Mar. 22, 2007
Lecturer: Ryan O'Donnell
Scribe: Moritz Hardt

1 Connection to random restrictions and Expected Bias

Assume $g:\{-1,1\}^{m} \rightarrow\{-1,1\}$ is $1-\epsilon$-hard for size s. Further assume g is balanced, i.e., $\mathbf{E}[g]=0$. Although one can get rid of the last assumption, we will use it for the sake of simplicity.

Let H be a γ-hard-core set for g against size $s^{\prime}=\Omega\left(\gamma^{2} \log \frac{1}{\gamma \epsilon}\right)$ of cardinality $\epsilon 2^{m}$ s.t. g is balanced on H. Notice, g is also balanced on \bar{H}.

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Suppose a circuit C of size at most $s^{\prime \prime}$ tries to compute $f\left(g\left(x^{1}\right), \ldots, g\left(x^{n}\right)\right.$ on uniformly drawn inputs x^{1}, \ldots, x^{n}.

$$
\text { Is } x^{1}, \ldots, x^{n} \in H ?
$$

- Conditioned on $x^{i} \in H, g\left(x^{i}\right)$ is computationally indistinguishable (up to γ) from a random bit to C.
- Conditioned on $x^{i} \notin H, g\left(x^{i}\right)$ is still a uniformly distributed random bit, but C might exactly know $g\left(x^{i}\right)$. (Remember, the example from last lecture.)

The point is, think of $\left(g\left(x^{i}\right), \ldots, g\left(x^{n}\right)\right)$ as a random restriction (y, \bar{I}) with $*$-probability ϵ. The best thing C could do is look at $f_{y \rightarrow \bar{I}}$ and output the more common value.

Definition 1.1 The expected bias of f at ϵ is

$$
\operatorname{Exp}_{\operatorname{Bias}_{\epsilon}}(f)=\mathbf{E}\left[\left|\widehat{f_{y \rightarrow \bar{I}}}(\emptyset)\right|\right.
$$

where the expectation is over random restrictions (y, \bar{I}) with $*$-probability ϵ.
Theorem 1.2 Let $g:\{-1,1\}^{m} \rightarrow\{-1,1\}$ which is $1-\epsilon$-hard for size s, assume g is balanced and let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Let $\gamma>0$. Then, $f \otimes g$ is $\frac{1}{2}+\frac{1}{2} \operatorname{ExpBias}_{\epsilon}(f)+\gamma$-hard for circuits of size

$$
s^{\prime \prime}=\Omega\left(\frac{\gamma^{2} \log \frac{1}{\gamma \epsilon}}{n}\right) \cdot s
$$

Proof:[Sketch] We will not prove this result, although the proof is not too difficult. It follows from a hybrid argument. This is why we lose the factor of n in $s^{\prime \prime}$.
 of balanced g.

Corollary 1.3 (Yao's XOR Lemma for balanced functions)

Remark 1.4 The theorem is essentially tight.

Proposition 1.5

$$
\mathbb{S}_{1-\epsilon}(f) \leq \operatorname{Exp}^{\operatorname{Bias}_{\epsilon}}(f) \leq \sqrt{\mathbb{S}_{1-\epsilon}(f)}
$$

Proof:

$$
\underset{y, \bar{I}}{\mathbf{E}}\left[\widehat{f_{y \rightarrow \bar{I}}}(\emptyset)^{2}\right] \leq \mathbf{E}\left[\left|\widehat{f_{y \rightarrow \bar{I}}}(\emptyset)\right|\right] \leq \sqrt{\mathbf{E}\left[\widehat{f_{y \rightarrow \bar{I}}}(\emptyset)^{2}\right]}
$$

The following proposition concludes our proof.

