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1 Linearity

What does it mean for a boolean function to belinear? For the question to make sense, we must
have a notion of adding two binary strings. So let’s take

f : {0, 1}n → {0, 1}, and treat{0, 1} asF2.

Now there are two well-known classical notions of being linear:

Definition 1.1
(1) f is linear iff f(x + y) = f(x) + f(y) for all x, y ∈ {0, 1}n.
(2) f is linear iff there are somea1, . . . , an ∈ F2 such thatf(x1, . . . , xn) = a1x1 + · · ·+ anxn

⇔ there is someS ⊆ [n] such thatf(x) =
∑

i∈S xi.

(Sometimes in (2) one allows an additive constant; we won’t, calling such functionsaffine.)

Since these definitions sound equally good we may hope that they’re equivalent; happily, they
are. Now(2) ⇒ (1) is easy:

(2) ⇒ (1) : f(x + y) =
∑
i∈S

(x + y)i =
∑
i∈S

xi +
∑
i∈S

yi = f(x) + f(y).

But (1) ⇒ (2) is a bit more interesting. The easiest proof:

(1) ⇒ (2) : Defineαi = f(

ei︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0). Now repeated use of

condition 1 impliesf(x1 +x2 + · · ·+xn) = f(x1)+ · · ·+ f(xn), so indeed

f((x1, . . . , xn)) = f(
∑

xiei) =
∑

xif(ei) =
∑

αixi.

1



1.1 Approximate Linearity

Nothing in this world is perfect, so let’s ask: What does it mean forf to beapproximately linear?
Here are the natural first two ideas:

Definition 1.2
(1′) f is approximately linearif f(x + y) = f(x) + f(y) for mostpairsx, y ∈ {0, 1}n.
(2′) f is approximately linearif there is someS ⊆ [n] such thatf(x) =

∑
i∈S xi for most

x ∈ {0, 1}n.

Are these two equivalent? It’s easy to see that(2′) ⇒ (1′) still essentially holds: Iff has the
right value for bothx andy (which happens for most pairs), the equation in the(2) ⇒ (1) proof
holds up.

The reverse implication is not clear: Take any linear function and mess up its values on
e1, . . . , en. Now f(x + y) = f(x) + f(y) still holds wheneverx andy are notei’s, which is
true for almost all pairs. But now the equation in the(1) ⇒ (2) proof is going to be wrong for very
manyx’s. So this proof doesn’t work — but actually ourf doessatisfy(2′), so maybe a different
proof will work.

We will investigate this shortly, but let’s first decide on(2′) as our official definition:

Definition 1.3 f, g : {0, 1}n → {0, 1} are ε-closeif they agree on a(1− ε)-fraction of the inputs
{0, 1}n. Otherwise they areε-far.

Definition 1.4 f is ε-close to having propertyP if there is someg with propertyP such thatf and
g are ε-close.

A “property” here can really just be any collection of functions. For our current discussion,P is
the set of2n linear functions.

1.2 Testing Linearity

Given that we’ve settled on definition(2′), why worry about definition(1′)? Imagine someone
hands you some black-box softwaref that is supposed to computesomelinear function, and your
job is to test it — i.e., try to identify bugs. You can’t be suref is perfect unless you “query” its
value2n times, but perhaps you can become convincedf is ε-close to being linear with many fewer
queries.

If you knew which linear functionf was supposed to be close to, you could just check it on
O(1/ε) many random values — if you found no mistakes, you’d be quite convincedf wasε-close
to linear.
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Now if you just look at definition(2′), you might think that all you can do is maken linearly
independent queries to first determine which linear functionf is supposed to be, and then do the
above. (We imagine thatn À 1/ε.) But it’s kind of silly to use complexityn to “test” a program
that can itself be implemented with complexityn. But if (1′) ⇒ (2′), it would give a way to give
a much more efficient test. This was suggested and proved by M. Blum, Luby, and Rubinfeld in
1990:

Definition 1.5 The “BLR Test”: Given an unknownf : {0, 1}n → {0, 1}:
• Pickx andy independently and uniformly at random from{0, 1}n.

• Setz = x + y.

• Queryf onx, y, andz.

