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We begin our study of the noise sensitivity of functions with this lecture. We wish to investigate
how sensitive the output of a boolean function is to small corruptions in the input bits. This leads to
efficient learning algorithms for an important class of functions which we will define in this lecture.
But the emphasis in today’s lecture will be on achieving tight bounds on the noise sensitivity of
this class of functions.

1 Noise sensitivity and Learning

We recapitulate the definition of noise sensitivity. Iff : {−1, 1}n → {−1, 1}, then for0 ≤ ε ≤ 1
2

NSε(f) = Prx, y[f(x) 6= f(y)]

wherex andy are chosen by choosingx uniformly at random and then formingy by flipping each
bit of x with probabilityε. We denote this byy = Nε(x)

We proved the following fact in Homework 3.

Fact 1.1 If NSδ(f) ≤ ε, thenf is O(ε)-concentrated on{S ⊆ [n] : |S| ≤ 1
δ
} and therefore the

Low Degree Algorithm will learn the function in time poly(n
1
δ , 1

ε
).

Proof: From problem 3 in Homework 2, we know thatNSδ(f) = 1
2
− 1

2

∑
S⊆[n](1− 2δ)|S|f̂(S)2.

Therefore,

ε ≥ 1
2
− 1

2

∑
S⊆[n](1− 2δ)|S|f̂(S)2

= 1
2
[
∑

S f̂(S)2 −∑
S(1− 2δ)|S|f̂(S)2] (By Parseval’s identity)

= 1
2
[
∑

S(1− (1− 2δ)|S|)f̂(S)2]

≥ 1
2
[
∑

|S|≥ 1
δ
(1− (1− 2δ)|S|)f̂(S)2]

≥ 1
2
[(1− (1− 2δ)

1
δ )

∑
|S|≥ 1

δ
f̂(S)2]

≥ 1
2
(1− e−2)

∑
|S|≥ 1

δ
f̂(S)2]

∴
∑

|S|≥ 1
δ
f̂(S)2 ≤ 2

1−e−2 ε.
2

For instance, suppose we prove that∀f ∈ C (whereC is some class of functions),NSδ(f) ≤
t
√

δ. ThenC is learnable using the Low Degree Algorithm using time poly(n
t2

ε2 ), whereε is the
accuracy parameter in thePAC learning model. For the parameters to work right, we simply need
t
√

δ ≤ Ω(ε) so that1
δ
≥ O( t2

ε2
).
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2 Linear Threshold Functions

In this section we define a very general class of functions called the linear threshold functions.
Many of the functions we have studied before fall into this class.

Definition 2.1 A functionf : {−1, 1}n → < is called linear if∃ real numbersα′is such thatf(x) =
α0+α1x1+α2x2 . . . αnxn. A functionf : {−1, 1}n → {−1, 1} is called a linear threshold function
(LTF for short) is∃α′is such thatf(x) = sgn(α0 + α1x1 + α2x2 + · · ·+ αnxn).

Examples :

• Majority : sgn(
∑n

i=1 xi)

• Dictators : sgn(xi)

• AND : sgn(
∑n

i=1 xi + n− 1
2
)

• Decision lists : These are a special case of decision trees where the tree is only one path
from the root to a leaf.

Remark 2.2 We make a technical note here. Firstly, declare sgn(0) = 0. So for LTF’s we require
that α0 +

∑
αixi 6= 0 ∀x ∈ {−1, 1}n. In fact, we will make the stronger assumption that∑

i∈S αixi 6= 0 ∀x ∈ {−1, 1}n, φ 6= S ⊆ [n].

A slightly different interpretation of LTFs is from a probability theory point of view. LTFs can
be studied as the sum of independent random variables. We now come to the main theorem of
today’s lecture.

Theorem 2.3 (Peres ’04)Letf : {−1, 1}n → {−1, 1} be an LTF. ThenNSδ(f) ≤ 2
√

δ.

In light of the discussion at the end of the previous section, we have the following corollary.

Corollary 2.4 The class of LTFs is learnable in time poly(n
1
ε2 ).

Remark 2.5 Actually the class of LTFs is learnable in time poly(n/ε). This is true even for learn-
ing under any distribution and not just the uniform distribution. The idea is to draw a bunch of
examples and use a linear program to find a consistent hypothesis.

We can also learn intersections of LTFs : LetC = g1 ∧ g2 : g1, g2 are LTFs . The for anyf ∈ C,
NSδ(f) ≤ 4

√
δ. Why ? Note that by the union bound the probability that eitherg1 or g2 changes

is at most2
√

δ + 2
√

δ = 4
√

δ. Hence the probability thatg1 ∧ g2 flips is at most4
√

δ.

Corollary 2.6 The classC defined above is learnable in time poly(n
1
ε2 ).

Arguing along similar lines we have the following corollary.

Corollary 2.7 LetC be the collection of functions which are some function oft LTFs. Then∀f ∈
calC,NSδ(f) ≤ t · 2

√
δ

The proof is again simply applying the union bound. Therefore, the above class is learnable in

time poly(n
t2

ε2 ).
In the next section we present the proof of Peres’s theorem.
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3 Proof of Peres’s theorem

The proof we present here is a simplification of Peres’s original proof as suggested by Parikshit
Gopalan. We will prove something a little stronger than the statement of the theorem.

