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1 Introduction

The KKL Theorem, named after Kahn, Kalai, and Linial, says that for any Boolean functionf on
n variables, there is some variable that has non-trivial influence on the value off , and this amount
of influence depends on the variance of the function.

Before we state the theorem, recall thatVar(f), a.k.a. the variance off , is

Var(f) = E[f(x)2] − (E[f(x)])2 =
∑

S 6=∅

f̂(S)2.

Variance can be expressed in terms of the empty coefficient:

Proposition 1.1 For f : {−1, 1}n → {−1, 1}, Var(f) = (1 + f̂(∅))(1 − f̂(∅)).

Proof:

Var(f) =
∑

S

f̂(S)2 − f̂(∅)2 = 1 − f̂(∅)2 = (1 + f̂(∅))(1 − f̂(∅)),

where
∑

S f̂(S)2 = 1 follows from Parseval. 2

Theorem 1.2 (Kahn-Kalai-Linial) Let f : {−1, 1}n → {−1, 1}. Then there is i ∈ [n] satisfying

Inf i(f) ≥ Ω

(

Var(f) · log n

n

)

.

As a special case, if a Boolean function isbalanced, taking the value1 on exactly half of its
inputs, thenf̂(∅) = Ex[f(x)] = 0, soVar(f) = 1 by the proposition. Hence Theorem 1.2 tells
us that every balanced function has a variable with influenceat leastΩ(log n/n). In other words,
not all variables can have small influence; if a function has,say, constant total influence, then there
must be some variables of that function that are more influential than others by anΩ(log n) factor.

We will prove the KKL theorem in this lecture. The work of Kahn, Kalai, and Linial is hard
to overstate in importance– they essentiallyinvented the use of Fourier analysis in theoretical
computer science, and they employed interesting proof techniques that are still widely used today.
A related result is that of Friedgut, who showed that Booleanfunctions with small total influence
are “close” to another Boolean function that only depends ona few variables.
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Theorem 1.3 (Friedgut) Let f : {−1, 1}n → {−1, 1}. Then for every ǫ ∈ (0, 1), f is ǫ-close to a
2O(I(f)/ǫ)-junta.

We will also prove Friedgut’s theorem along the way. Theorem1.2 and Theorem 1.3 are related
in the following sense: by taking a small set of the most influential variables as guaranteed by KKL,
we get a coalition of variables that controls most values of the function.

2 Noise Operators

In order to establish the above results, we use the notion of anoise operator on functions. In-
formally speaking, a noise operator smooths out the Fourierexpansion of a function by placing a
dampening factor on its high-degree parts.

For a given stringx ∈ {−1, 1}n, we define the distributiony ∼ρ x that chooses a stringy as
follows: each coordinateyi is set to bexi with probability1/2 + ρ/2, and−xi with probability
1/2 − ρ/2. In other words, randomly choosing ay ∼ρ x flips some bits ofx, with probability
dependent onρ.

Definition 2.1 For ρ ∈ [−1, 1], the noise operatorTρ on functions f : {−1, 1}n → R is given by

(Tρf)(x) = Ey∼ρx[f(y)].

First, let’s look at some extremal cases for this operator.

Observation 2.2 T1f = f , T−1f = −f , and T0f = Ex[f(x)] = f̂(∅).

For ρ varying between0 and1, we can think of theTρf function as an average off ’s values
on neighborhoods ofx, where the radius of the neighborhood is parameterized byρ. In the case
ρ = 1, the neighbors are completely ignored, andT1f = f . In the caseρ = 0, we ignore the input
x and output the average value off on all inputs, soT0f is a constant function.

Another property ofTρ is that it is a linear operator. The proof is just three words:“linearity of
expectation.”

Observation 2.3 For f, g : {−1, 1}n → {−1, 1} and constant c ∈ R, Tρ(cf + g) = cTρf + Tρg.

To further build up our intuition about the noise operator, let’s see what it does on the Fourier
basis.