• “Accept” iff f(z) = f(x) + f(y).

Today we will prove:

Theorem 1.6 Supposef passes the BLR Test with probability at least1 − ε. Thenf is ε-close to
being linear.

Given this, suppose we do the BLR testO(1/ε) times. If it never fails, we can be quite sure the
true probabilityf passes the test is at least1− ε and thus thatf is ε-close to being linear.

NB: BLR originally proved a slightly weaker result than Theorem 1.6 (they lost a constant
factor). We present the ’95 proof due to Bellare, Coppersmith, Håstad, Kiwi, and Sudan.

2 The Fourier Expansion

Supposef passes the BLR test with high probability. We want to try showing thatf is ε-close to
some linear function. But which one should we pick?

There’s a trick answer to this question: We should pick the closest one! But givenf : {0, 1}n →
{0, 1}, how can we decide which linear functionf is closest to?

Stack the2n values off(x) in, say, lexicographical order, and treat it as a
vector in2n-dimensional space,R2n

:

f =




0
1
1
1
0
...
1




.
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Do the same for all2n linear (Parity) functions:

χ∅ =




0
0
0
0
0
...
0




, χ{1} =




0
1
0
1
0
...
1




, . . . , χ[n] =




0
1
1
0
1
...




Notation:χS is Parity on the coordinates in setS; [n] = {1, 2, . . . , n}.

Now it’s easy the closest Parity tof is the physically closest vector.

f

χS1

χS2

χS3

f is closest toχS1

It’s extra-convenient if we replace0 and1 with 1 and−1; then thedot productof two vec-
tors measures their closeness (the bigger the dot product, the closer). This motivates the Great
Notational Switch we’ll use 99% of the time.

Great Notational Switch: 0/False→ +1, 1/True→ −1.

We think of+1 and−1 here asreal numbers. In particular, we now have:

Addition (mod 2)→ Multiplication (inR).

We now write:

A generic boolean function:f : {−1, 1}n → {−1, 1}.

The Parity on bitsS function,χS : {−1, 1}n → {−1, 1}:
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χS(x) =
∏
i∈S

xi.

We now have:

Fact 2.1 The dot product off andχS, as vectors in{−1, 1}2n
, equals

(# x’s such thatf(x) = χS(x))− (# x’s such thatf(x) 6= χS(x)).

Definition 2.2 For anyf, g : {−1, 1}n → R, we write

〈f, g〉 =
1

2n
(dot product off andg as vectors)

= avg
x∈{−1,1}n

[f(x)g(x)] = E
x∈{−1,1}n

[f(x)g(x)].

We also call this thecorrelationof f andg1.

Fact 2.3 If f andg are boolean-valued,f, g : {−1, 1}n → {−1, 1}, then〈f, g〉 ∈ [−1, 1]. Further,
f andg are ε-close iff〈f, g〉 ≥ 1− 2ε.

Now in our linearity testing problem, givenf : {−1, 1}n → {−1, 1} we are interested in the
Parity function having maximum correlation withf . Let’s give notation for these correlations:

Definition 2.4 For S ⊆ [n], we write

f̂(S) = 〈f, χS〉
Now with the switch to−1 and1, something interesting happens with the2n Parity functions;

they become orthogonal vectors:

Proposition 2.5 If S 6= T thenχS andχT are orthogonal; i.e.,〈χS, χT 〉 = 0.

Proof: Let i ∈ S∆T (the symmetric difference of these sets); without loss of generality, say
i ∈ S \ T . Pair up alln-bit strings:(x, x(i), wherex(i) denotesx with theith bit flipped.

Now the vectorsχS andχT look like this on “coordinates”x andx(i)

χS = [ a − a ]

χT = [ b b ]

↖ x ↖ x(i)

for some bitsa andb. In the inner product, these coordinates contributeab− ab = 0. Since we can
pair up all coordinates like this, the overall inner product is0. 2

1This doesn’t agree with the technical definition of correlation in probability, but never mind.
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Corollary 2.6 The set of2n vectors(χS)S⊆[n] form ancomplete orthogonal basisfor R2n
.

