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1 Linearity

What does it mean for a boolean function tolinear? For the question to make sense, we must
have a notion of adding two binary strings. So let’s take

f:{0,1}" — {0, 1}, and treaf0, 1} aslF,.

Now there are two well-known classical notions of being linear:

Definition 1.1
(1) fislineariff f(x +y) = f(z) + f(y) forall z,y € {0,1}".
(2) f islineariff there are somey, . .., a, € Fy such thatf(xq,...,2,) = a1z + - + ayz,

& there is somes C [n] such thatf(z) = >, s ;.

(Sometimes in (2) one allows an additive constant; we won't, calling such funcféne)

Since these definitions sound equally good we may hope that they’re equivalent; happily, they

are. Now(2) = (1) is easy:

(2)=@Q): fle+y)=2@+y)i= 2 v+ vi=f)+ [y

€S €S €S

But (1) = (2) is a bit more interesting. The easiest proof:

(1) = (2) : Defineq; = f(@,...,o,f,o,...,@). Now repeated use of
condition 1 impliesf (z' + 22 + - - - +2™) = f(z')+---+ f(2™), so indeed

[z, wn)) = FQomie) = Do f(e) = D i,




1.1 Approximate Linearity

Nothing in this world is perfect, so let's ask: What does it meanfftm beapproximately linea?
Here are the natural first two ideas:

Definition 1.2

(1) f is approximately lineaif f(x + y) = f(x) + f(y) for mostpairsz,y € {0, 1}".

(2) f is approximately lineaif there is someS C [n] such thatf(z) = >, ¢, for most
xz € {0,1}".

Are these two equivalent? It's easy to see 24t = (1’) still essentially holds: Iff has the
right value for bothr andy (which happens for most pairs), the equation in the=- (1) proof
holds up.

The reverse implication is not clear. Take any linear function and mess up its values on
e1y...,e,. NOow f(xz +y) = f(x) + f(y) still holds whenever: andy are note;’s, which is
true for almost all pairs. But now the equation in the¢ = (2) proof is going to be wrong for very
manyz’s. So this proof doesn’t work — but actually ofirdoessatisfy (2'), so maybe a different
proof will work.

We will investigate this shortly, but let’s first decide (1) as our official definition:

Definition 1.3 f, ¢ : {0,1}" — {0, 1} are e-closeif they agree on &1 — ¢)-fraction of the inputs
{0, 1}". Otherwise they are-far.

Definition 1.4 f is e-close to having propert® if there is someg with property? such thatf and
g are e-close.

A “property” here can really just be any collection of functions. For our current discusBias,
the set oR2” linear functions.

1.2 Testing Linearity

Given that we've settled on definitiof2’), why worry about definition(1’)? Imagine someone
hands you some black-box softwaf¢hat is supposed to computemelinear function, and your

job is to test it — i.e., try to identify bugs. You can’t be sufes perfect unless you “query” its
value2™ times, but perhaps you can become convint&k-close to being linear with many fewer
queries.

If you knew which linear functionf was supposed to be close to, you could just check it on
O(1/¢) many random values — if you found no mistakes, you'd be quite convificedse-close
to linear.



Now if you just look at definition(2’), you might think that all you can do is makelinearly
independent queries to first determine which linear funcfios supposed to be, and then do the
above. (We imagine that > 1/¢.) But it's kind of silly to use complexity: to “test” a program
that can itself be implemented with complexity But if (1) = (2’), it would give a way to give
a much more efficient test. This was suggested and proved by M. Blum, Luby, and Rubinfeld in
1990:

Definition 1.5 The “BLR Test”: Given an unknowfi : {0,1}" — {0, 1}:
e Pickx andy independently and uniformly at random frdi, 1}".
e Setz =x + y.
e Queryfonz,y,andz.
e “Accept”iff f(z) = f(x)+ f(y).
Today we will prove:

Theorem 1.6 Supposef passes the BLR Test with probability at least ¢. Thenf is e-close to
being linear.

Given this, suppose we do the BLR té#fl/¢) times. If it never fails, we can be quite sure the
true probabilityf passes the test is at ledst ¢ and thus thaf is e-close to being linear.

NB: BLR originally proved a slightly weaker result than Theorem 1.6 (they lost a constant
factor). We present the '95 proof due to Bellare, Coppersmitistatl, Kiwi, and Sudan.

2 The Fourier Expansion

Supposef passes the BLR test with high probability. We want to try showing fhiate-close to
some linear function. But which one should we pick?

There’s a trick answer to this question: We should pick the closest one! But givén, 1} —
{0, 1}, how can we decide which linear functigris closest to?

Stack the2" values off(z) in, say, lexicographical order, and treat it as a
vector in2"-dimensional spac&?":

O = == O




Do the same for alt” linear (Parity) functions:

0 0 0
0 1 1
0 0 1
— 10 |1 — |0
X0 = y X{1} = v Xn) =
0 0 1
- O - - 1 - - -
Notation: x s is Parity on the coordinates in s€t [n] = {1,2,...,n}.

Now it's easy the closest Parity fois the physically closest vector.

Xs
Xs,

Xs3
f is closest toys,

It's extra-convenient if we replac@ and 1 with 1 and —1; then thedot productof two vec-

tors measures their closeness (the bigger the dot product, the closer). This motivates the Great
Notational Switch we’ll use 99% of the time.

