Analysis of Boolean Functions

(CMU 18-859S, Spring 2007)

Lecture 2: Linearity and the Fourier Expansion

Jan. 18, 2005

Lecturer: Ryan O'Donnell Scribe: Ryan O'Donnell

1 Linearity

What does it mean for a boolean function to be *linear*? For the question to make sense, we must have a notion of adding two binary strings. So let's take

$$f: \{0,1\}^n \to \{0,1\}$$
, and treat $\{0,1\}$ as \mathbb{F}_2 .

Now there are two well-known classical notions of being linear:

Definition 1.1

- (1) f is linear iff f(x+y) = f(x) + f(y) for all $x, y \in \{0, 1\}^n$.
- (2) f is linear iff there are some $a_1, \ldots, a_n \in \mathbb{F}_2$ such that $f(x_1, \ldots, x_n) = a_1 x_1 + \cdots + a_n x_n$ \Leftrightarrow there is some $S \subseteq [n]$ such that $f(x) = \sum_{i \in S} x_i$.

(Sometimes in (2) one allows an additive constant; we won't, calling such functions *affine*.)

Since these definitions sound equally good we may hope that they're equivalent; happily, they are. Now $(2) \Rightarrow (1)$ is easy:

(2)
$$\Rightarrow$$
 (1): $f(x+y) = \sum_{i \in S} (x+y)_i = \sum_{i \in S} x_i + \sum_{i \in S} y_i = f(x) + f(y).$

But $(1) \Rightarrow (2)$ is a bit more interesting. The easiest proof:

(1)
$$\Rightarrow$$
 (2): Define $\alpha_i = f(0, \dots, 0, 1, 0, \dots, 0)$. Now repeated use of condition 1 implies $f(x^1 + x^2 + \dots + x^n) = f(x^1) + \dots + f(x^n)$, so indeed

$$f((x_1,\ldots,x_n))=f(\sum x_ie_i)=\sum x_if(e_i)=\sum \alpha_ix_i.$$

1.1 Approximate Linearity

Nothing in this world is perfect, so let's ask: What does it mean for f to be approximately linear? Here are the natural first two ideas:

Definition 1.2

- (1') f is approximately linear if f(x+y) = f(x) + f(y) for most pairs $x, y \in \{0, 1\}^n$.
- (2') f is approximately linear if there is some $S \subseteq [n]$ such that $f(x) = \sum_{i \in S} x_i$ for most $x \in \{0,1\}^n$.

Are these two equivalent? It's easy to see that $(2') \Rightarrow (1')$ still essentially holds: If f has the right value for both x and y (which happens for most pairs), the equation in the $(2) \Rightarrow (1)$ proof holds up.

The reverse implication is not clear: Take any linear function and mess up its values on e_1, \ldots, e_n . Now f(x+y)=f(x)+f(y) still holds whenever x and y are not e_i 's, which is true for almost all pairs. But now the equation in the $(1) \Rightarrow (2)$ proof is going to be wrong for very many x's. So this proof doesn't work — but actually our f does satisfy (2'), so maybe a different proof will work.

We will investigate this shortly, but let's first decide on (2') as our official definition:

Definition 1.3 $f, g : \{0, 1\}^n \to \{0, 1\}$ are ϵ -close if they agree on a $(1 - \epsilon)$ -fraction of the inputs $\{0, 1\}^n$. Otherwise they are ϵ -far.

Definition 1.4 f is ϵ -close to having property \mathcal{P} if there is some g with property \mathcal{P} such that f and g are ϵ -close.

A "property" here can really just be any collection of functions. For our current discussion, \mathcal{P} is the set of 2^n linear functions.

1.2 Testing Linearity

Given that we've settled on definition (2'), why worry about definition (1')? Imagine someone hands you some black-box software f that is supposed to compute *some* linear function, and your job is to test it — i.e., try to identify bugs. You can't be sure f is perfect unless you "query" its value 2^n times, but perhaps you can become convinced f is ϵ -close to being linear with many fewer queries.

If you knew which linear function f was supposed to be close to, you could just check it on $O(1/\epsilon)$ many random values — if you found no mistakes, you'd be quite convinced f was ϵ -close to linear.

Now if you just look at definition (2'), you might think that all you can do is make n linearly independent queries to first determine which linear function f is supposed to be, and then do the above. (We imagine that $n \gg 1/\epsilon$.) But it's kind of silly to use complexity n to "test" a program that can itself be implemented with complexity n. But if $(1') \Rightarrow (2')$, it would give a way to give a much more efficient test. This was suggested and proved by M. Blum, Luby, and Rubinfeld in 1990:

Definition 1.5 The "BLR Test": Given an unknown $f: \{0,1\}^n \to \{0,1\}$:

- Pick x and y independently and uniformly at random from $\{0,1\}^n$.
- Set z = x + y.
- Query f on x, y, and z.
- "Accept" iff f(z) = f(x) + f(y).

