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Lecture 14: Influences, Coalitions, and the Tribes function
Mar. 1, 2007

Lecturer: Ryan O’Donnell Scribe: Karl Wimmer

In this lecture we introduce the ideas of influences and coalitions. Much of what is covered
predates Fourier analysis, and no Fourier analysis is used in this lecture. However, we state a
theorem due to Kahn, Kalai, and Linial, one of the first major applications of Fourier analysis to
Boolean functions.

1 1-round collective coin flipping

Imagine the following scenario: You haven distributed processors. You want to run a distributed
randomized algorithm, and you want the processors to collectively agree on a random bit. However,
there is worry that some of the processors are faulty, or thatthe processors have incentive to cheat.
How do you get the processors to agree on some random bit, where you can guarantee that the bit
is really random?

For this problem, Ben-Or and Linial defined a 1-round collectiove coin flipping scheme. Such
a scheme is nothing more than a Boolean functionf . The input to the function consists of one
random bit from each processor, and the output is the random bit that all the processors will use.

As a first attempt to stop faulty processors, we could try the parity function. Even ifn − 1
processors collude to determine the outcome, the “good” processor giving a random bit makes the
entire outcome uniform at random.

However, this works only if the “good” processor submits itsrandom bit after all the faulty
processors do. In this context, the faulty processors are allowed to “wait” until all other processors
submit their random bits, view them, then choose a bit however they wish. So what we want is
a scheme, such that if any small set of processors waits, thenwith high probability, this set of
processors can not determine the output of the function.

2 Influences

In order to study this, we will define the notion of influence ofa set of variables.

Definition 2.1 For a Boolean functionf : {−1, 1}n → {−1, 1}, givenJ ⊆ [n], the influence ofJ
onf is InfJ(f) = Pr

x∈{−1,1}J̄ [f
x→J̄ is not constant].

Definition 2.2 We will frequently refer to sets of variables as coalitions.
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When |J | = 1, the above definition is consistent with our previous definition of influence.
However, in general,InfJ(f) 6=

∑

i∈J

Inf i(f). The easiest way to see this is thatInfJ(f) is clearly

at most 1, while
∑

i∈J

Inf i(f) can be as large as|J |. As well, this definition of influence is quite

combinatorial: it doesn’t have a nice representation in terms of Fourier coefficients, and it doesn’t
generalize to functions into the reals.

As well as considering influence in choosing the outcome, we also consider influence with
respect to trying to fixf to some value.

Definition 2.3 For a Boolean functionf : {−1, 1}n → {−1, 1}, givenJ ⊆ [n], the influence of
J on f towards1 is Inf+J (f) = Pr

x∈{−1,1}J̄ [f
x→J̄ can be made 1] − Pr

x∈{−1,1}n [f = 1]. Simi-
larly, the influence ofJ on f towards−1 is Inf−J (f) = Pr

x∈{−1,1}J̄ [f
x→J̄ can be made − 1] −

Pr
x∈{−1,1}n [f = −1]

Proposition 2.4 0 ≤ Inf−J (f), Inf+J (f) ≤ 1.

Proof: The upper bound is immediate, as influences are differences of probabilities. Aaron pointed
out a nice way to see the lower bound. If a coalitionJ picks its bits randomly, thenf is being
evaluated on a random string, and the probability thatf is 1 is, well, Pr

x∈{−1,1}n [f = 1], the
quantity being subtracted in the definition ofInf+

J (f). The quantity being subtracted from can
only increase if a coalitionJ chooses bits to makef = 1, so Inf+J (f) ≥ 0. A similar argument
holds to showInf−J (f) ≥ 0. 2

Proposition 2.5 Inf+J (f) + Inf−J (f) = InfJ(f).

Proof: We will consider three cases for the functionfx→J̄ ; either it is constantly 1, constantly -1,
or takes on both 1 and−1 values; we will sayf is mixed in this case. We have by definition:

Inf+J (f) = Pr
x{−1,1}J̄

[f
x→J̄ ≡ 1] + Pr

x{−1,1}J̄

[f
x→J̄ is mixed] − Pr

x{−1,1}n

[f(x) = 1]

Inf−J (f) = Pr
x{−1,1}J̄

[f
x→J̄ ≡ −1] + Pr

x{−1,1}J̄

[f
x→J̄ is mixed] − Pr

x{−1,1}n

[f(x) = −1]

The first two terms ofInf+J (f) and the first term ofInf−J (f) sum to 1, and the quantities being
subtracted also sum to 1. SoInf+J (f) + Inf−J (f) = Pr

x{−1,1}J̄ [f
x→J̄ is mixed] = InfJ(f).

2
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3 Monotone functions minimize influence

What we really want is a function such thatInfJ(f) is small for allJ . We would even like a
function such thatInfJ(f) is small for all smallJ . We also want our functions to be balanced. It
turns out that we will want monotone functions.