Proposition 1.6

$$
\underset{y, \bar{I}}{\mathbf{E}}\left[\widehat{f_{y \rightarrow \bar{I}}}(\emptyset)^{2}\right]=\mathbb{S}_{1-\epsilon}(f)
$$

Proof:

$$
\begin{aligned}
\underset{y, \bar{I}}{\mathbf{E}}\left[\widehat{f_{y \rightarrow \bar{I}}}(\emptyset)^{2}\right] & =\underset{\bar{I}}{\mathbf{E}}\left[\underset{y}{\mathbf{E}}\left[F_{\emptyset}(y)^{2}\right]\right] \\
& =\underset{\bar{I}}{\mathbf{E}}\left[\sum_{S \subseteq \bar{I}} \widehat{F_{\emptyset}}(S)^{2}\right] \\
& =\underset{\bar{I}}{\mathbf{E}}\left[\sum_{S \subseteq \bar{I}} \hat{f}(S)^{2}\right] \\
& =\sum_{S} \hat{f}(S)^{2} \mathbf{P r}[S \subseteq \bar{I}] \\
& =\sum_{S}(1-\epsilon)^{|S|} \hat{f}(S)^{2}
\end{aligned}
$$

2 Very noise sensitive monotone functions

Our goal is now clear. We want to find very noise sensitive monotone functions.
Definition 2.1 The noise sensitivity of f at $\epsilon \in[0,1 / 2]$, denoted $\mathrm{NS}_{\epsilon}(f)$ is

$$
\operatorname{Pr}_{x, y=N_{\epsilon}(x)}[f(x) \neq f(y)]
$$

where $y=N_{\epsilon}(x)$ means that y is formed by flipping each bit of x independently with probability ϵ.

Proposition 2.2

$$
\mathrm{NS}_{\epsilon}(f)=\frac{1}{2}-\frac{1}{2} \mathbb{S}_{1-2 \epsilon}(f)=\frac{1}{2}-\frac{1}{2} \sum_{S}(1-2 \epsilon)^{|S|} \hat{f}(S)^{2}
$$

Proof:

$$
\mathbb{S}_{1-2 \epsilon}(f)=\underset{x, y \sim 1-2 \epsilon x}{\mathbf{E}}[f(x) f(y)]
$$

That is, x is drawn uniformly at random and y is a $(1-2 \epsilon)$-correlated copy of x. But, that is equivalent to choosing $y=N_{\epsilon}(x)$. So,

$$
\underset{x, y \sim 1-2 \epsilon x}{\mathbf{E}}[f(x) f(y)]=\underset{x, y=N_{\epsilon}(x)}{\mathbf{E}}[1-2 \nVdash[f(x) \neq f(y)]]=1-2 \mathrm{NS}_{\epsilon}(f)
$$

Theorem 2.3 If $:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is monotone (in NP) and $\mathrm{NS}_{n^{-\alpha}}(f) \geq \frac{1}{2}-n^{-\beta}$, then " $N P$ is $1-\frac{1}{\operatorname{poly}(n)}$-hard for poly-size circuits" implies " $N P$ is $\approx \frac{1}{2}+n^{-\beta / 2}$-hard for poly-size circuits".

We can picture the following.
Proposition 2.4 $\mathrm{NS}_{\epsilon}(f)$ is a concave, increasing function of ϵ. It is 0 when $\epsilon=0$ and it is $\frac{1}{2}$ at $\epsilon=\frac{1}{2}$.

Proof: Since $\mathrm{NS}_{\epsilon}(f)$ is a concave function of $\epsilon, 0$ at 0 , we have $\mathrm{NS}_{\epsilon}(f) \leq \epsilon \mathrm{NS}_{0}^{\prime}(f)$.
Therefore, $\mathrm{NS}_{\epsilon}(f) \leq O(\epsilon \sqrt{n})$ if f is monotone and $\mathrm{NS}_{\epsilon}(f)<\frac{1}{4}$, if $\epsilon<\Omega\left(\frac{1}{\sqrt{n}}\right)$.