Today we will prove:

Theorem 1.6 Suppose f passes the BLR Test with probability at least $1 - \epsilon$. Then f is ϵ -close to being linear.

Given this, suppose we do the BLR test $O(1/\epsilon)$ times. If it never fails, we can be quite sure the true probability f passes the test is at least $1 - \epsilon$ and thus that f is ϵ -close to being linear.

NB: BLR originally proved a slightly weaker result than Theorem 1.6 (they lost a constant factor). We present the '95 proof due to Bellare, Coppersmith, Håstad, Kiwi, and Sudan.

2 The Fourier Expansion

Suppose f passes the BLR test with high probability. We want to try showing that f is ϵ -close to some linear function. But which one should we pick?

There's a trick answer to this question: We should pick the closest one! But given $f: \{0,1\}^n \to \{0,1\}$, how can we decide which linear function f is closest to?

Stack the 2^n values of f(x) in, say, lexicographical order, and treat it as a vector in 2^n -dimensional space, \mathbb{R}^{2^n} :

$$f = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Do the same for all 2^n linear (Parity) functions:

$$\chi_{\emptyset} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \chi_{\{1\}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix}, \dots, \chi_{[n]} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

Notation: χ_S is Parity on the coordinates in set S; $[n] = \{1, 2, ..., n\}$.

Now it's easy the closest Parity to f is the physically closest vector.

f is closest to χ_{S_1}

It's extra-convenient if we replace 0 and 1 with 1 and -1; then the *dot product* of two vectors measures their closeness (the bigger the dot product, the closer). This motivates the Great Notational Switch we'll use 99% of the time.

Great Notational Switch: $0/\text{False} \rightarrow +1$, $1/\text{True} \rightarrow -1$.

We think of +1 and -1 here as *real numbers*. In particular, we now have:

Addition (mod 2) \rightarrow Multiplication (in \mathbb{R}).

We now write:

A generic boolean function: $f: \{-1,1\}^n \to \{-1,1\}$.

The Parity on bits S function, $\chi_S : \{-1,1\}^n \to \{-1,1\}$:

$$\chi_S(x) = \prod_{i \in S} x_i.$$

We now have:

Fact 2.1 The dot product of f and χ_S , as vectors in $\{-1,1\}^{2^n}$, equals

$$(\# x$$
's such that $f(x) = \chi_S(x) - (\# x$'s such that $f(x) \neq \chi_S(x)$.

Definition 2.2 For any $f, g : \{-1, 1\}^n \to \mathbb{R}$, we write

$$\langle f, g \rangle = \frac{1}{2^n} (dot \ product \ of \ f \ and \ g \ as \ vectors)$$

= $\underset{\boldsymbol{x} \in \{-1,1\}^n}{\operatorname{avg}} [f(\boldsymbol{x})g(\boldsymbol{x})] = \underset{\boldsymbol{x} \in \{-1,1\}^n}{\mathbf{E}} [f(\boldsymbol{x})g(\boldsymbol{x})].$

We also call this the correlation of f and g^1 .

Fact 2.3 If f and g are boolean-valued, $f, g : \{-1, 1\}^n \to \{-1, 1\}$, then $\langle f, g \rangle \in [-1, 1]$. Further, f and g are ϵ -close iff $\langle f, g \rangle \geq 1 - 2\epsilon$.

Now in our linearity testing problem, given $f: \{-1,1\}^n \to \{-1,1\}$ we are interested in the Parity function having maximum correlation with f. Let's give notation for these correlations:

Definition 2.4 For $S \subseteq [n]$, we write

$$\hat{f}(S) = \langle f, \chi_S \rangle$$

Now with the switch to -1 and 1, something interesting happens with the 2^n Parity functions; they become orthogonal vectors:

Proposition 2.5 If $S \neq T$ then χ_S and χ_T are orthogonal; i.e., $\langle \chi_S, \chi_T \rangle = 0$.

Proof: Let $i \in S\Delta T$ (the symmetric difference of these sets); without loss of generality, say $i \in S \setminus T$. Pair up all n-bit strings: $(x, x^{(i)})$, where $x^{(i)}$ denotes x with the ith bit flipped.

Now the vectors χ_S and χ_T look like this on "coordinates" x and $x^{(i)}$

$$\chi_S = \begin{bmatrix} & a & -a & \end{bmatrix}$$

$$\chi_T = \begin{bmatrix} & b & b & \end{bmatrix}$$

$$\chi_T = \begin{bmatrix} & & \chi_T & & \chi_T$$

for some bits a and b. In the inner product, these coordinates contribute ab - ab = 0. Since we can pair up all coordinates like this, the overall inner product is 0. \square

¹This doesn't agree with the technical definition of correlation in probability, but never mind.

Corollary 2.6 The set of 2^n vectors $(\chi_S)_{S \subset [n]}$ form an complete orthogonal basis for \mathbb{R}^{2^n} .

