to prove it on product Gaussian distribution. e prove the “Majority is Stablest”
Theorem on product Gaussian distribution.

1 Invanriance Principle

Theorem 1.1 (Invariance Principle.) LetQ(uq,us,...,u,) be a multi-linear polynomial, with
formal variablesuy, us, . . ., u,, deg(Q) < d, i.e.,

Qur, ug, ..., uy) = Z (ozs-HuZ)

SCinl,|S|<d ies

whereas € R. Assume) ¢ a5 = 1. Writer; = Inf;(Q) = Y g, 0%, and assume’i =
1,2,...,n,7 <7.Letxy,xs,...,x, denote i.i.d. random-1 bits; letg;, g», . . ., g, denote i.i.d.
gaussiansV(0,1). LetX = Q(x1,X2,...,X,), Y = Q(g1,82,..,8,). Lety : R — R denote a
B-nice function, i.e.y) is smooth an&/z € R, [¢"(x)| < B. Then

[E[(X)] - E(Y)]| <O(d- 9" B-7)

Remark 1.2 Note that when,; = g; or whenu; = x;, Var[Q(uy, ug, . .., u,)] = Zs;&@ a =1.
In addition, in caseVar|[Q(uy, us, ..., u,)] # 1, to apply this theorem, we can scale thg's
accordingly such thaVar|[Q(uy, ug, . .., u,)] = 1.

Proof: The proof resembles that of the Berry-Esseen Theorem inrthequs lecture.
As before, hybridize and write; = Q(g1, - . ., 8i, Xit1, - - -, Xn)-

Claim 1.3
[E[¢(2i1)] — Bl(z)]] <O(B-97-77).



Note that given the above claim, we can bound the overalt agdelow:
[E[¢(X)] = E[0(Y)]| = [E[(z0)] — E[¢)(z2)]]
<> [EW(zi1)] - E(z)]| = > O0(B-9"- )
i=1 i=1

=0(B - 9% - ZTE <O(B-9%)- mfaf{%} : Z Ti
i=1 B i=1

SO(B-9d~T)-ZZa§

i=1 S3i

Note that

izoéz Y I8]-ai<d-) ag=d-Var[Q]=d

i=1 S3i 1S|<d S#0

Therefore, we conclude thE[y(X)] — E[(Y)]] < O(d-9¢- B - 7).
It remains to prove Claim 1.3. Write

Q(u17u27 .- '7un> = T(U17U27 ceey Ug—1, Uig1,y - - - 7Un) + U - S(U1,U27 ceey Ug—1, Uil - - - 7Un)

wherer ands are multi-linear polynomials of degree at mdst

Let R = ’f’(gl, ey i1, X1y e e ,Xn), S = S(gl, ey i1, X1y e e ,Xn). We then have
zi_1 = R+ x;S, z; = R + g;S. Note thatR andS are mutually independent of, andg;.
Now

El(zi1)] - B[¢(z)]| = |[E[b(R +x,8)] - E[¢(R +g8)|  (Use Taylor Expansion
=[BIS(R) + %8 - 0/(R) + (x:8)"(R)/2 + (x8)*0"(R)/6 + {< o - (x:8)")]-
BIU(R) + &8 - 0/(R) + (2:5)0/ (R)/2 + (88" (R)/6+ {< - (&5)")]

It is not hard to see that all of the firdtterms cancel out. For example, consider the term
E[(x;S)*¢"(R)/2].

E[x}-S?-¢"(R)/2] = E[x?] - E[S* - ¢"(R)/2] (independence



Hence,

Bl ()] ~ Blo(z)]| < o Bixt -8+ o Blg! -8
B 4 4 B 4 4
=5, Elxi]-E[ST]+ o - Elgi]- E[ST]
B 4 B 4
—; - 1-B[S"+ ;-3 E[S"
<O(B)-E[S"]
<O(B) -9 - E[S?)? (Hyper-contractivity
=0(B)-9"-E[( Y ar ] v

TC[n|,T3i  jeT,j#i

Y = o
x; ifj>i.

where

Notice thatE[g;x;] = 0, E[g?] = E[x?] = 1. Therefore,
[E[(zi1)] — El(z)]| < O(B)-9°- () @%)2

= (B).gd.T?

2

2 Majority is the Stablest, Proof Sketch

Recall that we have been trying to prove the theorem that Okilgjis the stablest”, namely, fix
0 < p < 1, for all balanced functiong : {—1,1}" — [—1, 1] with “small” influnce Inf;(f) for
all i, thenS,(f) < 2arcsinp + “small”, where the ternarcsirp is the noise stability of Majas
n goes to infinity. We now prove the theorem for Gaussian rangamables. To do this, we need
the following definition.

Definition 2.1 g = (g1,82, - - -, &) iS ann-dimensional random Gaussiangf, g, ..., g, are
i.i.d. GaussiansV(0,1).

