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Lecturer: Ryan O’Donnell Scribe: Ryan O’'Donne

1 Statement and history

In this lecture, we prove the full-blown hypercontractivity theoremf{ferl, 1}". The idea behind
the statement is that th€, operator smooths, or “reasonable-izes”, functions.

Theorem 1.1 (Hypercontractivity Theorem.) Let1 < p < ¢ < oco. Provided

p < p;l’
qg—1
it holds that for allf : {—1,1}" — R,
ITof llg < 11l
Some examples, including two that were mentioned in the last lecture:
Example 1.2
o q=4p=2p=1/V& 1T,z flla < N A2
°q=2,p=4/3,p=1/V3 1Ty a2 < N fllays
e q=qp=2,p=1/\/q— 1 1Ty yg=1flla < I fl2

One corollary of the last of these is often quite sufficient; it's also a generalization of the
original (2, 4, 1/+/3)-hypercontractivity result we proved easily by induction:

Corollary 1.3 Letf : {—1,1}" — R have degree at most Then||f|, < /¢ — 1d||f||2.
Proof:

d d
A1 =175 = I1Tva (Z V- 1kf:’“) I3
k=0

< ||Z\/Q_ fk||2
d
= Zq—l > f(9)
—0 |S\k
< @D = -V



and the result follows after taking a square-raot.

1.1 History

The history of Theorem 1.1 is quite involved, and interesting. To understand the history, it’s
important to first note that Theorem 1.1 has a “Gaussian” version. Specifically, imagine that one
only considersf’s that can be expressed in the form

1+ -+ x, x(m—l)n+1+"'+xm")

f(:cl,...,xn,xn+1,...,ajgm...,xmn):h( NG e NG

whereh : R™ — R. By the Central Limit Theorem(z(;_1y,41 + - - - + x;»)//n has a distribution

very close to that of a standard Gaussian random variable, at leastldoge. It follows (this

was observed by Gross [4]) that Theorem 1.1 must also hold in the “Gaussian setting”, where
f : R"™ — R, the domairR” is thought of as having the-dimensional Gaussian distribution, and

T, is an appropriately generalized linear operator (specifically, the “Ornstein-Uhlenbeck operator”
from mathematical physics, which we’ll encounter later).

An early version of Theorem 1.1 in the Gaussian setting was proved by Edward Nelson of
Princeton in the mid-60’s [6]; | think it was the= 4, p = 2 case, possibly with a constant bigger
than1 on the right side. This was in an important paper on quantum field theory. Several works
in subsequent years (e.g., Glimm '68, Federbush '69) improved on the result, and the culmination
was the complete proof of Theorem 1.1 in the Gaussian setting, due to Nelson again [7]. Nelson’s
two papers won him the Steele Prize. He is an interesting character, having gone on to work on
foundations of mathematics, bounded arithmetic, and automatic proof verification; he is now well-
known for having invented Internal Set Theory, a partial axiomatization of Nonstandard Analysis.

In 1973, Leonard Gross proved a limiting version of the theorem called a Logarithmic Sobolev
Inequality, and deduced Nelson’s Hypercontractive theorem from it [4]. His proof was in the
boolean setting, getting the Gaussian setting via the Central Limit Theorem. However, it turned
out that the proof of Theorem 1.1 (in the boolean setting) was not new; it was first proved by Aline
Bonami [3] in 1979. In fact, Bonami had proved the- 4, p = 2 case in the boolean setting even
earlier [2].

The history of the theorem can be traced even further back; Bonami’'s work was informed
by that of Walter Rudin, who proved [8] similar inequalities in the settingZgfrather than
{=1,1}" (“one of my favorite papers” — Rudin). Further, a version of the log-sobolev inequality
in the Euclidean (rather than Gaussian) setting was proved by A. J. Stam [9] in 1959, in work on
Fisher/Shannon information theory — much closer to the world of computer science!

Finally, Theorem 1.1 was introduced to the world of theoretical computer science in the work
of Kahn, Kalai, and Linial [5]. Unfortunately, they attributed the theorem to William Beckner [1],
which is not really an accurate accreditation. Beckner work was in fact important followup work
on the work of Nelson and Gross, making extensions to Euclidean and complex settings.