Proposition 2.4 TρxS = ρ|S|xS .
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Proof:

TρxS = Ey∼ρx[χS(y)]

=
∏

i∈S

Eyi
[yi]

=
∏

i∈S

(

1

2
+

ρ

2

)

xi +

(

1

2
− ρ

2

)

xi

=
∏

i∈S

(ρxi) = ρ|S|xS.

2

So the Fourier basis functions are “dampened” by theρ factor. As the cardinality of the relevant
set gets larger, the contribution of a parity function to theoverall value ofTρf decreases rapidly.
We can now immediately write the Fourier expansion ofTρf in terms of the Fourier coefficients of
f .

Corollary 2.5 (Tρf)(x) =
∑

S ρ|S|f̂(S)xS.

Finally, we will need a technical lemma that expresses the attenuated influence of a function at
ρ in terms of the noise operatorTρ. Fortunately, most of Homework 2 proved it for us. In Problem
3 of Homework 2, you proved that thenoise stability of f at ρ is

Sρ(f) = E[f(x) · (Tρf)(x)] =
∑

S

ρ|S|f̂(S)2, (1)

and you proved
Sρ(Dif) = Inf

(ρ)
i (f), (2)

where(Dif) =
∑

S:i∈S f̂(S)χS−{i}(x).

Lemma 2.6 Inf
(ρ)
i (f) = ||Tρ1/2Dif ||22.

Proof: Appending to equation (1), we derive

Sρ(f) =
∑

S

ρ|S|f̂(S)2 =
∑

S

(

(ρ1/2)|S|f̂(S)
)2

= ||Tρ1/2f ||22.

Therefore||Tρ1/2Dif ||22 = Sρ(Dif) = Inf
(ρ)
i (f), by equation (2). 2

Lemma 2.6 uses the2-norm of a certain function to express the attenuated influence of a vari-
able. This suggests the application of inequalities between norms to prove bounds on the influence
of a variable, which is the approach that we will take to proving KKL and Friedgut’s theorem.
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3 Lower Bounding a Norm of f With a Norm of Tρf

Recall our norm definition: ifY is a random variable andp ≥ 1, then||Y ||p = E[|Y |p]1/p. This
section is devoted to proving the inequality:

Theorem 3.1 ||T1/2f ||2 ≤ 4||f ||4/3.

That is, we can upper-bound the2-norm ofT1/2f in terms of the4/3-norm off . We will use
this inequality to show that variable influences onf attenuated byρ are significantly smaller than
normal (ρ = 0) variable influences onf , by turning the norm inequality betweenTρf andf into
an inequality between attenuated influences and normal influences, via Lemma 2.6.

Before proving Theorem 3.1, we first recall the hypercontractive inequality from the previous
lecture.

Theorem 3.2 (From Previous Lecture) If f is a degree d polynomial, then ||f ||4 ≤
√

3
d||f ||2.

By a simple change-of-norms, we can replace the4 and2 in the above with2 and4/3. Recall
Hölder’s inequality tells us thatE[X · Y ] ≤ ||X||p||Y ||q, provided that1/p + 1/q = 1.

Corollary 3.3 If f is a degree d polynomial, then ||f ||2 ≤
√

3
d||f ||4/3.

Proof: ||f ||22 = E[f · f ] ≤ ||f ||4||f ||4/3 ≤
√

3
d||f ||2||f ||4/3, where the penultimate inequality is

Hölder’s, and the last inequality follows from Theorem 3.2. 2

Proof of Theorem 3.1. For a parameterd ∈ {0, 1, . . . , n}, definef=d :=
∑

S:|S|=d f̂(S)xS.
Observe that||f=d||22 ≤ ||f ||22. Thus by Corollary 3.3,

∑

S:|S|=d

f̂(S)2 = ||f=d||22 ≤ ||f ||22 ≤ 3d||f ||24/3.

