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1 Berry-Esseen Theorem

In this class we study a simplified version of the Berry-Esseen theorem, which quantifies how
“close” are the distributions of the two random variablesQ(x1, · · · ,xn) andQ(g1, · · · , gn), where
x1, · · · ,xn are uniform random bits±1 andg1, · · · , gn are Gaussian random variables with mean
0 and variance 1, andQ is a multivariate polynomial of degree 1 or in other words it is an affine
function. In the next class, we study a version of Berry-Esseen theorem whereQ is a multi-linear
polynomial. This theorem is used to prove that “Majority is Stablest”. The following is the main
theorem of this class.

Theorem 1.1 LetQ(u1, · · · , un) =
n
∑

i=1

αiui, αi ∈ R, be a linear polynomial over formal variables

u1, · · · , un. Also assume that
n
∑

i=1

α2
i = 1 andα2

i ≤ τ, ∀i ∈ [n]. Let x1, · · · ,xn be i.i.d uniform

random±1 bits. Let the random variableg be normally distributed with mean 0 and variance 1,
i.e.,g ∼ N(0, 1). Then the random variablesQ(x1, · · · ,xn) andg are “close” in distribution. In
particular

1. ∀to ∈ R, |Pr[Q(x1, · · · ,xn) < t0] − Pr[g < t0]| ≤ O(τ).

2. |E[|Q(x1, · · · ,xn)|] −E[|g|]| ≤ O(τ).

We first understand some of the ideas used in the proof of theorem 1.1.
Idea 1: The first idea is to replace the Gaussian random variableg by another Gaussian

random variable with same mean and variance but looks very similar to the random variable
Q(x1, · · · ,xn). Let g1, · · · , gn be i.i.d Gaussian random variables with mean 0 and variance

1. Consider the random variableQ(g1, · · · , gn) ∼
n
∑

i=1

αigi. It turns out thatQ(g1, · · · , gn) ∼

N(0,
∑n

i=1 α
2
i ) ∼ N(0, 1)1 is also Gaussianly distributed. Now we can compare the distributions

Q(x1, · · · ,xn) andQ(g1, · · · , gn) which at least appear to look alike.

1If X ∼ N(0, 1), then αX ∼ N(0, α2). If X ∼ N(µ, σ2) and Y ∼ N(ν, τ2), then X + Y ∼
N(µ + ν, σ2 + τ2). In other words, sum of Gaussian random variables is Gaussian whose mean and variance are
respectively equal to sum of the individual means and variances of Gaussian random variables used in summation.
Refer http://en.wikipedia.org/wiki/Sumof normally distributedrandomvariables

1



Idea 2: We shall try to see a generic way to say that two random variablesX andY are close
in distribution. For all “nice” test functionsψ : R → R,

|E[ψ(X)] −E[ψ(Y )]| ≤ “small”.

First note that if the functionsψt0(t) =

{

1 if t < t0
0 otherwise

andψ2(t) = |t| fit in the definition of

“nice”, then by lettingX = Q(x1, · · · ,xn) andY = Q(g1, · · · , gn) we shall get statements 1
and 2 of theorem 1.1 respectively. We shall later see that theabove two functionsψ1 andψ2 do not
fit in our definition of “nice” but they can be approximated by “nice” functions.

Let us look at some examples of “nice” functions with respectto the random variablesX =
Q(x1, · · · ,xn) and Y = Q(g1, · · · , gn). Note that ifg ∼ N(0, 1), thenE[g2k+1] = 0 and
E[g2k] = (2k − 1) · (2k − 3) · · ·5 · 3 · 1. In particularE[g4] = 3. These facts are repeatedly used
in the following examples.

1. Letψ(t) = a+ bt. Then

E[ψ(X)] − E[ψ(Y )] = E[a+ bX] − E[a+ bY ]

= b(E[X] −E[Y ])

= b(E[
n
∑

i=1

αixi] − E[
n
∑

i=1

αigi])

= 0

2. Letψ(t) = a+ bt+ ct2. Then

E[ψ(X)] − E[ψ(Y )] = E[a+ bX + cX2] −E[a+ bY + cY 2]

= c(E[(
n
∑

i=1

αixi)
2] − E[(

n
∑

i=1

αigi)
2])

= 0

3. Letψ(t) = t3. Then

E[ψ(X)] −E[ψ(Y )] = E[(
n
∑

i=1

αixi)
3] −E[(

n
∑

i=1

αigi)
3

=
∑

i,j,k

αiαjαkE[xixjxk] −
∑

i,j,k

αiαjαkE[gigjgk]

= 0

At this point one might conjecture that all polynomials are nice functions. But it turns out it
is not “quite” true as we see in the next example.
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4. Letψ(t) = t4. Then

E[ψ(X)] − E[ψ(Y )] = E[(
n
∑

i=1

αixi)
4] − E[(

n
∑

i=1

αigi)
4]

=
∑

i,j,k,l

αiαjαkαlE[xixjxkxl] −
∑

i,j,k,l

αiαjαkαlE[gigjgkgl]

=
n
∑

i=1

α4
i −

n
∑

i=1

α4
i E[g4

i ]

Since the fourth moment ofN(0, 1) is 3, we have that

|E[ψ(X)] − E[ψ(Y )]| ≤ 2
n
∑

i=1

α4
i

≤ 2 (m
i
ax α2

i )(
n
∑

i=1

α2
i )

≤ τ.

