Lecture 2: Linearity and the Fourier Expansion

Jan. 18, 2005

Lecturer: Ryan O'Donnell
Scribe: Ryan O'Donnell

1 Linearity

What does it mean for a boolean function to be linear? For the question to make sense, we must have a notion of adding two binary strings. So let's take

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}, \text { and treat }\{0,1\} \text { as } \mathbb{F}_{2} .
$$

Now there are two well-known classical notions of being linear:

Definition 1.1

(1) f is linear iff $f(x+y)=f(x)+f(y)$ for all $x, y \in\{0,1\}^{n}$.
(2) f is linear iff there are some $a_{1}, \ldots, a_{n} \in \mathbb{F}_{2}$ such that $f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\cdots+a_{n} x_{n}$ \Leftrightarrow there is some $S \subseteq[n]$ such that $f(x)=\sum_{i \in S} x_{i}$.
(Sometimes in (2) one allows an additive constant; we won't, calling such functions affine.)
Since these definitions sound equally good we may hope that they're equivalent; happily, they are. Now $(2) \Rightarrow(1)$ is easy:

$$
(2) \Rightarrow(1): \quad f(x+y)=\sum_{i \in S}(x+y)_{i}=\sum_{i \in S} x_{i}+\sum_{i \in S} y_{i}=f(x)+f(y)
$$

But $(1) \Rightarrow(2)$ is a bit more interesting. The easiest proof:
$(1) \Rightarrow(2): \quad$ Define $\alpha_{i}=f(\overbrace{0, \ldots, 0,1,0, \ldots, 0}^{e_{i}})$. Now repeated use of condition 1 implies $f\left(x^{1}+x^{2}+\cdots+x^{n}\right)=f\left(x^{1}\right)+\cdots+f\left(x^{n}\right)$, so indeed

$$
f\left(\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(\sum x_{i} e_{i}\right)=\sum x_{i} f\left(e_{i}\right)=\sum \alpha_{i} x_{i} .
$$

1.1 Approximate Linearity

Nothing in this world is perfect, so let's ask: What does it mean for f to be approximately linear? Here are the natural first two ideas:

Definition 1.2

$\left(l^{\prime}\right) f$ is approximately linear if $f(x+y)=f(x)+f(y)$ for most pairs $x, y \in\{0,1\}^{n}$.
$\left(2^{\prime}\right) f$ is approximately linear if there is some $S \subseteq[n]$ such that $f(x)=\sum_{i \in S} x_{i}$ for most $x \in\{0,1\}^{n}$.

Are these two equivalent? It's easy to see that $\left(2^{\prime}\right) \Rightarrow\left(1^{\prime}\right)$ still essentially holds: If f has the right value for both x and y (which happens for most pairs), the equation in the (2) \Rightarrow (1) proof holds up.

The reverse implication is not clear: Take any linear function and mess up its values on e_{1}, \ldots, e_{n}. Now $f(x+y)=f(x)+f(y)$ still holds whenever x and y are not e_{i} 's, which is true for almost all pairs. But now the equation in the $(1) \Rightarrow(2)$ proof is going to be wrong for very many x 's. So this proof doesn't work - but actually our f does satisfy (2^{\prime}), so maybe a different proof will work.

We will investigate this shortly, but let's first decide on $\left(2^{\prime}\right)$ as our official definition:
Definition $1.3 f, g:\{0,1\}^{n} \rightarrow\{0,1\}$ are ϵ-close if they agree on a $(1-\epsilon)$-fraction of the inputs $\{0,1\}^{n}$. Otherwise they are ϵ-far.

Definition 1.4 f is ϵ-close to having property \mathcal{P} if there is some g with property \mathcal{P} such that f and g are ϵ-close.

A "property" here can really just be any collection of functions. For our current discussion, \mathcal{P} is the set of 2^{n} linear functions.