Multiplying both sides of the inequality by(1/4)d,

∑

S:|S|=d

(

1

4

)d

f̂(S)2 ≤
(

3

4

)d

||f ||24/3.

Since the inequality holds for alld, we can upper-bound the sum overall setsS:

∑

S

(

1

4

)d

f̂(S)2 ≤
∞
∑

d=0

(

3

4

)d

||f ||24/3.

But

||T1/2f ||22 =
∑

S

(

(

1

2

)d

f̂(S)

)2

=
∑

S

(

1

4

)d

f̂(S)2,
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and
∞
∑

d=0

(

3

4

)d

=
1

1 − 3
4

= 4,

so it follows that
||T1/2f ||22 ≤ 4||f ||24/3.

2

4 Lower Bounding Influence With Attenuated Influence

The above inequality implies that for a Boolean function, the 1/4-attenuated influences off are
significantly smaller than the original influences. We’ll use this fact directly in the proofs of KKL
and Friedgut’s theorem.

Corollary 4.1 For all i ∈ [n], Inf
(1/4)
i (f) ≤ 4 · Inf i(f)3/2.

Since variable influences are typically at most 1, the corollary indicates that1/4-attenuated
influences are even smaller.

Remark 4.2 Notice that Inf
(ρ)
i (f) ≤ Inf i(f)c implies that c ≤ 2, for any ρ. This is because if f

were monotone, then Inf
(ρ)
i (f) =

∑

S ρ|S|−1f̂(S)2 ≥ f̂(i)2 = Inf i(f)2. Thus we should not expect
to improve the exponent 3/2 in the corollary to greater than 2, without introducing a multiplicative
constant.

Proof of Corollary 4.1.

Inf
(1/4)
i (f) = ||T(1/4)1/2Dif ||22 by Lemma 2.6

= ||T1/2Dif ||22 ≤ 4 · ||Dif ||24/3 by Theorem 3.1

= 4 · Ex[|(Dif)(x)|4/3](3/4)·2 by definition.

But for Booleanf , the function(Dif)(x) ∈ {−1, 0, 1} for all x. So |(Dif)(x)|4/3 ∈ {0, 1}, and
we can therefore rewrite the expectation as a probability:

Inf
(1/4)
i (f) ≤ 4 · Ex[|(Dif)(x)|4/3]3/2 = 4 · Prx[(Dif)(x) 6= 0]3/2 = 4 · Inf i(f)3/2.

2
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5 The Main Lemma

Using the results developed above, we now prove a critical lemma that says the Fourier spectrum
of a Boolean function with low total influence is mostly concentrated on small cardinality sets of
influential coordinates.

Lemma 5.1 (Main Lemma) Let f : {−1, 1}n → {−1, 1}, and ǫ ∈ (0, 1). Let d = 2 · I(f)/ǫ and
J = {j ∈ [n] : Infj(f) ≥ 100−d}. Then f is ǫ-concentrated on the collection

J = {S ⊆ J : |S| ≤ d}.

Note that|J | ≤ (
∑

i Inf i(f))/100−d = I(f)/100−d ≤ 2O(I(f)/ǫ); this setJ will turn out to be
the set of influential coordinates in Friedgut’s theorem.

Proof: Recall that to showǫ-concentration off on J , we need to show that
∑

S /∈J f̂(S)2 ≤ ǫ
(cf. Lecture 8). We can break up the summation into two parts:

∑

S /∈J

f̂(S)2 =
∑

S:|S|>d

f̂(S)2 +
∑

S:|S|≤d,S*J

f̂(S)2. (3)

For the first part,
∑

S:|S|>d

f̂(S)2 =
∑

S:|S|>I(f)/(ǫ/2)

f̂(S)2 ≤ ǫ/2,

where the inequality follows from Proposition 5.6 of Lecture 8. It suffices for us to bound the
second part of the summation (3) byǫ/2 as well. First, we compute

∑

S:|S|≤d,S*J

f̂(S)2 ≤
∑

S:|S|≤d

|S ∩ J |f̂(S)2

≤ 4d−1
∑

S

|S ∩ J |
(

1

4

)|S|−1

f̂(S)2

≤ 4d−1
∑

i∈J

∑

S:i∈S

(

1

4

)|S|−1

f̂(S)2 = 4d−1
∑

i∈J

Inf
(1/4)
i (f).