We now formally define “nice” functions.

Definition 1.2 A functionψ : R → R isB-nice,B ∈ R
+, if ψ is smooth and|ψ′′′′(t)| ≤ B, ∀t.

Remark 1.3 By bounding the fourth derivative of a function at all points, we can see that we have
an upper bound on the remainder term in the Taylor’s theorem.So if the bound on the fourth
derivative of a function is small at all points, then we get a very good approximation for the
function at any point by using the first four terms in the Taylor series expansion of the function.

Idea 3: The final idea required to prove our main theorem is “hybridization” of random vari-
ables. LetZi = α1g1 + · · · + αigi + αi+1x1 + · · · + αnxn. SoZ0 = X (=

∑n

i=1 αixi). And
Zn = Y (=

∑n

i=1 αigi)
We shall show that for anyB-nice functionψ

|E[ψ(Zi−1] −E[ψ(Zi)]| ≤ O(Bα4
i ) ∀i = 1 · ·n

Then by telescoping together with triangle inequality we get

|E[ψ(X) − E[ψ(Y )]| ≤
n
∑

i=1

O(Bα4
i )

≤ O((m
i
ax α2

i )(
n
∑

i=1

α2
i ))

≤ O(Bτ)

We shall now recall Taylor’s theorem which we shall use in proving the next theorem.

3



Theorem 1.4 (Taylor’s theorem)For all smooth functionsf and for anyr ∈ N, there exists
y ∈ [x, x+ ε], such that

f(x+ ε) = f(x) + εf ′(x) +
ε2

2!
f ′′(x) + · · ·+

εr−1

(r − 1)!
f (r−1)(x) +

εr

r!
f (r)(y)

Theorem 1.5 For all B-nice functionsψ

|E[ψ(Zi−1)] − E[ψ(Zi)]| ≤ O(Bτ).

Proof: Write R = α1g1 + · · · + αi−1gi−1 + αi+1xi+1 + · · · + αnxn. ThenZi−1 = R + αixi

andZi = R + αigi Note thatxi, gi,R are mutually independent. We want to bound|E[ψ(R +
αixi)]−E[ψ(R+αigi)]|. Sinceψ is aB-nice function we haveψ′′′′(t) ≤ B, ∀t. This gives us the
following

∀t, ε > 0, ψ(t+ ε) = ψ(t) + ψ′(t)ε+ ψ′′(t)
ε2

2
+
ψ′′′(t)

6
ε3 + {≤

B

24
ε4}

Hence

|E[ψ(X)] −E[ψ[Y ]]| = |E[ψ(R + αixi)] − E[ψ(R + αigi)]|

= |E[ψ(R) + ψ′(R)(αixi) + ψ′′(R)
(αixi)

2

2
+
ψ′′′(R)

6
(αixi)

3 + {≤
B

24
(αixi)

4}]

− E[ψ(R) + ψ′(R)(αigi) + ψ′′(R)
(αigi)

2

2
+
ψ′′′(R)

6
(αigi)

3 + {≤
B

24
(αigi)

4}]|

≤ E[{
B

24
(αixi)

4} + {
B

24
(αigi)

4}]

≤
B

24
α4

i +
B

24
3α4

i

≤ O(Bα4
i )

≤ O(Bτ)

2

Recall that we mentioned before that if the threshold function ψt0(t) =

{

1 if t < t0
0 otherwise

and the absolute value functionψ2(t) = |t| fit in the definition ofB-nice functions we have our
Berry-Esseen theorem proved. We can see that they are notB-nice functions. However, they can
be approximated byB-nice functions. We use this fact prove the Berry-Esseen theorem.

Claim 1.6 ∀to ∈ R and∀λ, 0 < λ < 1
2
, there exists aO( 1

λ4 )-nice functionψt0,λ : R → R which
approximatesψt0 in the following sense:ψt0,λ = 1 for t < t0 − λ; ψt0,λ(t) = 0 for t > t0 + λ and
0 ≤ ψt0,λ(t) ≤ 1 for |t− t0| ≤ λ.
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We give a proof sketch for the first part of the Berry-Esseen theorem,∀t0 ∈ R, Pr[X <

t0] − Pr[g < t0]| ≤ O(τ), whereX =
n
∑

i=1

αixi, with xi’s as i.i.d uniform random±1 bits and

g ∼ N(0, 1). Also
∑n

i=1 α
2
i = 1 andα2

i ≤ τ , ∀i ∈ [n].
Proof Sketch:

E[ψt0−λ,λ(X)] ≤ Pr[X < t0] ≤ E[ψt0+λ,λ(X)]

By Berry-Essen theorem we haveE[ψt0−λ,λ(X)] = E[ψt0−λ,λ(g)] ± O( τ
λ4 ) andE[ψt0+λ,λ(X)] =

E[ψt0+λ,λ(g)]±O( τ
λ4 ). ButE[ψt0+λ,λ(g)] = Pr[g < t0 + λ], which is withinO(λ) of Pr[g < t0].

Therefore we have
|Pr[X < t0] − Pr[g < t0]| ≤ O(

τ

λ4
) +O(λ)

By takingλ = τ
1

5 , we have

|Pr[X < t0] −Pr[g < t0]| ≤ O(τ
1

5 ).
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