Analysis of Boolean Functions (CMU 18-859S, Spring 2007

Lecture 14: The KKL Theorem and Friedgut’s Theorem
March 6, 2007
Lecturer: Ryan O’ Donnell Scribe: Ryan Williams

1 Introduction

The KKL Theorem, named after Kahn, Kalai, and Linial, sayat flor any Boolean functiorf on
n variables, there is some variable that has non-trivial @rfae on the value of, and this amount
of influence depends on the variance of the function.

Before we state the theorem, recall thatr(f), a.k.a. the variance off, is

Var(f) = E[f(x)*] — (E[f()])* =) _ [(5)*
S#D

Variance can be expressed in terms of the empty coefficient:

A~

Proposition 1.1 For f : {—1,1}" — {—1,1}, Var(f) = (1 + f(2))(1 — f(2)).

Proof:

~ ~ ~

Var(f) =) f(5)° = f(2)* =1 - f(2)° = (1 + f(2))(1 - [(2)),
where} f(S)% = 1 follows from Parseval. O

Theorem 1.2 (Kahn-Kalai-Linial) Let f: {—1,1}" — {—1,1}. Thenthereisi € [n] satisfying

n

Inf,(f) > Q (Var(f) - bg”) .

As a special case, if a Boolean functionbedanced, taking the valuel on exactly half of its
inputs, thenf (@) = E,[f(x)] = 0, soVar(f) = 1 by the proposition. Hence Theorem 1.2 tells
us that every balanced function has a variable with influetideast2(logn/n). In other words,
not all variables can have small influence; if a function Isay, constant total influence, then there
must be some variables of that function that are more inflakthian others by af(log n) factor.

We will prove the KKL theorem in this lecture. The work of Kaghfalai, and Linial is hard
to overstate in importance— they essentiatiyented the use of Fourier analysis in theoretical
computer science, and they employed interesting proohigaks that are still widely used today.
A related result is that of Friedgut, who showed that Booleeactions with small total influence
are “close” to another Boolean function that only dependa tew variables.
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Theorem 1.3 (Friedgut) Let f : {—1,1}" — {—1,1}. Thenfor every e € (0,1), f ise-closeto a
20U/ junta.

We will also prove Friedgut’s theorem along the way. TheoteZand Theorem 1.3 are related
in the following sense: by taking a small set of the most inftigd variables as guaranteed by KKL,
we get a coalition of variables that controls most valuesefftinction.

2 Noise Operators

In order to establish the above results, we use the notionnoise operator on functions. In-
formally speaking, a noise operator smooths out the Foaxpansion of a function by placing a
dampening factor on its high-degree parts.

For a given string: € {—1,1}", we define the distributiop ~, = that chooses a stringas
follows: each coordinatg; is set to ber; with probability1/2 + p/2, and—z; with probability
1/2 — p/2. In other words, randomly choosingya~, x flips some bits ofz, with probability
dependent op.

Definition 2.1 For p € [—1, 1], the noise operatof), on functions f : {—1,1}" — R isgiven by
(Tp)(x) = By [f ()]
First, let's look at some extremal cases for this operator.
Observation 2.2 T\ f = f, T, f = —f,and To f = E,[f(2)] = f(2).

For p varying betweer and1, we can think of thel}, f function as an average g¢fs values
on neighborhoods of, where the radius of the neighborhood is parameterizegd by the case
p = 1, the neighbors are completely ignored, &id = f. In the case = 0, we ignore the input
x and output the average value Hbn all inputs, sd}, f is a constant function.

Another property off, is that it is a linear operator. The proof is just three woftlaearity of
expectation.”

Observation 2.3 For f,g: {—1,1}" — {—1,1} andconstant c € R, T,(cf + g) = cT,f + T,g.

To further build up our intuition about the noise operatet’slsee what it does on the Fourier
basis.

Proposition 2.4 T,z5 = p!Slzs.



Proof:

Tpl's = Eyfvp:c [XS(y)]

= H Eyi [yz]

€S

— H(%—i—g)x—l—(%—g)x

1€S

= J[(pzi) = plas.

€S

O

So the Fourier basis functions are “dampened” bystfactor. As the cardinality of the relevant
set gets larger, the contribution of a parity function to dverall value ofl}, f decreases rapidly.
We can now immediately write the Fourier expansiofipf in terms of the Fourier coefficients of

f.
Corollary 2.5 (T,f)(z) = ¢ o1 f(S)xs.