Proposition 3.1 Let f : {−1, 1}n → {−1, 1} be any Boolean function. Then there is a monotone
functiong: {−1, 1}n → {−1, 1} such that (1)E[g] = E[f ], and (2) for allJ ⊆ [n], we have that
Inf+J (g) ≤ Inf+J (f), Inf−J (g) ≤ Inf−J (f), andInfJ(g) ≤ InfJ(f).

Proof: We will define the “shifting” operators on functionsf : {−1, 1}n → {−1, 1}, defined by
κi for any i ∈ [n]. The operator acts onf such thatκif(x) = f(x) if f(x) = f(x(i)) andxi

otherwise.

Remark 3.2 These operators are not commutative. Lettingf be the parity function,κif = xi. So
specifically,κiκjf = xj andκjκif = xi.

Remark 3.3 Note thatκif(x) 6= f(x) if and only if f(x(i=1)) = −1 and f(x(i=−1)) = 1. It
follows thatκif(x(i=−1)) ≤ κif(x(i=1)), andκif(x(i=1)) 6= f(x(i=1)) if and only ifκif(x(i=−1)) 6=
f(x(i=−1)).

Proposition 3.4 E[κif ] = E[f ] andκ1κ2 . . . κnf is monotone.

Proof: Note thatκif only differs fromf by possibly moving some1’s around; the total number of
them stays the same. SoE[κif ] = E[f ]. For the second part, recall from the previous remark that
κif(x(i=−1)) ≤ κif(x(i=1)). This says thatκif is “monotone on theith coordinate,” and applying
moreκj operators does not destroy this. Applying alln of the operators yields monotonicity on
every coordinate, completing the proof.2

To prove the the main proposition, it suffices to showκif has smaller influences thanf . We’ll
prove the following claim.

Claim 3.5 Pr
x∈{−1,1}J̄ [(κif)

x→J̄ can be made 1] ≥ Pr
x∈{−1,1}J̄ [f

x→J̄ can be made 1].

Proof: Divide into two cases, depending on whether or noti is in J . First, supposei ∈ J . In this
case,κi only shuffles around the values off inside each subfunctionfx→J̄ . So the claim holds with
equality here.

The harder case is wheni /∈ J , or equivalently,i ∈ J̄ . Partition all strings in{−1, 1}J̄ into
pairs, such that the only bit differing in a pair isi. Each pair yields two restricted functions, which
are either equivalently 1, equivalently−1, or mixed. Note that the quantity on the right-hand side
of the claim is the fraction of all restricted functions thatare equivalently 1 or mixed.

We will analyze these pairs of restricted functions by cases. If both are equivalently 1 or mixed,
when we shift on theith coordinate, we can only have fewer equivalently 1 or mixedfunctions. If
both are equivalently−1, then shifting will not change this. Suppose exactly one of these functions
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is equivalently−1 before shifting. If we have the−1 function wheni = −1, and shifting does
nothing. If we have the−1 function wheni = 1, for every input to thei = −1 function, the
function is either already−1, and shifting does nothing, or the function is1, and shifting makes
this output−1. So we get a−1 function after shifting. So if there was exactly one equivalently−1
function before shifting, there will be exactly one after.

So in any case, the number of restricted functions that are equivalently 1 or mixed doesn’t
increase after shifting, and the claim is true.

2

We knowE[κif ] = E[f ]; we can write this asPr[κif = 1] = Pr[f = 1]. Subtract the
quantities of each side of this equality from the respectivesides of the claim to get thatInf+J (κif) ≤
Inf+J (f). By a similar argument, we can getInf−J (κif) ≤ Inf−J (f), and adding these inequalities
yieldsInfJ(κif) ≤ InfJ(f). 2

If f is monotone,Pr
x∈{−1,1}J̄ [f

x→J̄ can be made 1] = Pr
x∈{−1,1}J̄ [f

x→J̄(1, 1, . . . , 1) = 1].
So coalitions that wantf(x) = 1 can preemptively set all their bits to1. The case for−1 is similar.

4 Voting and the Tribes function

Since we are looking for low influences of coalitions on monotone functions, we can connect
what we’ve done to voting. Imagine if a voting scheme that hasa small coalition with large
influence. A candidate could bribe just this small coalitionin order to win the election with very
high probability. We would like to avoid this situation if possible, so we ask the following: Among
all balanced functionsf , which have small influences on coalitions of up to sizek?

As a first step, supposek = 1. If f is balanced, what ismin
f

max
i

Inf i(f)? Sincef is balanced,

Var[f ] = 4Pr[f = −1]Pr[f = 1] = 1. Also,Var[f ] ≤
n∑

i=1

Inf i(f), so there exists some variable

whose influence is at least1/n. Is there a balanced functionf such that all the influences are at
mostO(1/n)? It turns out that the answer is no.

When Ben-Or and Linial attempted to solve this problem, theydefined the tribes function,
which we define now.

