
Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 18: Hardness Amplification continued
Mar. 22, 2007

Lecturer: Ryan O’Donnell Scribe: Moritz Hardt

1 Connection to random restrictions and Expected Bias
Assume g : {−1, 1}m → {−1, 1} is 1 − ε-hard for size s. Further assume g is balanced, i.e.,
E[g] = 0. Although one can get rid of the last assumption, we will use it for the sake of simplicity.

Let H be a γ-hard-core set for g against size s′ = Ω(γ2 log 1
γε

) of cardinality ε2m s.t. g is
balanced on H . Notice, g is also balanced on H̄ .

Let f : {−1, 1}n → {−1, 1}. Suppose a circuit C of size at most s′′ tries to compute f(g(x1), . . . , g(xn)
on uniformly drawn inputs x1, . . . , xn.

Is x1, . . . , xn ∈ H?

• Conditioned on xi ∈ H , g(xi) is computationally indistinguishable (up to γ) from a random
bit to C.

• Conditioned on xi 6∈ H , g(xi) is still a uniformly distributed random bit, but C might exactly
know g(xi). (Remember, the example from last lecture.)

The point is, think of (g(xi), . . . , g(xn)) as a random restriction (y, Ī) with ∗-probability ε. The
best thing C could do is look at fy→Ī and output the more common value.

Definition 1.1 The expected bias of f at ε is

ExpBiasε(f) = E[|f̂y→Ī(∅)|

where the expectation is over random restrictions (y, Ī) with ∗-probability ε.

Theorem 1.2 Let g : {−1, 1}m → {−1, 1} which is 1 − ε-hard for size s, assume g is balanced
and let f : {−1, 1}n → {−1, 1}. Let γ > 0. Then, f⊗g is 1

2
+ 1

2
ExpBiasε(f)+γ-hard for circuits

of size

s′′ = Ω

(
γ2 log 1

γε

n

)
· s.

Proof:[Sketch] We will not prove this result, although the proof is not too difficult. It follows from
a hybrid argument. This is why we lose the factor of n in s′′. 2

Since ExpBiasε(χ[n]) = (1− ε)n, we get Yao’s XOR Lemma as a corollary at least in the case
of balanced g.

1

Corollary 1.3 (Yao’s XOR Lemma for balanced functions)

Remark 1.4 The theorem is essentially tight.

Proposition 1.5
S1−ε(f) ≤ ExpBiasε(f) ≤

√
S1−ε(f)

Proof:
E
y,Ī

[f̂y→Ī(∅)2] ≤ E
y,Ī

[|f̂y→Ī(∅)|] ≤
√

E
y,Ī

[f̂y→Ī(∅)2]

The following proposition concludes our proof. 2

Proposition 1.6
E
y,Ī

[f̂y→Ī(∅)2] = S1−ε(f)

Proof:

E
y,Ī

[f̂y→Ī(∅)2] = E
Ī
[E

y
[F∅(y)2]]

= E
Ī
[
∑
S⊆Ī

F̂∅(S)2]

= E
Ī
[
∑
S⊆Ī

f̂(S)2]

=
∑

S

f̂(S)2Pr[S ⊆ Ī]

=
∑

S

(1− ε)|S|f̂(S)2

2

2 Very noise sensitive monotone functions
Our goal is now clear. We want to find very noise sensitive monotone functions.

Definition 2.1 The noise sensitivity of f at ε ∈ [0, 1/2], denoted NSε(f) is

Prx,y=Nε(x)[f(x) 6= f(y)]

where y = Nε(x) means that y is formed by flipping each bit of x independently with probability ε.

2

Proposition 2.2

NSε(f) =
1

2
− 1

2
S1−2ε(f) =

1

2
− 1

2

∑
S

(1− 2ε)|S|f̂(S)2

Proof:
S1−2ε(f) = E

x,y∼1−2εx
[f(x)f(y)]

That is, x is drawn uniformly at random and y is a (1 − 2ε)-correlated copy of x. But, that is
equivalent to choosing y = Nε(x). So,

E
x,y∼1−2εx

[f(x)f(y)] = E
x,y=Nε(x)

[1− 21[f(x) 6= f(y)]] = 1− 2NSε(f)

2

Theorem 2.3 If f : {−1, 1}n → {−1, 1} is monotone (in NP) and NSn−α(f) ≥ 1
2
−n−β , then “NP

is 1− 1
poly(n)

-hard for poly-size circuits” implies “NP is ≈ 1
2

+ n−β/2-hard for poly-size circuits”.

We can picture the following.

Proposition 2.4 NSε(f) is a concave, increasing function of ε. It is 0 when ε = 0 and it is 1
2

at
ε = 1

2
.

Proof: Since NSε(f) is a concave function of ε, 0 at 0, we have NSε(f) ≤ εNS′0(f). 2

Therefore, NSε(f) ≤ O(ε
√

n) if f is monotone and NSε(f) < 1
4
, if ε < Ω

(
1√
n

)
.

3 Recursive Majority
Theorem 3.1

NSε(Majn) ≤ O(
√

ε)

Although, this theorem makes Majority a seemingly bad candidate for our purpose, we still try
to recursively construct some good function starting with Majority.

p(ε) := NSε(Maj3) =
3

2
ε− 3

2
ε2 + ε3 =

Question: What is NSε of Maj3(Maj3(. . .), Maj3(. . .), Maj3(. . .))?

Observation 3.2 If f is balanced, then

NSε(f
′ ⊗ f) = NSNSε(f)(f

′).

3

In particular,

• for small ε, p(p(ε)) ≈
(

3
2

)2
ε, p(p(p(ε))) ≈

(
3
2

)3
ε.

• for small δ, p(p(1− δ)) ≈ 1
2
−
(

3
4

)2
δ.

So, define
Maj

(k)
3 = Maj3 ⊗ · · · ⊗Maj3

k times
.

We get NSε(Maj
(k)
3) = p(k)(ε). The input length is 3k.

Fact 3.3 If depth k ≥ (1 + o(1))(log 3
2
(1

ε
) + log 4

3
(1

δ
)), then NSε(Maj

(k)
3) ≥ 1

/
2− δ.

Write n = 3k for the input length. We get NSeps(Maj
(k)
3) ≥ 1

2
− δ, so long as

n ' 3log3/2(1/ε)+log4/3(1/δ) =

(
1

ε

)log3/2 3(
1

δ

)log4/3 3

≈
(

1

ε

)2.71(
1

δ

)3.82

So, if ε ≥ 1
n1/δ , δ ≤ 1

n1/8 , this holds. Finally, you get a monotone function f , computable in
polynomial time, with NSn−1/ε(f) ≥ 1

2
− n−1/8.

Corollary 3.4 If ∃L ∈ NP (balanced) which is 1 − 1
poly(n)

-hard for size s = poly(n), then ∃L ∈
NP which is 1

2
+ 1

nΩ(1) -hard (infinitely often) for size poly(n).

Remark 3.5 Improvement (Healy-Vadhan-Viola): If there exists a balanced L ∈ NP, 1− 1
poly(n)

-

hard for size 2Ω(n), then ∃L ∈ NP which is 1
2

+ 2−Ω(
√

n) hard for size 2Ω(n).

4

