Analysis of Boolean Functions (CMU 18-859S, Spring 2007

Lecture 14: Influences, Coalitions, and the Tribes function
Mar. 1, 2007

Lecturer: Ryan O’'Donnell Scribe: Karl Wimmer

In this lecture we introduce the ideas of influences and ttoa. Much of what is covered
predates Fourier analysis, and no Fourier analysis is usédig lecture. However, we state a
theorem due to Kahn, Kalai, and Linial, one of the first majoplacations of Fourier analysis to
Boolean functions.

1 1-round collective coin flipping

Imagine the following scenario: You hawedistributed processors. You want to run a distributed
randomized algorithm, and you want the processors to ¢olédg agree on a random bit. However,
there is worry that some of the processors are faulty, ortkiggprocessors have incentive to cheat.
How do you get the processors to agree on some random bitewbarcan guarantee that the bit
is really random?

For this problem, Ben-Or and Linial defined a 1-round colaea coin flipping scheme. Such
a scheme is nothing more than a Boolean functionThe input to the function consists of one
random bit from each processor, and the output is the randioumalb all the processors will use.

As a first attempt to stop faulty processors, we could try thety function. Even ifn — 1
processors collude to determine the outcome, the “goodfga®or giving a random bit makes the
entire outcome uniform at random.

However, this works only if the “good” processor submitsrasdom bit after all the faulty
processors do. In this context, the faulty processors &eadl to “wait” until all other processors
submit their random bits, view them, then choose a bit howthay wish. So what we want is
a scheme, such that if any small set of processors waits,witnhigh probability, this set of
processors can not determine the output of the function.

2 Influences

In order to study this, we will define the notion of influenceaddet of variables.

Definition 2.1 For a Boolean functiorf : {—1,1}" — {—1,1}, givenJ C [n], the influence of
on fisInf;(f) = Pryc(;1y7[fx—J is not constant].

Definition 2.2 We will frequently refer to sets of variables as coalitions.

When |J| = 1, the above definition is consistent with our previous debnitof influence.

However, in generalnf ;(f) # Z Inf;(f). The easiest way to see this is thaf;(/) is clearly
i€J
at most 1, Whilez Inf;(f) can be as large gdg|. As well, this definition of influence is quite
iceJ

combinatorial: it doesn’t have a nice representation imseof Fourier coefficients, and it doesn’t
generalize to functions into the reals.

As well as considering influence in choosing the outcome, lse eonsider influence with
respect to trying to fix to some value.

Definition 2.3 For a Boolean functiory : {—1,1}" — {—1, 1}, givenJ C [n], the influence of
J on f towards1 is Infj (f) = Pr,c ; 137[fx—7 can be made 1] — Prye(_11y=[f = 1]. Simi-
larly, the influence of/ on f towards—1 is Inf;; (f) = Pry(_; ;7[fx— can be made — 1] —
Prxe{_l,l}n [f = —1]

Proposition 2.4 0 < Inf; (f), Inf}(f) < 1.

Proof: The upper bound isimmediate, as influences are differerfgasloabilities. Aaron pointed
out a nice way to see the lower bound. If a coalitibpicks its bits randomly, therf is being
evaluated on a random string, and the probability thas 1 is, well, Pryc(_1 3= [f = 1], the
quantity being subtracted in the definition loff ¥ (/). The quantity being subtracted from can
only increase if a coalitio/ chooses bits to makg = 1, soInf’(f) > 0. A similar argument
holds to showinf; (f) > 0. O

Proposition 2.5 Inf} (f) + Inf; (f) = Inf;(f).

Proof: We will consider three cases for the functigpn, ;; either it is constantly 1, constantly -1,
or takes on both 1 and1 values; we will sayf is mixed in this case. We have by definition:

Infj(f)= Pr [fr.;=1+ Pr [f,.jismixed — Pr [f(z)=1]
x{—-1,1}7 x{—-1,1}J x{-11}"

Inf;(f)= Pr [fo_;=-1+ Pr [f_;ismixed — P =1
o5 (f)= Pr lhes=-1l+ Pr [hjismixed ~ Pr [f(z)= 1]

The first two terms ofnf?(f) and the first term ofnf; (f) sum to 1, and the quantities being
subtracted also sum to 1. $ef 7 (f) + Inf; (f) = Pr,_; 1y7(fx_ is mixed] = Inf,(f).
O

3 Monotone functions minimize influence

What we really want is a function such thaif ;(f) is small for all /. We would even like a
function such thainf ;(f) is small for all smallJ. We also want our functions to be balanced. It
turns out that we will want monotone functions.