Applying the influence inequality (Corollary 4.1) from the previous section,

4d−1
∑

i∈J

Inf
(1/4)
i (f) ≤ 4d

∑

i∈J

Inf i(f)3/2

≤ 4d ·
(

max
i∈J

Inf i(f)1/2

)

∑

i∈J

Inf i(f)

≤ 4d ·
(

100−d/2
)

· I(f) =

(

4

10

)2 I(f)/ǫ

· I(f).
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Note that
(

4

10

)2 I(f)/ǫ

· I(f) =
I(f)

(

100
16

)I(f)/ǫ
≤ I(f)

eI(f)/ǫ
,

sincee < 100/16. Finally,

I(f)

eI(f)/ǫ
≤ ǫ/2 ⇐⇒ 2 · I(f)

ǫ
≤ eI(f)/ǫ,

but sinceI(f)
ǫ

≥ 0, the latter follows immediately from the fact thatx ≤ ex/2 for all x ≥ 0. 2

6 Friedgut’s Theorem and the KKL Theorem

We are finally ready to prove the main theorems of this lecture, although the Main Lemma of the
previous section is so powerful that the two theorems are really corollaries now.

Corollary 6.1 (Friedgut’s Theorem) Let f : {−1, 1}n → {−1, 1}. Then for every ǫ ∈ (0, 1), f
is ǫ-close to a 2O(I(f)/ǫ)-junta.

Proof: Defineg := sgn
(

∑

S:|S|≤d,S⊆J f̂(S)xS

)

, whereJ andd are the same as in Lemma 5.1.

This function clearly depends only on the coordinates inJ , but as we saw before,|J | ≤ 2O(I(f)/ǫ).
Sincef is ǫ-concentrated onJ , it follows that f is ǫ-close tog, by Propositions 5.2 and 5.3 of
Lecture 8. 2

Corollary 6.2 (KKL) Let f : {−1, 1}n → {−1, 1}. Then there is i ∈ [n] satisfying

Inf i(f) ≥ Ω

(

Var(f) · log n

n

)

.

Proof: Takeǫ = Var(f)/10 ≤ 1/10 in the Main Lemma. In the following, let the logarithms be
in base-10.

• If I(f) ≥ Var(f) log n
1000

, then there is a coordinatei such thatInf i(f) ≥ Var(f) log n
1000n

.

• If I(f) < Var(f) log n
1000

, then

d =
2 · I(f)

ǫ
<

Var(f) log n
500

Var(f)
10

≤ log n

50
.

ThereforeJ has very few variables in it, namely

|J | ≤ I(f) · 100d ≤ (log n) · 100(log n)/50 = (log n)n2/50 ≤ n1/2.
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Now we can lower-bound the sum of influences inJ by the variance, as follows:

∑

i∈J

Inf i(f) =
∑

i∈J

∑

S:i∈S

f̂(S)2

≥
∑

S⊆J

|S|f̂(S)2

≥
∑

∅6=S⊆J

f̂(S)2

=
∑

S 6=∅

f̂(S)2 −
∑

S*J

f̂(S)2

≥ Var(f) − ǫ by the Main Lemma

= 0.9 · Var(f) by our choice ofǫ.

Hence there must be a particulari ∈ J satisfying

Inf i(f) ≥ 0.9 · Var(f)

|J | ≥ 0.9 · Var(f)

n1/2
≥ 0.9 · Var(f) log n

n
,

so the theorem holds in this case as well.

2
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