Great Notational Switch: O/False— +1, 1/True— —1.
We think of+1 and—1 here aseal numbersin particular, we now have:

Addition (mod 2)— Multiplication (in R).

We now write:

A generic boolean functionf : {—1,1}" — {—1,1}.

The Parity on bitsS function, xs : {—1,1}" — {—1,1}:
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xs(z) = sz

€S
We now have:
Fact 2.1 The dot product of and ys, as vectors if—1,1}2", equals
(# 2’s such thatf(z) = xs(z)) — (# 2’s such thatf (z) # xs(z)).

Definition 2.2 Forany f,g : {—1,1}" — R, we write

(f.9) = %(dot product off andg as vector$
= avg [fl@)g(x)]= E  [f(z)g(x)].
xc{-1,1}n zc{-1,1}

We also call this theorrelationof f andg?.

Fact 2.3 If f andg are boolean-valuedf, g : {—1,1}" — {—1,1}, then(f, g) € [-1, 1]. Further,
f andg aree-close iff(f, g) > 1 — 2e.

Now in our linearity testing problem, givef: {—1,1}" — {—1,1} we are interested in the
Parity function having maximum correlation with Let’s give notation for these correlations:

Definition 2.4 For S C [n], we write
() = (f,xs)

Now with the switch to—1 and1, something interesting happens with ttfeParity functions;
they become orthogonal vectors:

Proposition 2.5 If S # T thenys and y7 are orthogonal; i.e.{xs, x7) = 0.

Proof: Let: € SAT (the symmetric difference of these sets); without loss of generality, say
i € S\ T. Pair up alln-bit strings: (z, 2, wherez® denotes: with theith bit flipped.
Now the vectorsys andy look like this on “coordinatest andz(?

Xs = | a —a ]
Xr = | b b ]
N T \x(i)

for some bits: andb. In the inner product, these coordinates contriladte ab = 0. Since we can
pair up all coordinates like this, the overall inner product.is

1This doesn't agree with the technical definition of correlation in probability, but never mind.
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Corollary 2.6 The set oR" vectors(xs)scf, form ancomplete orthogonal basisr R*".

Proof: We have2” mutually orthogonal nonzero vectors in a space of dimen&ion

Fact2.71If f: {—1,1}" = {=1,1}L“||fII” =V {f, f) = 1.
Corollary 2.8 The functiongx s)scp, form anorthonormal basigor R?".

In other words, these Parity vectors are just a rotation of the standard basis.
As a consequence, the most basic linear algebra implies that every veRtornin particular,
anyf:{-1,1}" — {—1,1} — can be written uniquely as a linear combination of these vectors:

f=> csxs  asvectors, for some; € R.
SC[n]

Further, the coefficient oR; is just the length of the projection; i.€.f, xs):

(f(T) :) <f7 XT> = QS: CSXS;XT) = ZS:CS<XS,XT> = Cr.

l.e., we've shown:

Theorem 2.9 Every functionf : {—1,1}" — R — in particular, every boolean-valued function
f:{-1,1}" — {—1,1} — is uniquely expressible as a linear combination (oirof the 2"
Parity functions:

F=> F(S)xs. 1)
]

SCln

(This is a pointwise equality of functions ¢r-1,1}".)
The real numberg(.S) are called theFourier coefficient®f f, and (1) the Fourier expansion
of f.

Recall that for boolean-valued functiofis {—1,1}" — {—1,1}, f(S) is a number if—1, 1]
measuring the correlation gfwith the function Parity-ors. In (1) we have the property that for
every stringe, the2” real numberg (S)ys(z) “magically” always add up to a number that is either
—1lorl.



2.1 Examples

Here are some example functions and their Fourier transforms. In the Fourier expansions, we will
write [ [, ¢ in place ofyg.

f Fourier transform
flz) =1 1
f(z) =z xi
AND(&?l, l’g) 5 + xl + I2 2371562
MAJ(z1, 22, 23) $1 + $2+ $3 l$1$2$3
4|+ f@):—ig
++— | - f{1}) = +3
+—+ |+ F{2h) = —1
PR JH{3h) =+1
—t | - j({L2y =1
T F{1,3}) = +5
Tt f{2,3h) = +i
IR f({1,2,3}) =
f(x) = —% + %371 - %1372 + %1513'3 - %1513’1952 + %1’11173 + il'zx:a + }19613721’3

2.2 Parseval, Plancherel
We will now prove one of the most important, basic facts about Fourier transforms:

Theorem 2.10 (“Plancherel’'s Theorem”) Letf, g : {—1,1}" — R. Then

(frg)= E [fl@g@)]= Y f(5)is)

xze{-1,1}" 5]

This just says that when you express two vectors in an orthonormal basis, their inner product is
equal to the sum of the products of the coefficieFsof:

(f.9) = <Zf s Y ()XT>

TC[n]

= Z Z )(Xs, XT) (by linearity of inner product)
T

— Z F(9)g (by orthonormality ofy’s).
S



Corollary 2.11 (“Parseval's Theorem”) Letf : {—1,1}" — R. Then

(.HH=_E [fl@)?=> f(S)7
]

xe{-1,1}" S

This just says that the squared length of a vector, when expressed in an orthonormal basis, equals
the sum of the squares of the coefficients. In other words, it's the Pythagorean Theorem.

One very important special case:

Corollary 2.12 If f: {—1,1}" — {—1,1} is a boolean-valued function,

ORC

SC[n]