Proposition 3.1 Let f : {—1,1}" — {—1, 1} be any Boolean function. Then there is a monotone
functiong: {—1,1}" — {—1,1} such that (1)E[¢] = E[f], and (2) for all.J C [n], we have that
Infj(g) < Inf}(f), Inf; (9) < Inf;(f), andInf,(g) < Inf,(f).

Proof: We will define the “shifting” operators on functiorfs: {—1,1}" — {—1, 1}, defined by
r; for anyi € [n]. The operator acts ofi such thatx; f(z) = f(z) if f(z) = f(z®) andu;
otherwise.

Remark 3.2 These operators are not commutative. Lettfnige the parity functions; f = x;. So
specificallys;x; f = x; andkjk; f = ;.

Remark 3.3 Note thatk, f(z) # f(x) if and only if f(z(=Y) = —1 and f(20="Y) = 1. It
follows thatk; f(2(==V) < k; f(20=Y), andr; f (=) # f(z0=Y) if and only ifx; f (2(=V) £
F(a6="D),

Proposition 3.4 E|x; f] = E[f] andk1k2 . .. K, f iS monotone.

Proof: Note thatx; f only differs from f by possibly moving some&'s around; the total number of
them stays the same. &ijx; f] = E|[f]. For the second part, recall from the previous remark that
ki f (20="1) < g, f(20=D). This says thak; f is “monotone on théth coordinate,” and applying
morex; operators does not destroy this. Applyingalbf the operators yields monotonicity on
every coordinate, completing the prodf.

To prove the the main proposition, it suffices to shovi has smaller influences thain We’'ll
prove the following claim.

Claim 3.5 Pr,.(_; 17((kif)x—7 can be made 1] > Pr,c(; 1,7[fx—J can be made 1].

Proof: Divide into two cases, depending on whether oristin J. First, suppose € J. In this
casey; only shuffles around the values pinside each subfunctiofy_, ;. So the claim holds with
equality here. .

The harder case is when¢ .J, or equivalently; € .J. Partition all strings in{—1,1}” into
pairs, such that the only bit differing in a pairiisEach pair yields two restricted functions, which
are either equivalently 1, equivalentlyl, or mixed. Note that the quantity on the right-hand side
of the claim is the fraction of all restricted functions tlaa¢ equivalently 1 or mixed.

We will analyze these pairs of restricted functions by caldmth are equivalently 1 or mixed,
when we shift on theéth coordinate, we can only have fewer equivalently 1 or mixeuattions. If
both are equivalently-1, then shifting will not change this. Suppose exactly ondese functions

3

is equivalently—1 before shifting. If we have the-1 function wheni = —1, and shifting does
nothing. If we have the-1 function wheni = 1, for every input to the = —1 function, the
function is either already-1, and shifting does nothing, or the functionlisand shifting makes
this output—1. So we get a-1 function after shifting. So if there was exactly one equevely —1
function before shifting, there will be exactly one after.

So in any case, the number of restricted functions that anevalgntly 1 or mixed doesn'’t
increase after shifting, and the claim is true.

O

We know E[x; f] = E[f]; we can write this a®r|x;f = 1] = Pr[f = 1]. Subtract the
quantities of each side of this equality from the respedigles of the claim to get thatf ¥ (s, f) <
Inf’(f). By a similar argument, we can getf; (x,f) < Inf;(f), and adding these inequalities
yieldsInf ;(x;f) < Inf,(f). O

If fis monotonePr, ., ; y7[fx—j can be made 1] = Pr | yslfems(1,1,...,1) = 1].
So coalitions that wanf(z) = 1 can preemptively set all their bits 1o The case for-1 is similar.

4 Voting and the Tribes function

Since we are looking for low influences of coalitions on mamat functions, we can connect
what we've done to voting. Imagine if a voting scheme that &asmnall coalition with large
influence. A candidate could bribe just this small coalitiororder to win the election with very
high probability. We would like to avoid this situation if psible, so we ask the following: Among
all balanced functiong, which have small influences on coalitions of up to gi2e

As a first step, suppoge= 1. If f is balanced, what imfin max Inf;(f)? Sincef is balanced,

Var|(f] = 4Pr[f = —1]|Pr[f = 1] = 1. Also, Var|[f] < Zlnf,-(f), so there exists some variable
i=1

whose influence is at leasyn. Is there a balanced functighsuch that all the influences are at
mostO(1/n)? It turns out that the answer is no.