In the computer science theory literature, Theorem 1.1 is often called “Beckner’s Theorem”.
Lately there has been a move towards “Bonami-Beckner Theorem”, although “Bonami Theorem”

2



would respect the original discoverer and “Bonami-Gross Theorem” might more properly respect
the independent discovery. To sidestep the issue, we will simply call it the Hypercontractivity
Theorem.

1.2 The proof
The proof is in two parts:
Part 1. Prove Theorem 1.1 in the case= 1. This is called the “Two-Point Inequality” because

(if p, ¢, p are given) it depends on only two real variablg$]) and f(—1). The Two-Point
Inequality is therefore considered “elementary”; but, it's tricky.

Part 2. Induction onn.

It must be said that both parts are a little annoying to carry out.
We will do them in the opposite order.

2 Part 2: Induction

The induction ultimately only uses two things:

e The triangle inequality fofl - {|/y; i-€.,[lg + lla/p < [|gllasp + l[Plla/s-

Note that]| - ||, is a norm (satisfies the triangle inequality) foral> 1 — and ourr = ¢/p
is at leastl sinceq > p.

e A |ot of notation.

We will keepp, ¢, andp satisfying the conditions of the theorem fixed throughout.

We will consider a partition of the coordinatés into 7 and/, and we will write a generic
string in{—1,1}" as(z, y), wherezx € {—1,1}} andy € {—1,1}’.

We will prove the Theorem for functiong : {—1,1}" — R using the fact that it inductively
holds for functiong{—1,1}Y — R and{-1,1}! — R. We could have insisted simply thdt = 1
if we wanted, but doing this is actually no simpler or clearer.

We begin with:

1/q
4l = (BB @)

Il
el —~ —

1/q
BE((7,/), ()]
TPyl gonotay) - (%)
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We now wish to understand’, f),, as a function of: € {—1,1}'.
T,f = > A f(S)xs =)D ppPIf(AUB)xaxs.
SCn] ACI BCT

Hence, as a function af € {—1, 1}/,

(Tof)y = > o™ (Z pPf(AU B)XB(y)) XA

ACI BCI

T,

p9ys

whereg, : {—1,1} — R s defined by

ACI \BCI

9= (Z PPl f(AU B)xB<y>) Xa. (1)
Continuing:
(+) = ]

(by induction) <

[HTpngq(fcnofm)
1/
[lgyllg] ™"
1/q
pq/p
[1;} |9y()[”] }
(

[ something non-negy/?)"/

< [

el <Md

p/q-1/q
q/p (fcn of y)

= (I Ellgy@P] iy wenorm) - ()

= Hsomethlnq

We now use the triangle inequality fpr||, ,,. Note thatinside thg-||,/, we have an expectation
overz, which is just a constant times a sum owerPulling the constant out of the ||/, and then
using the triangle inequality, we have thdE,[anything||,/, < E.[||anythingd|,/,]. Continuing:

() < (Bla@P )"

- (E {P;Hgy(mﬂq]p/qbl/p

= (Bllo@ enary]) - G5 %)
(B )



We now would like to understang, () as a function of € {—1,1}’. From (1) we have

g(x) = > (Z pPf(AU B)XB(y)) xa(z)

_ prl (Z f(AU B)XA(x)> xB(Y)-

Hence we see that, (x) = 7,k for some functiorh of y, and that this function has as its Fourier

expansion
h = Z(ZfAUBXA )XB—Zf )X sn1(Z)X snr-

BCI \ACI SCIn]

So h is nothing more than the restriction ¢fgiven by fixingz for the coordinateg. l.e., as a
function ofy, g,(x) = T, f.—o. Continuing once more:

(ers) = (BUTforl)”

(by induction) < (E[Hf%IHﬁ])l/p

- (smiwm)

= (E[/PDY"
= £l

The induction is complete.

3 Part 1. The Two-Point Inequality

This is then = 1 base case. In this case, any functjon{—1,1} — R can be represented by two
real numbersg = f(1) andb = f(—1). Applying 7, to f gives the function with two values

T,f(1) = (50a+ (50, T,f(=1) = (FP)a+ (52)b.