Proof: We have2n mutually orthogonal nonzero vectors in a space of dimension2n. 2

Fact 2.7 If f : {−1, 1}n → {−1, 1}, “ ‖f‖” =
√
〈f, f〉 = 1.

Corollary 2.8 The functions(χS)S⊆[n] form anorthonormal basisfor R2n
.

In other words, these Parity vectors are just a rotation of the standard basis.
As a consequence, the most basic linear algebra implies that every vector inR2n

— in particular,
anyf : {−1, 1}n → {−1, 1} — can be written uniquely as a linear combination of these vectors:

f =
∑

S⊆[n]

cSχS as vectors, for somecS ∈ R.

Further, the coefficient onχS is just the length of the projection; i.e.,〈f, χS〉:

(f̂(T ) =) 〈f, χT 〉 = 〈∑
S

cSχS, χT 〉 =
∑
S

cS〈χS, χT 〉 = cT .

I.e., we’ve shown:

Theorem 2.9 Every functionf : {−1, 1}n → R — in particular, every boolean-valued function
f : {−1, 1}n → {−1, 1} — is uniquely expressible as a linear combination (overR) of the2n

Parity functions:
f =

∑

S⊆[n]

f̂(S)χS. (1)

(This is a pointwise equality of functions on{−1, 1}n.)
The real numberŝf(S) are called theFourier coefficientsof f , and (1) theFourier expansion

of f .

Recall that for boolean-valued functionsf : {−1, 1}n → {−1, 1}, f̂(S) is a number in[−1, 1]
measuring the correlation off with the function Parity-on-S. In (1) we have the property that for
every stringx, the2n real numberŝf(S)χS(x) “magically” always add up to a number that is either
−1 or 1.
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2.1 Examples

Here are some example functions and their Fourier transforms. In the Fourier expansions, we will
write

∏
i∈S in place ofχS.

f Fourier transform

f(x) = 1 1
f(x) = xi xi

AND(x1, x2)
1
2

+ 1
2
x1 + 1

2
x2 − 1

2
x1x2

MAJ(x1, x2, x3)
1
2
x1 + 1

2
x2 + 1

2
x3 − 1

2
x1x2x3

f :

+ + + +
+ +− −
+−+ +
+−− +
−+ + −
−+− −
−−+ −
−−− −

f̂(∅) = −1
4

f̂({1}) = +3
4

f̂({2}) = −1
4

f̂({3}) = +1
4

f̂({1, 2}) = −1
4

f̂({1, 3}) = +1
4

f̂({2, 3}) = +1
4

f̂({1, 2, 3}) = +1
4

f(x) = −1
4

+ 3
4
x1 − 1

4
x2 + 1

4
x3 − 1

4
x1x2 + 1

4
x1x3 + 1

4
x2x3 + 1

4
x1x2x3

2.2 Parseval, Plancherel

We will now prove one of the most important, basic facts about Fourier transforms:

Theorem 2.10 (“Plancherel’s Theorem”) Letf, g : {−1, 1}n → R. Then

〈f, g〉 = E
x∈{−1,1}n

[f(x)g(x)] =
∑

S⊆[n]

f̂(S)ĝ(S).

This just says that when you express two vectors in an orthonormal basis, their inner product is
equal to the sum of the products of the coefficients.Proof:

〈f, g〉 =

〈 ∑

S⊆[n]

f̂(S)χS,
∑

T⊆[n]

ĝ(T )χT

〉

=
∑

S

∑
T

f̂(S)ĝ(T )〈χS, χT 〉 (by linearity of inner product)

=
∑

S

f̂(S)ĝ(S) (by orthonormality ofχ’s).

2
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Corollary 2.11 (“Parseval’s Theorem”) Letf : {−1, 1}n → R. Then

〈f, f〉 = E
x∈{−1,1}n

[f(x)2] =
∑

S⊆[n]

f̂(S)2.

This just says that the squared length of a vector, when expressed in an orthonormal basis, equals
the sum of the squares of the coefficients. In other words, it’s the Pythagorean Theorem.

One very important special case:

Corollary 2.12 If f : {−1, 1}n → {−1, 1} is a boolean-valued function,

∑

S⊆[n]

f̂(S)2 = 1.
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