1.2 Testing Linearity

Given that we've settled on definition (2'), why worry about definition (1^{\prime})? Imagine someone hands you some black-box software f that is supposed to compute some linear function, and your job is to test it - i.e., try to identify bugs. You can't be sure f is perfect unless you "query" its value 2^{n} times, but perhaps you can become convinced f is ϵ-close to being linear with many fewer queries.

If you knew which linear function f was supposed to be close to, you could just check it on $O(1 / \epsilon)$ many random values - if you found no mistakes, you'd be quite convinced f was ϵ-close to linear.

Now if you just look at definition $\left(2^{\prime}\right)$, you might think that all you can do is make n linearly independent queries to first determine which linear function f is supposed to be, and then do the above. (We imagine that $n \gg 1 / \epsilon$.) But it's kind of silly to use complexity n to "test" a program that can itself be implemented with complexity n. But if $\left(1^{\prime}\right) \Rightarrow\left(2^{\prime}\right)$, it would give a way to give a much more efficient test. This was suggested and proved by M. Blum, Luby, and Rubinfeld in 1990:

Definition 1.5 The "BLR Test": Given an unknown $f:\{0,1\}^{n} \rightarrow\{0,1\}$:

- Pick \boldsymbol{x} and \boldsymbol{y} independently and uniformly at random from $\{0,1\}^{n}$.
- Set $\boldsymbol{z}=\boldsymbol{x}+\boldsymbol{y}$.
- Query f on $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z}.
- "Accept" iff $f(\boldsymbol{z})=f(\boldsymbol{x})+f(\boldsymbol{y})$.

Today we will prove:
Theorem 1.6 Suppose f passes the BLR Test with probability at least $1-\epsilon$. Then f is ϵ-close to being linear.

Given this, suppose we do the BLR test $O(1 / \epsilon)$ times. If it never fails, we can be quite sure the true probability f passes the test is at least $1-\epsilon$ and thus that f is ϵ-close to being linear.

NB: BLR originally proved a slightly weaker result than Theorem 1.6 (they lost a constant factor). We present the ' 95 proof due to Bellare, Coppersmith, Håstad, Kiwi, and Sudan.

2 The Fourier Expansion

Suppose f passes the BLR test with high probability. We want to try showing that f is ϵ-close to some linear function. But which one should we pick?

There's a trick answer to this question: We should pick the closest one! But given $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}$, how can we decide which linear function f is closest to?

Stack the 2^{n} values of $f(x)$ in, say, lexicographical order, and treat it as a vector in 2^{n}-dimensional space, $\mathbb{R}^{2^{n}}$:

$$
f=\left[\begin{array}{c}
0 \\
1 \\
1 \\
1 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Do the same for all 2^{n} linear (Parity) functions:

$$
\chi_{\emptyset}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \chi_{\{1\}}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0 \\
\vdots \\
1
\end{array}\right], \ldots, \chi_{[n]}=\left[\begin{array}{c}
0 \\
1 \\
1 \\
0 \\
1 \\
\vdots
\end{array}\right]
$$

Notation: χ_{S} is Parity on the coordinates in set $S ;[n]=\{1,2, \ldots, n\}$.
Now it's easy the closest Parity to f is the physically closest vector.

It's extra-convenient if we replace 0 and 1 with 1 and -1 ; then the dot product of two vectors measures their closeness (the bigger the dot product, the closer). This motivates the Great Notational Switch we'll use 99% of the time.

Great Notational Switch: $\quad 0 /$ False $\rightarrow+1, \quad 1 /$ True $\rightarrow-1$.
We think of +1 and -1 here as real numbers. In particular, we now have:

$$
\text { Addition }(\bmod 2) \rightarrow \text { Multiplication (in } \mathbb{R}) .
$$

We now write:
A generic boolean function: $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.
The Parity on bits S function, $\chi_{S}:\{-1,1\}^{n} \rightarrow\{-1,1\}$:

$$
\chi_{S}(x)=\prod_{i \in S} x_{i}
$$

We now have:
Fact 2.1 The dot product of f and χ_{S}, as vectors in $\{-1,1\}^{2^{n}}$, equals

$$
\text { (\# x's such that } \left.f(x)=\chi_{S}(x)\right)-\left(\# x \text { 's such that } f(x) \neq \chi_{S}(x)\right) .
$$