Proof: We have 2^n mutually orthogonal nonzero vectors in a space of dimension 2^n . \square

Fact 2.7 If
$$f: \{-1,1\}^n \to \{-1,1\}$$
, " $||f||$ " = $\sqrt{\langle f,f \rangle} = 1$.

Corollary 2.8 The functions $(\chi_S)_{S\subset [n]}$ form an orthonormal basis for \mathbb{R}^{2^n} .

In other words, these Parity vectors are just a rotation of the standard basis.

As a consequence, the most basic linear algebra implies that every vector in \mathbb{R}^{2^n} — in particular, any $f: \{-1,1\}^n \to \{-1,1\}$ — can be written uniquely as a linear combination of these vectors:

$$f = \sum_{S \subseteq [n]} c_S \chi_S$$
 as vectors, for some $c_S \in \mathbb{R}$.

Further, the coefficient on χ_S is just the length of the projection; i.e., $\langle f, \chi_S \rangle$:

$$(\hat{f}(T) =)$$
 $\langle f, \chi_T \rangle = \langle \sum_S c_S \chi_S, \chi_T \rangle = \sum_S c_S \langle \chi_S, \chi_T \rangle = c_T.$

I.e., we've shown:

Theorem 2.9 Every function $f: \{-1,1\}^n \to \mathbb{R}$ — in particular, every boolean-valued function $f: \{-1,1\}^n \to \{-1,1\}$ — is uniquely expressible as a linear combination (over \mathbb{R}) of the 2^n Parity functions:

$$f = \sum_{S \subseteq [n]} \hat{f}(S)\chi_S. \tag{1}$$

(This is a pointwise equality of functions on $\{-1,1\}^n$.)

The real numbers $\hat{f}(S)$ are called the Fourier coefficients of f, and (1) the Fourier expansion of f.

Recall that for boolean-valued functions $f: \{-1,1\}^n \to \{-1,1\}$, $\hat{f}(S)$ is a number in [-1,1] measuring the correlation of f with the function Parity-on-S. In (1) we have the property that for every string x, the 2^n real numbers $\hat{f}(S)\chi_S(x)$ "magically" always add up to a number that is either -1 or 1.

2.1 Examples

Here are some example functions and their Fourier transforms. In the Fourier expansions, we will write $\prod_{i \in S}$ in place of χ_S .

f	Fourier transform
$f(x) = 1$ $f(x) = x_i$ $AND(x_1, x_2)$ $MAJ(x_1, x_2, x_3)$	$ \begin{array}{c} 1 \\ x_i \\ \frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1x_2 \\ \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3 \end{array} $
$f: egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \hat{f}(\emptyset) = -\frac{1}{4} \hat{f}(\{1\}) = +\frac{3}{4} \hat{f}(\{2\}) = -\frac{1}{4} \hat{f}(\{3\}) = +\frac{1}{4} \hat{f}(\{1,2\}) = -\frac{1}{4} \hat{f}(\{1,3\}) = +\frac{1}{4} \hat{f}(\{2,3\}) = +\frac{1}{4} \hat{f}(\{1,2,3\}) = +\frac{1}{4} $

2.2 Parseval, Plancherel

We will now prove one of the most important, basic facts about Fourier transforms:

Theorem 2.10 ("Plancherel's Theorem") Let $f, g : \{-1, 1\}^n \to \mathbb{R}$. Then

$$\langle f, g \rangle = \underset{\boldsymbol{x} \in \{-1,1\}^n}{\mathbf{E}} [f(\boldsymbol{x})g(\boldsymbol{x})] = \sum_{S \subseteq [n]} \hat{f}(S)\hat{g}(S).$$

This just says that when you express two vectors in an orthonormal basis, their inner product is equal to the sum of the products of the coefficients. **Proof:**

$$\begin{split} \langle f,g \rangle &= \left\langle \sum_{S \subseteq [n]} \hat{f}(S) \chi_S, \sum_{T \subseteq [n]} \hat{g}(T) \chi_T \right\rangle \\ &= \sum_{S} \sum_{T} \hat{f}(S) \hat{g}(T) \langle \chi_S, \chi_T \rangle \qquad \text{(by linearity of inner product)} \\ &= \sum_{S} \hat{f}(S) \hat{g}(S) \qquad \qquad \text{(by orthonormality of χ's)}. \end{split}$$

Corollary 2.11 ("Parseval's Theorem") Let $f: \{-1, 1\}^n \to \mathbb{R}$. Then

$$\langle f, f \rangle = \underset{\boldsymbol{x} \in \{-1, 1\}^n}{\mathbf{E}} [f(\boldsymbol{x})^2] = \sum_{S \subseteq [n]} \hat{f}(S)^2.$$

This just says that the squared length of a vector, when expressed in an orthonormal basis, equals the sum of the squares of the coefficients. In other words, it's the Pythagorean Theorem.

One very important special case:

Corollary 2.12 If $f: \{-1,1\}^n \rightarrow \{-1,1\}$ is a boolean-valued function,

$$\sum_{S\subseteq[n]}\hat{f}(S)^2=1.$$