Definition 2.2 g andh are p-correlatedn-dimensional Gaussian® < p < 1), if g is a random
Gaussian, andh is formed by

h;=p-g++1-p* N(0,1)

independently acrosss. Denoteh = p-€+ 1 —p?- g whereg’ is ann-dimensional random
Gaussian independent gf



Definition 2.3 Let f : R" — R, s.t. E[f(g)?] < co. Let0 < p < 1. The Ornstein-Uhlenbeck
operatorU, is defined by

Upf(8) = Eﬁwpg[f(h)]
whereh ~, g denotes thah is ann-dimensional random Gaussiarncorrelated withg.

Remark 2.4 U, is defined analogous to the noise operatgrfor functionsf : R* — R. Recall
the definition off}, on functionsf : {—1,1}" — R:

Tpf(x) - Eywpx[f(Y)]
Forx e {—1,1}", y ~, x denotes that we pick p-correlated withx as follows: each coordinate
y: is set to bex; with probability1/2 + p/2, and—x; with probability1/2 — p/2.
For example, SUpposE(g:, 82, -, 8n) = D g (@s [Lics &) Then

Upf(81,82,---8n) = Eny ho, ho)~o(gr,go,ngn) Lf (M1, oy oo hy )]

=E;[ > as[[hl= ) as[[EMh

SCn] 1€S SC[n] 1€S

=Y as]]r-s

SC[n] i€S

=Y as- o] e

SC[n] i€S

Now suppose: = 1, andf(g) = g?. Then

Upf(8) = Env,g[h’] = Ene gl(p- g+ /1 — p2N(0,1))%] = p’g® + 1 — p°
Definition 2.5 Let f : R™ — R,
So(f) = Eglf (@)U, f(8)) = Bglf (@) Eg fM] =E 5 [f(&)f(h)

p-correlated

Exercise. If f =Y gas[[,cqsi thenS,(f) =3 qap.
Let g be a randomm-dimensional Gaussiafig||3 = >_i ; g7.

Observation 2.6 Observe that|g||3 is the sum of: independent random variables each having
mean1 and variance2. Due to the Central Limit Theorem, with very high probakilig||3 =

n + O(,/n); hence, with high probability|g||, = /n(1 & %).

Observation 2.7 g is distributed spherically symmetrically. This is becatise p.d.f. ofg at
U = (uq,us,...,u,) isequal to

/2 _ (L gty _ (L yn -l

L
U Var Var Var
Clearly, the p.d.f. only depends @3



We conclude thag is very much like a random point on the surface of a spherengaadius
V.
Suppose thatg, E) are p-correlated random-dimensional Gaussians; meanwhigeis very
much like a random point on the surface of a sphere havingisadin. Recall thath = p-g+
/1 —p? - g whereg’ is ann-dimensional random Gaussian independerg.of

E[g-h| = Z E[gih;] = pn = O(V/n)

So the angle betweahandh is very close tarccosp + o(1). So we see that picking, E) to be
p-correlatedn-dimensional Gaussians is very much like picking two randesctors fixed at angle
arccosp £ o(1), on the surface of a radiugn sphere. Note that sinde < p < 1, this angle is
acute.

To prove that “Majority is the stablest”, we consider thddwling question: Among all func-
tions f : R — {—1,1} that are balanced (i.eE[f(g)] = 0), what is the maximum value of
S,(f), where

Se(f) =E (&) [f(8)f(h)] = 2Pr (&h) /(&) = f(h)] -1
p-correlated p-correlated
We can also think of this as picking a subset on the ragiussphere, whose size is/2 of the
sphere, such that when we pick two random vectors on thecgudhthe sphere fixed at some
acute angle, this set will maximize the probability thattbe¢ctors land inside or outside the set.
Intuitively, the hemisphere (in fact, any hemisphere) seéke the best set for our purpose. A
theorem due to Borell in 1985 shows that this intuition isged true.

Theorem 2.8 (Borell'85.) Pickg andh to be two random vectors fixed at some acute angle, on
the surface of a sphere. L&tdenote a subset of half of the sphere, and consider the piittigab
that bothg andh both land inside or outside the sét This probability is maximized whehis

any hemisphere.

Proof:(idea.) The theorem can be proved by a symmetrization argurirdormally, let P denote
an arbitrary plane across the center of the sphere, one cantblat symmetrizingsS across the
plane P improves the probability thag andh both land inside or outside the st Sufficiently
many symmetrizations bring it close to a hemispheére.

Now we know that the maximum half sphere that maximigs) is the hemisphere, we can
compute the maximum value f8,(f) by letting f = sgn(g;):

2
E 5 [sen(g)sgn(hy)] = —arcsing.
p-correlated
Remark 2.9 Note that in the above, we only considered functipn®R — {—1,1}. Butin order
to prove the “Majority is Stablest” Theorem, we need to prémef : R — [—1,1]. In fact, itis
possible to show a similar result for functiofis R — [—1, 1].