Definition 4.1 For any w ∈ Z
+, let n = n(w) be the least integral multiple ofw such that

(1 − 2−w)n/w ≤ 1
2
. Then the tribes function onn bits, denotedTribesn, is the following: Divide

then variables inton/w blocks (called tribes) of sizew. Tribesn is the OR ofn/w ANDs of thew
variables inside each block.

We now state some facts aboutTribesn. Tribesn is most naturally expressed as a DNF, where
all terms are on disjoint sets of variables (soTribesn is a read-once DNF). Also,Tribesn is clearly
monotone. The probability thatTribesn is not satisfied is the probability that all its terms are not
satisfied, which is seen to be(1− 2−w)n/w, which is very close to1

2
by construction. Writingw as

a function ofn, we getw = log2 n− log2 ln n+o(1). Also, note thatTribesn is weakly symmetric.
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Theorem 4.2 For all i ∈ [n], Inf i(Tribesn) = ln n
n

(1 − o(1)).

Proof: As Tribesn is weakly symmetric, all of the influences are the same. The influence of
i on Tribesn is the probability thati determines the outcome ofTribesn, which happens when
everyone else ini’s tribe is TRUE and all other tribes are FALSE. AsTribesn is computed by a
read-once DNF, these events are independent, sowe haveInf i(Tribesn) = Pr[everyone else ini’s
tribe is TRUE]Pr[all other tribes are FALSE] = 2−(w−1)(1 − 2−w)n/w−1 = 2 lnn

n
(1 − o(1))(1 −

2−w)n/w(1 − 2−w)−1 ∼ 2 lnn
n

1
2

= ln n
n

. 2

Ben-Or and Linial tried very hard using combinatorial methods to find a functionf with Inf i(f)
smaller thanln n

n
for all i, but couldn’t find such a function, nor prove thatTribesn is optimal. One

of the first major breakthroughs for Fourier analysis in computer science came with the following
theorem, due to Kahn, Kalai, and Linial in 1988:

Theorem 4.3 For any Boolean functionf , there existsi ∈ [n] with Inf i(f) ≥ Ω(1)Var[f ] log n
n

.

Proof: The proof uses Fourier analysis as well as hypercontractivity. It is in the next lecture.2

Remark 4.4 Note that this theorem says something nontrivial even whenf is not balanced.

Corollary 4.5 If f : {−1, 1}n → {−1, 1} is almost balanced (Var[f ] ≥ Ω(1)), then for allǫ > 0,
there exists a coalitionJ ⊆ [n] of size at mostO(log(1/ǫ)) n

log n
such thatInfJ(f) ≥ 1 − ǫ.

Proof: We’ll assumef is balanced; we can assume without loss of generality thatf is monotone.
Suppose thatPr[f = 1] = p. Let j be a coordinate with influenceγ. ThenPr[fj→1 = 1] =
p + γ/2. If p ∈ [1 − 2δ, 1 − δ], thenVar[f ] = 4Pr[f = 1]Pr[f = −1] ≥ 4(1

2
)(δ) = 2δ. By

the KKL theorem, we are promised a coordinate with influence at leastΩ(1)2δ log n
n

. If we fix this
coordinate to 1, the probability that the restriction is 1 isat least the probability the original function
was 1, plusΩ(1)δ log n

n
. Continue this restriction process untilp ≥ 1 − δ. This can only happen

(1−δ)(1−2δ)
Ω(1)δ log n/n

times, and this quantity isO( n
log n

). If we do this whole processlog(1/ǫ) many times,
we will havePr[restricted f = 1] ≥ 1 − ǫ. So the set of restricted coordinates form a coalition
J such that|J | ≤ O(log(1/ǫ)) n

log n
andInf+J (f) ≥ 1

2
− ǫ. We only get1

2
asPr[f = 1] = 1

2
. But

we can also do this for−1 as well, finding a coalitionJ ′ such that|J ′| ≤ O(log(1/ǫ)) n
log n

and

Inf−J ′(f) ≥ 1
2
− ǫ. Then we haveInfJ∪J ′(f) ≥ 1 − 2ǫ, completing the proof.2

Corollary 4.6 In any balanced election scheme, there is a coalition of fractional size at most
O( 1

log n
) which controls the election with probability 0.99.

We end by stating without proof results about the existence of functions such that small coali-
tions have small influence.

Fact 4.7 There exists a coalitionJ of sizeO(log n) such thatInfJ(Tribesn) ≥ 1
2
− o(1).
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Fact 4.8 For all coalitionsJ such that|J | ≤ o(
√

n), InfJ(Majorityn) = o(1).

Theorem 4.9 (Atjai-Linial) There exists a balanced functionf such that for allJ with |J | ≤
o( n

log2 n
), we have thatInfJ(f) = o(1). The construction is randomized, and an explicit function

with this property is not known.
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