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In this lecture, our goal is to prove the “Majority is Stablest” Theorem for balanced functions
f : {−1, 1}n → [−1, 1] with low influence. We shall first prove the “Invariance Principle” for
multilinear polynomials with low influence and bounded degree. The Invariance Principle shows
that to prove that “Majority is Stablest” Theorem on uniformprobability distribution on{−1, 1}n,
it suffices to prove it on product Gaussian distribution. Then we prove the “Majority is Stablest”
Theorem on product Gaussian distribution.

1 Invanriance Principle

Theorem 1.1 (Invariance Principle.) LetQ(u1, u2, . . . , un) be a multi-linear polynomial, with
formal variablesu1, u2, . . . , un, deg(Q) ≤ d, i.e.,

Q(u1, u2, . . . , un) =
∑

S⊆[n],|S|≤d

(

αS ·
∏

i∈S

ui

)

whereαS ∈ R. Assume
∑

S 6=∅ α
2
S = 1. Write τi = Infi(Q) =

∑

S∋i α
2
S, and assume∀i =

1, 2, . . . , n, τi ≤ τ . Letx1,x2, . . . ,xn denote i.i.d. random±1 bits; letg1, g2, . . . , gn denote i.i.d.
gaussiansN(0, 1). LetX = Q(x1,x2, . . . ,xn), Y = Q(g1, g2, . . . , gn). Letψ : R → R denote a
B-nice function, i.e.,ψ is smooth and∀x ∈ R, |ψ′′′′(x)| ≤ B. Then

|E[ψ(X)] −E[ψ(Y)]| ≤ O(d · 9d · B · τ)

Remark 1.2 Note that whenui = gi or whenui = xi, Var[Q(u1, u2, . . . , un)] =
∑

S 6=∅ α
2
S = 1.

In addition, in caseVar[Q(u1, u2, . . . , un)] 6= 1, to apply this theorem, we can scale theαS ’s
accordingly such thatVar[Q(u1, u2, . . . , un)] = 1.

Proof: The proof resembles that of the Berry-Esseen Theorem in the previous lecture.
As before, hybridize and writezi = Q(g1, . . . , gi,xi+1, . . . ,xn).

Claim 1.3
|E[ψ(zi−1)] − E[ψ(zi)]| ≤ O(B · 9d · τ 2

i ).
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Note that given the above claim, we can bound the overall error as below:

|E[ψ(X)] − E[ψ(Y)]| = |E[ψ(z0)] −E[ψ(zn)]|

≤
n
∑

i=1

|E[ψ(zi−1)] −E[ψ(zi)]| =
n
∑

i=1

O(B · 9d · τ 2
i )

=O(B · 9d) ·
n
∑

i=1

τ 2
i ≤ O(B · 9d) · n

max
i=1

{τi} ·
n
∑

i=1

τi

≤O(B · 9d · τ) ·
n
∑

i=1

∑

S∋i

α2
S

Note that
n
∑

i=1

∑

S∋i

α2
S =

∑

|S|≤d

|S| · α2
S ≤ d ·

∑

S 6=∅
α2

S = d · Var[Q] = d

Therefore, we conclude that|E[ψ(X)] −E[ψ(Y)]| ≤ O(d · 9d · B · τ).
It remains to prove Claim 1.3. Write

Q(u1, u2, . . . , un) = r(u1, u2, . . . , ui−1, ui+1, . . . , un) + ui · s(u1, u2, . . . , ui−1, ui+1, . . . , un)

wherer ands are multi-linear polynomials of degree at mostd.
Let R = r(g1, . . . , gi−1,xi+1, . . . ,xn), S = s(g1, . . . , gi−1,xi+1, . . . ,xn). We then have

zi−1 = R + xiS, zi = R + giS. Note thatR andS are mutually independent ofxi andgi.
Now

|E[ψ(zi−1)] −E[ψ(zi)]| = |E[ψ(R + xiS)] −E[ψ(R + giS)]| (Use Taylor Expansion)

=
∣

∣E[ψ(R) + xiS · ψ′(R) + (xiS)2ψ′′(R)/2 + (xiS)3ψ′′′(R)/6 + {≤ B

24
· (xiS)4}]−

E[ψ(R) + giS · ψ′(R) + (giS)2ψ′′(R)/2 + (giS)3ψ′′′(R)/6 + {≤ B

24
· (giS)4}]

∣

∣

It is not hard to see that all of the first4 terms cancel out. For example, consider the term
E[(xiS)2ψ′′(R)/2].