Definition 2.2 For any $f, g:\{-1,1\}^{n} \rightarrow \mathbb{R}$, we write

$$
\begin{aligned}
\langle f, g\rangle & \left.=\frac{1}{2^{n}} \text { (dot product of } f \text { and } g \text { as vectors }\right) \\
& =\underset{\boldsymbol{x} \in\{-1,1\}^{n}}{\operatorname{avg}}[f(\boldsymbol{x}) g(\boldsymbol{x})]=\underset{\boldsymbol{x} \in\{-1,1\}^{n}}{\mathbf{E}}[f(\boldsymbol{x}) g(\boldsymbol{x})] .
\end{aligned}
$$

We also call this the correlation of f and g^{1}.
Fact 2.3 If f and g are boolean-valued, $f, g:\{-1,1\}^{n} \rightarrow\{-1,1\}$, then $\langle f, g\rangle \in[-1,1]$. Further, f and g are ϵ-close iff $\langle f, g\rangle \geq 1-2 \epsilon$.

Now in our linearity testing problem, given $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ we are interested in the Parity function having maximum correlation with f. Let's give notation for these correlations:

Definition 2.4 For $S \subseteq[n]$, we write

$$
\hat{f}(S)=\left\langle f, \chi_{S}\right\rangle
$$

Now with the switch to -1 and 1 , something interesting happens with the 2^{n} Parity functions; they become orthogonal vectors:

Proposition 2.5 If $S \neq T$ then χ_{S} and χ_{T} are orthogonal; i.e., $\left\langle\chi_{S}, \chi_{T}\right\rangle=0$.
Proof: Let $i \in S \Delta T$ (the symmetric difference of these sets); without loss of generality, say $i \in S \backslash T$. Pair up all n-bit strings: $\left(x, x^{(i)}\right.$, where $x^{(i)}$ denotes x with the i th bit flipped.

Now the vectors χ_{S} and χ_{T} look like this on "coordinates" x and $x^{(i)}$

$$
\left.\begin{array}{llll}
\chi_{S}=[& a & -a & \\
\chi_{T}=[& b & b \\
& \nwarrow x & \nwarrow x^{(i)}
\end{array}\right]
$$

for some bits a and b. In the inner product, these coordinates contribute $a b-a b=0$. Since we can pair up all coordinates like this, the overall inner product is 0 .

[^0]Corollary 2.6 The set of 2^{n} vectors $\left(\chi_{S}\right)_{S \subseteq[n]}$ form an complete orthogonal basis for $\mathbb{R}^{2^{n}}$.
Proof: We have 2^{n} mutually orthogonal nonzero vectors in a space of dimension 2^{n}.

Fact 2.7 If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, " $\|f\| "=\sqrt{\langle f, f\rangle}=1$.
Corollary 2.8 The functions $\left(\chi_{S}\right)_{S \subseteq[n]}$ form an orthonormal basis for $\mathbb{R}^{2^{n}}$.
In other words, these Parity vectors are just a rotation of the standard basis.
As a consequence, the most basic linear algebra implies that every vector in $\mathbb{R}^{2^{n}}$ - in particular, any $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ - can be written uniquely as a linear combination of these vectors:

$$
f=\sum_{S \subseteq[n]} c_{S} \chi_{S} \quad \text { as vectors, for some } c_{S} \in \mathbb{R}
$$

Further, the coefficient on χ_{S} is just the length of the projection; i.e., $\left\langle f, \chi_{S}\right\rangle$:

$$
(\hat{f}(T)=) \quad\left\langle f, \chi_{T}\right\rangle=\left\langle\sum_{S} c_{S} \chi_{S}, \chi_{T}\right\rangle=\sum_{S} c_{S}\left\langle\chi_{S}, \chi_{T}\right\rangle=c_{T} .
$$

