Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 18: Hardness Amplification continued
Mar. 22, 2007
Lecturer: Ryan O’Donnell Scribe: Moritz Hardt

1 Connection to random restrictions and Expected Bias

Assume g : {—1,1}"" — {—1,1} is 1 — e-hard for size s. Further assume ¢ is balanced, i.e.,
E[g] = 0. Although one can get rid of the last assumption, we will use it for the sake of simplicity.

Let H be a ~-hard-core set for g against size s’ = Q(7?log %) of cardinality 2™ s.t. ¢ is
balanced on H. Notice, g is also balanced on H.

Let f: {—1,1}" — {—1,1}. Suppose a circuit C of size at most s” tries to compute f(g(z'),. ..

on uniformly drawn inputs z', ..., z".

Isz!,....,a" € H?

e Conditioned on 2 € H, g(x') is computationally indistinguishable (up to) from a random
bit to C'.

e Conditioned on x* ¢ H, g(x?) is still a uniformly distributed random bit, but C' might exactly
know g(z*). (Remember, the example from last lecture.)

The point is, think of (g(z"), ..., g(x™)) as a random restriction (y, I) with x-probability €. The
best thing C' could do is look at f,_.; and output the more common value.

Definition 1.1 The expected bias of f at € is

ExpBias, (f) = E[|f,_1(0)]

where the expectation is over random restrictions (y, I) with x-probability e.

Theorem 1.2 Let g : {—1,1}"™ — {—1,1} which is 1 — e-hard for size s, assume g is balanced
andlet f : {—1,1}" — {—1,1}. Lety > 0. Then, f ® g is 5 + 3 ExpBias_(f) +~-hard for circuits

of size
2 1
s"=Q T %5 o8 3¢ -8
n

Proof:[Sketch] We will not prove this result, although the proof is not too difficult. It follows from
a hybrid argument. This is why we lose the factor of n in s”. O

Since ExpBias,(x[n)) = (1 — €)", we get Yao’s XOR Lemma as a corollary at least in the case
of balanced g.

,g(x™)

Corollary 1.3 (Yao’s XOR Lemma for balanced functions)
Remark 1.4 The theorem is essentially tight.

Proposition 1.5

Slfe(f> < EXpBiaSe(f) < v Slf€<f)

Proof:
ff[fyﬂf(@)f] < y]j:)foyﬂf(@)H < fj[fyaf(@m

The following proposition concludes our proof. O

Proposition 1.6

E| Fyei(0)] = S1_o(f)

Proof:

2 Very noise sensitive monotone functions
Our goal is now clear. We want to find very noise sensitive monotone functions.
Definition 2.1 The noise sensitivity of f at e € [0, 1/2], denoted NS (f) is

Prz,y:Ng(:r) [f(l’) 7é f(y)]

where y = N () means that y is formed by flipping each bit of x independently with probability e.

Proposition 2.2

NS(f) = 5 = 5Siadf) = 5 = 3 D1~ 20187
S

Proof:

Si-2:(f) = E [f(z)f(y)]

T,Y~1—2eT

That is, = is drawn uniformly at random and y is a (1 — 2¢)-correlated copy of x. But, that is
equivalent to choosing y = N.(z). So,

E [flo)fw]= B [1-2f(x)# f(y)] =1-2NS(f)

T,Y~1-2¢T z,y=Nec(x)

Theorem 2.3 If f : {—1,1}" — {—1,1} is monotone (in NP) and NS,,—o(f) > 3 —n"", then “NP
is1— m-hard for poly-size circuits” implies “NP is ~ % + n=P/2-hard for poly-size circuits”.

We can picture the following.

Pro;;osition 2.4 NS.(f) is a concave, increasing function of €. It is 0 when ¢ = 0 and it is % at

EZE'

Proof: Since NS, (f) is a concave function of ¢, 0 at 0, we have NS (f) < eNS((f). O

Therefore, NS (f) < O(ey/n) if f is monotone and NS.(f) < 1,if e < (\/Lﬁ)

3 Recursive Majority

Theorem 3.1

Although, this theorem makes Majority a seemingly bad candidate for our purpose, we still try
to recursively construct some good function starting with Majority.

3 3
p(e) :== NS, (Maj;) = 7€~ 562 + e =
Question: What is NS, of Maj;(Majs(...), Majs(...), Majs(...))?
Observation 3.2 If f is balanced, then

NS.(f'® f) = NSys. (1) ()

In particular,
o for small e, p(p(e) ~ (2)” . p(p(p(e)) ~ ()"
e for small 6, p(p(1 — §)) =~ § — (%)25.
So, define
Maj:(gk) = Maj; ® - - - ® Majs.

k times

We get NS, (Maj{") = p®(¢). The input length is 3*.

Fact 3.3 [fdepth k > (1 + o(1))(logs (1) + logs(3)), then NS.(Majs”) > 42 — 4.

€

Write n = 3 for the input length. We get NS, ps(Maj{") > — 0, s0 long as

logs /5 3 log, /33 2.71 3.82
n > glogss(1/0+logys(1/0) _ (LY T (LT (L L
~ €) €)

So, if € > #, 0 < #, this holds. Finally, you get a monotone function f, computable in

polynomial time, with NS, —1/c(f) > 2 — n='/5.

Corollary 3.4 If 3L € NP (balanced) which is 1 — m-hard for size s = poly(n), then 3L €
NP which is % -+ #-hard (infinitely often) for size poly(n).

Remark 3.5 Improvement (Healy-Vadhan-Viola): If there exists a balanced L € NP, 1 — — -

poly(n)
hard for size 2™, then 3L € NP which is % + 279" hard for size 29,