E[x2
i · S2 · ψ′′(R)/2] = E[x2

i ] · E[S2 · ψ′′(R)/2] (independence)

=E[g2
i ] · E[S2 · ψ′′(R)/2]
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Hence,

|E[ψ(zi−1)] − E[ψ(zi)]| ≤
B

24
·E[x4

i · S4] +
B

24
· E[g4

i · S4]

=
B

24
·E[x4

i ] · E[S4] +
B

24
· E[g4

i ] · E[S4]

=
B

24
· 1 · E[S4] +

B

24
· 3 · E[S4]

≤O(B) · E[S4]

≤O(B) · 9d ·E[S2]2 (Hyper-contractivity)

=O(B) · 9d ·E[(
∑

T⊆[n],T∋i

αT

∏

j∈T,j 6=i

yj)
2]2

where

yj =

{

gj if j < i,

xj if j > i.

Notice thatE[gixj] = 0, E[g2
i ] = E[x2

i ] = 1. Therefore,

|E[ψ(zi−1)] − E[ψ(zi)]| ≤ O(B) · 9d · (
∑

T⊆[n],T∋i

α2
T )2

=O(B) · 9d · τ 2
i

2

2 Majority is the Stablest, Proof Sketch

Recall that we have been trying to prove the theorem that “Majority is the stablest”, namely, fix
0 ≤ ρ ≤ 1, for all balanced functionsf : {−1, 1}n → [−1, 1] with “small” influnce Inf i(f) for
all i, thenSρ(f) ≤ 2

π
arcsinρ + “small”, where the term2

π
arcsinρ is the noise stability of Majn as

n goes to infinity. We now prove the theorem for Gaussian randomvariables. To do this, we need
the following definition.

Definition 2.1 ~g = (g1, g2, . . . , gn) is ann-dimensional random Gaussian ifg1, g2, . . . , gn are
i.i.d. GaussiansN(0, 1).

Definition 2.2 ~g and~h are ρ-correlatedn-dimensional Gaussians(0 ≤ ρ ≤ 1), if ~g is a random
Gaussian, and~h is formed by

hi = ρ · gi +
√

1 − ρ2 ·N(0, 1)

independently acrossi’s. Denote~h = ρ · ~g +
√

1 − ρ2 · ~g′ where~g′ is ann-dimensional random
Gaussian independent of~g.

3



Definition 2.3 Let f : R
n → R, s.t. E[f(~g)2] < ∞. Let 0 ≤ ρ ≤ 1. The Ornstein-Uhlenbeck

operatorUρ is defined by
Uρf(~g) = E~h∼ρ~g[f(~h)]

where~h ∼ρ ~g denotes that~h is ann-dimensional random Gaussianρ-correlated with~g.

Remark 2.4 Uρ is defined analogous to the noise operatorTρ for functionsf : R
n → R. Recall

the definition ofTρ on functionsf : {−1, 1}n → R:

Tρf(x) = Ey∼ρx[f(y)]

For x ∈ {−1, 1}n, y ∼ρ x denotes that we picky ρ-correlated withx as follows: each coordinate
yi is set to bexi with probability1/2 + ρ/2, and−xi with probability1/2 − ρ/2.

For example, supposef(g1, g2, . . . , gn) =
∑

S⊆[n]

(

αS

∏

i∈S gi

)

. Then

Uρf(g1, g2, . . . , gn) = E(h1,h2,...,hn)∼ρ(g1,g2,...,gn)[f(h1,h2, . . . ,hn)]

=E~h[
∑

S⊆[n]

αS

∏

i∈S

hi] =
∑

S⊆[n]

αS

∏

i∈S

E[hi]

=
∑

S⊆[n]

αS

∏

i∈S

ρ · gi

=
∑

S⊆[n]