Theorem 3.1 Let f : {−1, 1}n → {−1, 1} be an LTF, and letI1, . . . , Im ⊆ [n] are disjoint sub-
sets. ThenPrx,j∈{1,...,m}[f(x) 6= f(xIj)] ≤ 1√

m
.

Let us see why Peres’s theorem follows from the above result. Given0 ≤ δ ≤ 1
2
, let us first assume

that δ = 1
m

wherem is some integer. Since the theorem holds for all partitions of[n], it holds
in expectation if we pick a randomm-partition, meaning that for eachi ∈ [n], include it into a
randomIj independently. More precisely,

EI1,...,Im [Prx,j(f(x) 6= f(xIj))] ≤ 1√
m
≤
√

δ

But (x, xIj) has the same distribution as(x,N 1
m

(x)). ∴ Prx,y∈Nδ(x)[f(x) 6= f(y)] ≤
√

δ.

If on the other hand,δ 6= 1
m

for some integerm, let δ′ be the next largest integer amount which
is 1/integer. Since the noise sensitivity of a function atδ is an increasing function ofδ, we have
NSδ(f) ≤ NS′δ ≤

√
δ′. In the worst case,

√
δ′ ≤ 2

√
δ (the worst case is when delta is very near1

2

andδ′ = 1).
Now to prove the theorem.

Proof: Write f = sgn(α0 + α1x1 + · · · + αnxn). Given a randomx, define random variablesσj

by
σj(x) = sgn(

∑
i∈Ij

αixi)

Becauseσj(x) = −σj(−x), the distribution ofσj is precisely like that of a random±1 bit. Also
not that since theIj ’s are disjoint,σi, σj are independent.

Defineg : {−1, 1}m → [−1, 1] on theσi’s by g(σ1, . . . , σm) = Ex|σ[f(x] where the expectation
is taken overx conditioned onσ, i.e. allx such theσi’s are the right sign.

Fact 3.2
∑m

j=1 ĝ(j) ≤ √
m

Proof: By the Cauchy-Schwartz inequality,
∑m

j=1 ĝ(j) ≤ √
m

∑m
j=1 ĝ(j)2 ≤ √

m 2

We now make the following claim, from which the theorem is immediate.

Claim 3.3 ĝ(j) = Prx[f(x) 6= f(x(Ij))]

Given the claim,Prx,j[f(x) 6= f(x(Ij))] ≤ (
∑m

j=1 ĝ(j))/m ≤ 1√
m

Now to prove the claim.

ĝ(j) = Eσ[g(σ) · σj]
= Eσ[Ex|σ[f(x)] · σj]
= Ex[f(x) · σj(x)]
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Now sincex andx(Ij) have the same distribution, the above expression is also equal toEx[f(x(Ij))·
σj(x(Ij))]. Soĝ(j) is also equal to

Ex[
f(x) · σj(x) + f(x(Ij)) · σj(x(Ij))

2
]

Also note thatσj(x) = −σj(x(Ij)). Therefore we have

ĝ(j) = Ex[
f(x) · σj(x)− f(x(Ij)) · σj(x)

2
]

• If f(x) = f(x(Ij)) then the expression above is0.

• If f(x) 6= f(x(Ij)) then in factf(x) = σj(x). This is because f is changing sign when a
subset is changing sign. For example, if f is positive and the subset is negative, then if the
subset becomes positive, f cannot become negative.

In other words, the expression inside the expectation is simply the indicator of[f(x) 6= f(x(Ij))].
And so we get that̂g(j) = E[1[f(x) 6= f(x(Ij))]] = Prx[f(x) 6= f(x(Ij))].

2

If we use the better bound of
∑m

j=1 ĝ(j) ≤ (
√

2
π

+ om(1))
√

m, we get the following corollary
of Peres’s theorem.

Corollary 3.4 If f is an LTF,NSδ(f) ≤ (
√

2
π

+ oδ(1))
√

δ

In the next section we show that the majority achieves the bound. and so the theorem is tight.

4 Noise sensitivity of Majority

We use the central limit theorem to prove the following.

Proposition 4.1 NSδ(Majn) ≥ Ω(
√

δ)

Proof:[Sketch]Majn(x) = sgn(
∑

i xi) = sgn(
∑

i
1√
n
xi). By the Central limit theorem,

∑
i

1√
n
xi

is distributed very much like a Gaussian with mean 0 and variance 1. The pdf for a standard

Gaussian is 1√
2π

e−
x2

2 . So

Pr[N(0, 1) ∈ [−δ/4, δ/4]] =

∫ δ/4

−δ/4

1√
2π

e−
x2

2 dx ≥ Ω(δ)

∴ Pr[
∑

i
1√
n
xi ∈ [−δ/4, δ/4]] ≥ Ω(δ).

Now suppose the above event happens, and we flip aboutδn of thex′is. These bits are roughly
1
2
− 1

2
, so its like adding−2

∑
≈δn± 1√

n
which is again approximately like a GaussianN(0, 4δ).

Therefore, noise will cause a flip for Majority if
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1. |N(0, 4δ)| ≥
√

δ
4

2. The sign ofN(0, 4δ) goes the right way.

The first condition asks for a normal to exceed (in magnitude) a constant times the standard
deviation. This has probability≥ Ω(1).

The second condition has probability1
2
.

Moreover, the two conditions are independent. Therefore, both happen with a probability≥
Ω(1)

So finally, removing the conditioning that
∑

i
1√
n
xi ∈ [−δ/4, δ/4], we get a probability≥

Ω(
√

δ). 2
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