Finally, we will need a technical lemma that expresses ttemaated influence of a function at
p in terms of the noise operat@},. Fortunately, most of Homework 2 proved it for us. In Problem
3 of Homework 2, you proved that theise stability of f at p is

So(f) = Elf(x) - (T,f)(@)] = Y oI f(S)%, 1)
S

and you proved
Sp(Dif) = Wt (f), 2)

where(D;f) = > g.cs f(S)XS—{i}(x)-
Lemma 2.6 Inf'” (f) = ||T,2D; f|[3.

Proof: Appending to equation (1), we derive
~ ~ 2
S,(1) = 3 p1f(9)7 = 3 ((0")517(9)) = T2 13
S S

Therefore||T,.2D; f||5 = S,(D;f) = Inf') (), by equation (2). O

Lemma 2.6 uses th&znorm of a certain function to express the attenuated infleeri a vari-
able. This suggests the application of inequalities betvmeems to prove bounds on the influence
of a variable, which is the approach that we will take to pngKKL and Friedgut's theorem.



3 Lower Bounding a Norm of f With a Norm of 7, f

Recall our norm definition: it is a random variable and > 1, then||Y||, = E[|Y|?]'/?. This
section is devoted to proving the inequality:

Theorem 3.1 ||T1 /2 f||2 < 4[| f]]a/-

That is, we can upper-bound tBenorm of 77, f in terms of the4/3-norm of f. We will use
this inequality to show that variable influences pattenuated by are significantly smaller than
normal (o = 0) variable influences orfi, by turning the norm inequality betwedi) f and f into
an inequality between attenuated influences and normaéméks, via Lemma 2.6.

Before proving Theorem 3.1, we first recall the hyperconivadnequality from the previous
lecture.

Theorem 3.2 (From Previous Lecture) If f isa degree d polynomial, then || f|]4 < \/ﬁdHng.

By a simple change-of-norms, we can replacetlaad?2 in the above witt2 and4/3. Recall
Holder’s inequality tells us that'|.X - Y] < || X]||,||Y]|,, provided that. /p + 1/q = 1.

Corollary 3.3 If f isadegreed polynomial, then || f||2 < \/§dHf||4/3.

d . . L
Proof: ||f|12 = Elf - f] < |Iflallf1lays < V3 || f]l2]f]4/3, where the penultimate inequality is
Holder’s, and the last inequality follows from Theorem.3.2 O

Proof of Theorem 3.1. For a parameted € {0,1,...,n}, definef=¢ := > 5.15|=d f(S)zs.
Observe thal| f=4||2 < || f||2. Thus by Corollary 3.3,

Y FE? =1 < A < 3911F 11 s

S:|S|=d
Multiplying both sides of the inequality b /4)¢,
1\, 3\*
> (3) 2= (3) s
S:|S|=d
Since the inequality holds for afl, we can upper-bound the sum oadlrsetss:

3 G)df(sf < OOO (%)d 11135

S

But

IR ((%)dﬂS))Q - (4 s



and

> 73\ ¢ 1
>(3) -1+
d=0 4

so it follows that
T2 115 < 4111135

4 Lower Bounding Influence With Attenuated Influence

The above inequality implies that for a Boolean functiorg th4-attenuated influences gfare
significantly smaller than the original influences. We’leusis fact directly in the proofs of KKL
and Friedgut’s theorem.

Corollary 4.1 For all i € [n], Inf"? (f) < 4 - Inf,(f)3/2.

Since variable influences are typically at most 1, the carglindicates that /4-attenuated
influences are even smaller.

Remark 4.2 Notice that Inff.”)(f) < Inf;(f)° impliesthat ¢ < 2, for any p. Thisis because if f
were monotone, then Inf” (f) = 3", pISI71f(5)2 > f(i) = Inf;(f)2. Thuswe should not expect
to improve the exponent 3 /2 in the corollary to greater than 2, without introducing a multiplicative
constant.

Proof of Corollary 4.1.