When Ben-Or and Linial attempted to solve this problem, ttefined the tribes function,
which we define now.

Definition 4.1 For anyw € Z*, letn = n(w) be the least integral multiple ab such that
(1 —27w)»» < 1. Then the tribes function om bits, denotedITibes,,, is the following: Divide
then variables inton/w blocks (called tribes) of size. Tribes,, is the OR of:/w ANDs of thew
variables inside each block.

We now state some facts abdlitibes,,. Tribes, is most naturally expressed as a DNF, where
all terms are on disjoint sets of variables (Bdbes,, is a read-once DNF). Als@ribes,, is clearly
monotone. The probability thairibes,, is not satisfied is the probability that all its terms are not
satisfied, which is seen to lg& — 2-*)"/*, which is very close t(% by construction. Writinge as
a function ofn, we getw = log, n —log, Inn+o0(1). Also, note thaflribes, is weakly symmetric.

4

Theorem 4.2 For all i € [n], Inf,(Tribes,) = 22(1 — o(1)).

Proof: As Tribes,, is weakly symmetric, all of the influences are the same. Tllednce of
7 on Tribes,, is the probability that determines the outcome dfibes,, which happens when
everyone else im's tribe is TRUE and all other tribes are FALSE. Asibes,, is computed by a
read-once DNF, these events are independent, sowdh@yé&ribes,) = Pr[everyone else in's
tribe is TRUBPr[all other tribes are FALSE= 2=~ (1 — 27w)n/w=l = 2lnn(] _ o(1))(1 —
27w)"/(1 = 27w) Tt~ 2ond = im0

Ben-Or and Linial tried very hard using combinatorial mettito find a functiory with Inf;(f)
smaller thanl% for all 7, but couldn’t find such a function, nor prove th&tibes,, is optimal. One
of the first major breakthroughs for Fourier analysis in catep science came with the following
theorem, due to Kahn, Kalai, and Linial in 1988:

Theorem 4.3 For any Boolean functiorf, there exists € [n] with Inf,(f) > Q(1) Var[f]&2,

n

Proof: The proof uses Fourier analysis as well as hypercontragtivis in the next lecturel

Remark 4.4 Note that this theorem says something nontrivial even whismot balanced.

Corollary 4.5 If f : {—1,1}" — {—1,1} is almost balancedYar|[f] > (1)), then for alle > 0,
there exists a coalition’ C [n] of size at mosD(log(1/¢));; such thatinf,;(f) = 1 —e.

Proof: We'll assumef is balanced; we can assume without loss of generality theitmonotone.
Suppose thaPr[f = 1] = p. Letj be a coordinate with influence. ThenPr[f,_; = 1] =
p+7/2. Ifp e [l—20,1-4¢], thenVar[f] = 4Pr[f = 1]Pr[f = —1] > 4(3)(6) = 2. By
the KKL theorem, we are promised a coordinate with ianuertdeastQ(l)%b%. If we fix this
coordinate to 1, the probability that the restriction is atikeast the probability the original function
was 1, plusﬂ(l)élo%. Continue this restriction process until> 1 — §. This can only happen

% times, and this quantity iI©(;;;.). If we do this whole procesisg(1/¢) many times,

we will havePr[restricted f = 1] > 1 — e. So the set of restricted coordinates form a coalition
J such thafJ| < O(log(1/€))% andInf}(f) > 1 — . We only get} asPr[f = 1] = 1. But

logn
we can also do this for-1 as well, finding a coalition/’ such that].J'| < O(log(1/¢));.. and

Inf7,(f) > 3 — e. Then we havénf ;, (f) > 1 — 2¢, completing the prooft

Corollary 4.6 In any balanced election scheme, there is a coalition oftioaal size at most

O(——) which controls the election with probability 0.99.
logn

We end by stating without proof results about the existerideractions such that small coali-
tions have small influence.

Fact 4.7 There exists a coalitior of sizeO(logn) such thatinf ;(Tribes,) > £ — o(1).

Fact 4.8 For all coalitions.J such that.J| < o(y/n), Inf ;(Majority,,) = o(1).

Theorem 4.9 (Atjai-Linial) There exists a balanced functighsuch that for all.J with |J| <
o(—%—), we have thainf,;(f) = o(1). The construction is randomized, and an explicit function

logZn

with this property is not known.