I.e., we've shown:

Theorem 2.9 Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ - in particular, every boolean-valued function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ - is uniquely expressible as a linear combination (over \mathbb{R}) of the 2^{n} Parity functions:

$$
\begin{equation*}
f=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S} . \tag{1}
\end{equation*}
$$

(This is a pointwise equality of functions on $\{-1,1\}^{n}$.)
The real numbers $\hat{f}(S)$ are called the Fourier coefficients of f, and (1) the Fourier expansion of f.

Recall that for boolean-valued functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}, \hat{f}(S)$ is a number in $[-1,1]$ measuring the correlation of f with the function Parity-on- S. In (1) we have the property that for every string x, the 2^{n} real numbers $\hat{f}(S) \chi_{S}(x)$ "magically" always add up to a number that is either -1 or 1 .

2.1 Examples

Here are some example functions and their Fourier transforms. In the Fourier expansions, we will write $\prod_{i \in S}$ in place of χ_{S}.

f	Fourier transform
$f(x)=1$	1
$f(x)=x_{i}$	x_{i}
$\operatorname{AND}\left(x_{1}, x_{2}\right)$	$\frac{1}{2}+\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{1} x_{2}$
$\operatorname{MAJ}\left(x_{1}, x_{2}, x_{3}\right)$	$\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3}$
+++	+
++-	-
+-+	+
+--	+
-++	-
-+-	-
--+	-
---	-
	$\hat{f}(\emptyset)=-\frac{1}{4}$
	$\hat{f}(\{1\})=+\frac{3}{4}$
	$\hat{f}(\{3\})=-\frac{1}{4}$
	$\hat{f}(\{1,2\})=+\frac{1}{4}$
	$\hat{f}(\{1,3\})=-\frac{1}{4}$
	$\hat{f}(\{2,3\})=+\frac{1}{4}$

2.2 Parseval, Plancherel

We will now prove one of the most important, basic facts about Fourier transforms:
Theorem 2.10 ("Plancherel's Theorem") Let $f, g:\{-1,1\}^{n} \rightarrow \mathbb{R}$. Then

$$
\langle f, g\rangle=\underset{\boldsymbol{x} \in\{-1,1\}^{n}}{\mathbf{E}}[f(\boldsymbol{x}) g(\boldsymbol{x})]=\sum_{S \subseteq[n]} \hat{f}(S) \hat{g}(S) .
$$

This just says that when you express two vectors in an orthonormal basis, their inner product is equal to the sum of the products of the coefficients. Proof:

$$
\begin{array}{rlrl}
\langle f, g\rangle & =\left\langle\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}, \sum_{T \subseteq[n]} \hat{g}(T) \chi_{T}\right\rangle \\
& =\sum_{S} \sum_{T} \hat{f}(S) \hat{g}(T)\left\langle\chi_{S}, \chi_{T}\right\rangle & \text { (by linearity of inner product) } \\
& =\sum_{S} \hat{f}(S) \hat{g}(S) & \text { (by orthonormality of } \chi \text { 's). }
\end{array}
$$

Corollary 2.11 ("Parseval's Theorem") Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$. Then

$$
\langle f, f\rangle=\underset{\boldsymbol{x} \in\{-1,1\}^{n}}{\mathbf{E}}\left[f(\boldsymbol{x})^{2}\right]=\sum_{S \subseteq[n]} \hat{f}(S)^{2} .
$$

This just says that the squared length of a vector, when expressed in an orthonormal basis, equals the sum of the squares of the coefficients. In other words, it's the Pythagorean Theorem.

One very important special case:
Corollary 2.12 If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is a boolean-valued function,

$$
\sum_{S \subseteq[n]} \hat{f}(S)^{2}=1
$$

[^0]: ${ }^{1}$ This doesn't agree with the technical definition of correlation in probability, but never mind.