Wt (f) = [T a2 Dif]|3 by Lemma 2.6
= |IT2Dif|l5 < 4-||Dif|[3/5 by Theorem 3.1
= 4-E,[|(D;f)(x)[*?®/2 py definition

But for Booleanf, the function(D; f)(x) € {—1,0,1} for all z. So|(D;f)(z)|*? € {0,1}, and
we can therefore rewrite the expectation as a probability:

Infl"/(f) < 4- B [|(Dif ) (@)% = 4 - Pr,[(Dif ) (w) # 02 = 4 Inf,(f)*/2



5 The Main Lemma

Using the results developed above, we now prove a criticairia that says the Fourier spectrum
of a Boolean function with low total influence is mostly conttated on small cardinality sets of
influential coordinates.

Lemma 5.1 (Main Lemma) Let f : {—1,1}" — {—1,1},ande € (0,1). Letd = 2 -1(f)/e and
J={j € [n] : Inf;(f) > 100~}. Then f ise-concentrated on the collection

J=1{5CJ: |5 <d.
Note that|.J| < (3, Inf;(f))/100~¢ = I(f)/100~¢ < 20U)/9); this setJ will turn out to be

the set of influential coordinates in Friedgut's theorem.

Proof: Recall that to show-concentration off on 7, we need to show that_, f(9)? < e
(cf. Lecture 8). We can break up the summation into two parts:

SAsr= 3 fere S fe) 3)

S¢J S:|S|>d S:8|<d,SZJ

For the first part,

dooFEr= > f9)<¢

S:|S|>d S:|S|>1(F)/(e/2)

where the inequality follows from Proposition 5.6 of Le@8. It suffices for us to bound the
second part of the summation (3) b2 as well. First, we compute

Yoo 97 < > ISndIf(s)

S:|S|<d,S¢J S:|8|<d

_/1\ S
< 47y S| (Z) F(S)?

S

S]-1
<Y Y @ P82 = 4 S ().

ieJ S:ueSs icJ
Applying the influence inequality (Corollary 4.1) from theegious section,
gd—1 Z Infz(.l/‘l) (f) < 44 Z Infi(f)3/2
ied ied
< 44 (max Inf,( f)1/2) > Infi(f)

ieJ ~
ieJ

21(f)/e
< 4% (1007%2) - I(f) = (%) I(f).



Note that

sincee < 100/16. Finally,

I(f) 1) — wye
e S €2 = 2= < et
but since@ > 0, the latter follows immediately from the fact that< /2 for all z > 0. O

6 Friedgut's Theorem and the KKL Theorem

We are finally ready to prove the main theorems of this lectaitbough the Main Lemma of the
previous section is so powerful that the two theorems aféy/rearollaries now.

Corollary 6.1 (Friedgut's Theorem) Let f : {—1,1}" — {—1,1}. Thenfor everye € (0,1), f
ise-close to a 29U/ junta.

Proof: Defineg := sgn (Zsz|3\gd,sg f(S)g:s>, whereJ andd are the same as in Lemma 5.1.

This function clearly depends only on the coordinateg,ibut as we saw beforg]| < 200()/e),
Since f is e-concentrated on, it follows that f is e-close tog, by Propositions 5.2 and 5.3 of
Lecture 8. O

Corollary 6.2 (KKL) Let f:{—1,1}" — {—1,1}. Thenthereisi € [n] satisfying

n

Inf,(f) > Q (Var(f) - bg”) .

Proof: Takee = Var(f)/10 < 1/10 in the Main Lemma. In the following, let the logarithms be
in base-10.

Var(f)logn : : Var(f)logn
o IfI(f) > Y2rlllogn ‘then there is a coordinatesuch thatnf,(f) > Yertlen,

Var(f)logn

Var(f)logn
2-1(f) _ Y™" _ logn

€ Var(f) — 50 :
10

ThereforeJ has very few variables in it, namely

|J| <TI(f) - 100% < (logn) - 1001°e™/50 — (log n)n*"0 < nl/2,
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Now we can lower-bound the sum of influences/iby the variance, as follows:

S = Y0 Y Aoy

e i€J SueS

> 1S1£(S)?

SCJ

> fsy?

@£SCJ
= > fP =) f(s)

S#2 S¢J
> Var(f)—¢  bythe Main Lemma
= 0.9-Var(f) by ourchoice ot.

v

v

Hence there must be a particutas J satisfying

0.9 - Var(f) - 0.9 - Var(f) - 0.9 - Var(f)logn

; >

so the theorem holds in this case as well.