3 Recursive Majority

Theorem 3.1

$$
\mathrm{NS}_{\epsilon}\left(\operatorname{Maj}_{n}\right) \leq O(\sqrt{\epsilon})
$$

Although, this theorem makes Majority a seemingly bad candidate for our purpose, we still try to recursively construct some good function starting with Majority.

$$
p(\epsilon):=\mathrm{NS}_{\epsilon}\left(\mathrm{Maj}_{3}\right)=\frac{3}{2} \epsilon-\frac{3}{2} \epsilon^{2}+\epsilon^{3}=
$$

Question: What is NS_{ϵ} of $\operatorname{Maj}_{3}\left(\operatorname{Maj}_{3}(\ldots), \operatorname{Maj}_{3}(\ldots), \operatorname{Maj}_{3}(\ldots)\right)$?
Observation 3.2 If f is balanced, then

$$
\mathrm{NS}_{\epsilon}\left(f^{\prime} \otimes f\right)=\mathrm{NS}_{\mathrm{NS}_{\epsilon}(f)}\left(f^{\prime}\right)
$$

In particular,

- for small $\epsilon, p(p(\epsilon)) \approx\left(\frac{3}{2}\right)^{2} \epsilon, p(p(p(\epsilon))) \approx\left(\frac{3}{2}\right)^{3} \epsilon$.
- for small $\delta, p(p(1-\delta)) \approx \frac{1}{2}-\left(\frac{3}{4}\right)^{2} \delta$.

So, define

$$
\operatorname{Maj}_{3}^{(k)}=\operatorname{Maj}_{3} \underset{k \text { times }}{\otimes \cdots \otimes \operatorname{Maj}_{3} .}
$$

We get $\mathrm{NS}_{\epsilon}\left(\mathrm{Maj}_{3}^{(k)}\right)=p^{(k)}(\epsilon)$. The input length is 3^{k}.
Fact 3.3 If depth $k \geq(1+o(1))\left(\log _{\frac{3}{2}}\left(\frac{1}{\epsilon}\right)+\log _{\frac{4}{3}}\left(\frac{1}{\delta}\right)\right)$, then $\mathrm{NS}_{\epsilon}\left(\mathrm{Maj}_{3}^{(k)}\right) \geq \frac{1}{7} 2-\delta$.
Write $n=3^{k}$ for the input length. We get $\mathrm{NS}_{e} p s\left(\mathrm{Maj}_{3}^{(k)}\right) \geq \frac{1}{2}-\delta$, so long as

$$
n \gtrsim 3^{\log _{3 / 2}(1 / \epsilon)+\log _{4 / 3}(1 / \delta)}=\left(\frac{1}{\epsilon}\right)^{\log _{3 / 2} 3}\left(\frac{1}{\delta}\right)^{\log _{4 / 3} 3} \approx\left(\frac{1}{\epsilon}\right)^{2.71}\left(\frac{1}{\delta}\right)^{3.82}
$$

So, if $\epsilon \geq \frac{1}{n^{1 / \delta}}, \delta \leq \frac{1}{n^{1 / 8}}$, this holds. Finally, you get a monotone function f, computable in polynomial time, with $\mathrm{NS}_{n^{-1 / \epsilon}}(f) \geq \frac{1}{2}-n^{-1 / 8}$.

Corollary 3.4 If $\exists L \in \mathrm{NP}$ (balanced) which is $1-\frac{1}{\operatorname{poly}(n)}$-hard for size $s=\operatorname{poly}(n)$, then $\exists L \in$ NP which is $\frac{1}{2}+\frac{1}{n^{\Omega(1)}}$-hard (infinitely often) for size poly (n).

Remark 3.5 Improvement (Healy-Vadhan-Viola): If there exists a balanced $L \in \mathrm{NP}, 1-\frac{1}{\text { poly }(n)}$ hard for size $2^{\Omega(n)}$, then $\exists L \in$ NP which is $\frac{1}{2}+2^{-\Omega(\sqrt{n})}$ hard for size $2^{\Omega(n)}$.