αS · ρ|S| ·
∏

i∈S

gi

Now supposen = 1, andf(g) = g2. Then

Uρf(g) = Eh∼ρg[h
2] = Eh∼ρg[(ρ · g +

√

1 − ρ2N(0, 1))2] = ρ2g2 + 1 − ρ2

Definition 2.5 Letf : R
n → R,

Sρ(f) = E~g[f(~g)Uρf(~g)] = E~g[f(~g)E~h∼ρ~g[f(~h)]] = E (~g,~h)
ρ-correlated

[f(~g)f(~h)]

Exercise. If f =
∑

S αS

∏

i∈S gi, thenSρ(f) =
∑

S α
2
Sρ

|S|.
Let ~g be a randomn-dimensional Gaussian,‖~g‖2

2 =
∑n

i=1 g2
i .

Observation 2.6 Observe that‖~g‖2
2 is the sum ofn independent random variables each having

mean1 and variance2. Due to the Central Limit Theorem, with very high probability ‖~g‖2
2 =

n± O(
√
n); hence, with high probability,‖~g‖2 =

√
n(1 ± O(1)√

n
).

Observation 2.7 ~g is distributed spherically symmetrically. This is becausethe p.d.f. of~g at
~u = (u1, u2, . . . , un) is equal to

n
∏

i=1

1√
2π
e−u2

i
/2 = (

1√
2π

)ne−(u2

1
+u2

2
+...+u2

n)/2 = (
1√
2π

)ne−‖~u‖2

2
/2

Clearly, the p.d.f. only depends on‖~u‖2
2.
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We conclude that~g is very much like a random point on the surface of a sphere having radius√
n.

Suppose that(~g, ~h) areρ-correlated randomn-dimensional Gaussians; meanwhile,~g is very
much like a random point on the surface of a sphere having radius

√
n. Recall that~h = ρ · ~g +

√

1 − ρ2 · ~g′ where~g′ is ann-dimensional random Gaussian independent of~g.

E[~g · ~h] =
n
∑

i=1

E[gihi] = ρn±O(
√
n)

So the angle between~g and~h is very close toarccosρ± o(1). So we see that picking(~g, ~h) to be
ρ-correlatedn-dimensional Gaussians is very much like picking two randomvectors fixed at angle
arccosρ ± o(1), on the surface of a radius

√
n sphere. Note that since0 ≤ ρ ≤ 1, this angle is

acute.
To prove that “Majority is the stablest”, we consider the following question: Among all func-

tions f : R
n → {−1, 1} that are balanced (i.e.,E[f(~g)] = 0), what is the maximum value of

Sρ(f), where

Sρ(f) = E (~g,~h)
ρ-correlated

[f(~g)f(~h)] = 2Pr (~g,~h)
ρ-correlated

[f(~g) = f(~h)] − 1

We can also think of this as picking a subset on the radius-
√
n sphere, whose size is1/2 of the

sphere, such that when we pick two random vectors on the surface of the sphere fixed at some
acute angle, this set will maximize the probability that both vectors land inside or outside the set.

Intuitively, the hemisphere (in fact, any hemisphere) seems like the best set for our purpose. A
theorem due to Borell in 1985 shows that this intuition is indeed true.

Theorem 2.8 (Borell’85.) Pick~g and~h to be two random vectors fixed at some acute angle, on
the surface of a sphere. LetS denote a subset of half of the sphere, and consider the probability
that both~g and~h both land inside or outside the setS. This probability is maximized whenS is
any hemisphere.

Proof:(idea.) The theorem can be proved by a symmetrization argument. Informally, letP denote
an arbitrary plane across the center of the sphere, one can show that symmetrizingS across the
planeP improves the probability that~g and~h both land inside or outside the setS. Sufficiently
many symmetrizations bring it close to a hemisphere.2

Now we know that the maximum half sphere that maximizesSρ(f) is the hemisphere, we can
compute the maximum value forSρ(f) by lettingf = sgn(g1):

E (~g,~h)
ρ-correlated

[sgn(g1)sgn(h1)] =
2

π
arcsinρ.

Remark 2.9 Note that in the above, we only considered functionsf : R → {−1, 1}. But in order
to prove the “Majority is Stablest” Theorem, we need to provefor f : R → [−1, 1]. In fact, it is
possible to show a similar result for functionsf : R → [−1, 1].
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