We will think of all functionsf : {—1,1} — R as points in the planéq, b) € R?, in which case
the functionsI, f are represented by all points on the line segment joiging) to (b, a). When
p=1,T,f agrees withf; and asp — 0, the resulting function/point moves towards the midpoint
of the line segmen(a, b)-(b, a).

Givena andb, we wish to find the largest, as a function op andg, so that||7,(a,bd)||, <
| (a,b)]|,, where we are identifying functions and points here.

Think of the numbefi(a, b)||, as being fixed. The set of all points (functioris)b) that achieve
this number is a kind of “level set”. Specifically, it is thé,"sphere”; the set of poinig, b) € R?
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such thaﬂmw?’ achieves some fixed value. When= 2, for example, these level sets are
circles. For largep, these circles become more like squares with rounded corners; in the limit
p = oo, the level sets are indeed squares. On the other hang, o012, the level sets become
shaped more like rounded diamonds, with the limiting gasel indeed giving diamonds.

CNY (V) RN
NZEZIIRNNZ

[l -], level set [| - 1], level set, r large [l -l level set, r small

To see how these level sets compare with one another, simply observe that all norms have the
same value on constant functions; i|gg, a)||, is independent of. Hence for a given “level”, all
¢, spheres touch at the pointsa, +a).

Now again, think of the numbel(a, b)||, as being fixed, witlu andb “varying”. We think of
p as being small, so we've drawn a flattish curve in the left diagram below, with vafiotisand
(b,a) pairs on it. We've also drawn in a very squarelike curve in the same diagram, representing
the/, curve at the same level (recall thais larger).

Wherever(a, b) — equivalently,(b, a) — is on the(, curve,T,,(a, b) is somewhere on the line
segment joining these points. We require tfiBj(a, b)||, be at mosf|(a, b)||,,, SO we are effectively
asking —

“How far towards the middle of the line segment do we need to go to get insidg tueve?”

various points/functions on afixed || ||, curve,
with the T, values shown dotted, for nearby points, one has to go aimost al the
and a|| || curve also shown way to the midpoint to get inside the q curve

At this point, we will make an unjustified, pictorial, claim: The “worst case” is wheamdb are
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close together. From the diagram on the right, above, one can see that\ahdh are far apart,

one only has to go a modest distance inward along the line segment to get insigeuhee (i.e.,

p need not be that small). But whenandb are close, one has to go almost all the way to the

midpoint (i.e.,p has to get close t0). The diagram only illustrates b > 0, but it's the same when

a,b < 0, and when the two have opposite signs, they are quite far apart and things are only easier.
We conclude that the most constraining casegfds whena andb are very near. Since the

picture is scale-invariant, we can take= 1 + ¢ andb = 1 — ¢, for eps — 0*. (Note thate = 0,

i.e.,a = b, is actually not a hard case; hgrean bel.) So we are trying to understand how small

p need be so that

IT,(1+e1=6ly < [(1+e1—=¢)l,
& @ +pel=pdly, < [A+e1=6)l,
q — pe)a\ V4 P _ e\ /P
((1+pe) —;—(1 pe) >/ . ((1+6) —;—(1 e)) ' @

Now by the (generalized) Binomial Theorem,

-1 ~1)(g—1
(Hpe)q:quHq(qZ' ) ez Aa=Dla=1) 44

and hence ) 111 . '

(1 + pe) ‘;( + pe) 14 Q(QQ_ )p262—|—0(64).
Using this on the left-hand side of (2), and further using the exparsien)? = 1 + ¢d + O(5?),
we get that the left-hand side of (2) is

1
LHS =1 + qu262 +O(Y.

Doing a similar expansion for the right-hand side of (2) yields

p—1

RHS=1+ e+ O(e").

Hence ags — 0, we see that LHX RHS if and only if

as required by the theorem.

We remark that making this argument rigorous is quite easy; one only needs to use Bernoulli’s
inequality and compare the series expansions from the generalized Binomial Theorem term-by-
term.
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