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1 Approximate Arrow’s theorem

In previous lectures, we investigated how to get a social welfare function for ranking 3 candidates
given a social choice function for pairwise comparisons. Arrow’s theorem tells us that dictators
are the only functions which are guaranteed to give a non-cyclic ranking. More generally, given a
boolean social choice functionf : {−1, 1}n → {−1, 1}, under theImpartial Cultureassumption,
we had obtained the exact probability for a rational outcome :

Pr[no cycles] = Pr[NAE test passes]
= 3

4
− 3

4

∑
S⊆[n](−1

3
)|S|f̂(S)2

≤ 7
9

+ 2
9
W1(f)

whereW1(f) is the weight of the first level of fourier coefficients, i.e.W1(f) =
∑

|S|=1 f̂(S)2.

Remark 1.1 The above probability equals1 if and only if W1(f) = 1, which implies thatf is
either a dictator or an anti-dictator (Refer to Homework 1).

In this lecture, we want to ask if the above probability is not required to be exactly1, then do
there exist functions “considerably different” from dictators which can also give rational outcomes
with a reasonably high probabilty. To put it more formally, we want to ask the following :

Suppose we havef : {−1, 1}n → {−1, 1} such thatPr[no cycles] = 1 − ε. Is f O(ε)-close
to being a (anti-)dictator ? It turns out that the answer to the question is yes. This is due to the
following theorem by Friedgut, Kalai and Naor from 2002.

Theorem 1.2 (FKN theorem) If f : {−1, 1}n → {−1, 1} has
∑

|S|>1 f̂(S)2 < ε, thenf is O(ε)-
close to a1-junta.

Remark 1.3 The constant inO(·) above is quite small(≈ 2− 4).

Corollary 1.4 If W1(f) = 1− ε thenf is O(ε)-close to a dictator or an anti-dictator.

The above corollary shows that the answer to the question posed above is yes, because

Pr[no cycles] = 1− ε
⇔ 1− ε ≤ 7

9
+ 2

9
W1(f)

⇔ W1(f) ≥ 1− 9
2
ε
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We now prove the Friedgut, Kalai, Naor theorem.
Proof: It suffices to prove the corollary above, because suppose we havef such that

∑
|S|≤1 f̂(S)2 =

1− ε. Define another functiong : {−1, 1}n+1 → {−1, 1} by g(x0, x) = x0 · f(x0x). If the Fourier
expansion off is :

f(x) = f̂(φ) + f̂({1})x1 + · · ·+ f̂({n})xn + f̂({1, 2})x1x2 + . . .

then
g(x) = f̂(φ)x0 + f̂({1})x1 + · · ·+ f̂({n})xn + f̂({1, 2})x0x1x2 + . . .

∴ W1(g) = 1− ε. Note thatf̂(φ) goes to level1 in g.
Assuming the corollary,g is O(ε)-close to some dictator or some anti-dictator.∴ |ĝ(i)| ≥

1−O(ε) for some0 ≤ i ≤ n.
∴ |f̂(S)| ≥ 1−O(ε) for someS with |S| ≤ 1. Hencef is O(ε)-close to a1-junta.

Remark 1.5 In proving the corollary, we can assumef is balanced. Henceforth, we will assume
f̂(φ) = 0.

We now prove the corollary. We expressf asf(x) =
∑n

i=1 f̂(i)xi +
∑

|S|>1 f̂(S)xS. We
denote the first term (with lower order coefficients) byl(x) and the second term (with higher order
coefficients) byh(x). Note thatl, h : {−1, 1}n → <, but when they are added together they always
“magically” add upto1 or−1.

By the hypothesis,
∑n

i=1 f̂(i)2 = 1− ε, which implies‖h‖2
2 = E[h(x)2] =

∑
|S|>1 f̂(S)2 = ε

It is easy to see that

f 2 ≡ 1(the square of a boolean function is identically 1)
(l + h)2 ≡ 1

l2 + h(2l + h) ≡ 1
l2 + h(2f − h) ≡ 1

• l(x)2 = (
∑n

i=1 f̂(i)xi)
2 =

∑n
i=1 f̂(i)2+

∑
i6=j f̂(i)f̂(j)xixj. If we letq(x) =

∑
i6=j f̂(i)f̂(j)xixj,

thenl(x)2 = 1− ε + q(x).

• Considerh(2f − h). ∵ E[h(x)] = 0,E[h(x)2] = ε, by Chebyshev’s inequality,

Pr[|h(x) ≥ 10
√

ε] ≤ 0.01(1% of the time)

Whenh(x) is not too large,h(2f−h) ≤ 10
√

ε(2+10
√

ε) ≤ 21
√

ε (assumingε is sufficiently
small)

Substituting the two facts derived above intol2 + h(2f − h) ≡ 1, we have

q(x) ≤ 22
√

ε with probability≥ 99%
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The above fact implies thatq(x)2 ≤ 484ε with probability at least 0.99. The next crucial
idea in the proof is the intuition that ifq(x) is a ”reasonable” random variable then probably
E[q(x)2] ≤ 104ε (some large constant timesε). In fact if we can prove that fact aboutq(x) then we
are done as shown below.

104ε ≥ E[q(x)2]

=
∑

i6=j f̂(i)2f̂(j)2 (By Parseval)
= [

∑
i f̂(i)2]2 −∑

i f̂(i)4

= (1− ε)2 −∑
i f̂(i)4

⇒ ∑
i f̂(i)4 ≥ 1−O(ε)

⇒ 1−O(ε) ≤ maxif̂(i)2
∑n

i=1 f̂(i)2

≤ maxf̂(i)2 (By Parseval)

∴ ∃i such thatf̂(i)2 ≥ 1−O(ε). 2

We now proceed to develop the tools we would need prove the claim made earlier about the
q(x).

2 Reasonable Random Variable Principle

Inspired by the SCS Reasonable Person Principle, we have the following definitions for a “rea-
sonable” random variable. SayY hasE[Y ] = 0,E[Y 2] = 1. We expect a “reasonable” random
variable to satisfy the following :

• E[|Y |3] andE[|Y |4] should not be too large.

• Pr[Y ≥ 106] should not be too large.

• Pr[Y ≥ 0] should be at least some decent value.

So in some sense, we want the random variable to be “well-behaved” (analogously for the reason-
able person in SCS). Some examples of very reasonable random variables are illustrated below.

• Y is a random±1 bit

• Y ∼ N(0, 1), i.e. Y is a Gaussian

• Y is uniform on[−√3,
√

3]

• Y =
∑n

i=1 aixi such that
∑n

i=1 a2
i = 1, and eachxi is a random bit. Two special cases are if

all theai’s are small e.g. 1√
n

thenY behaves similar to a Gaussian, and if one of theai’s is
close to1 thenY ≈ xi (random bit).
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An example of a random variable which is NOT reasonable is :

y = 0 with prob1− 2−m

1 with prob2−m wherem is large

To make sure thatE[Y ] = 0,E[Y 2] = 1 we need to make slight modifications - subtract a tiny bit
and rescale. An easy example of such a random variable as a polynomial isY = (1 + x1)(1 +
x2) . . . (1 + xm)2m/2 where thexi’s are random±1 bits.

We now come to the fabled “hypercontractivity” lemma which says that low degree polynomi-
als over random bits are reasonable as defined above.

3 Hypercontractivity Lemma

We outlined in the previous section, the conditions a random variableY should satisfy to be “rea-
sonable”.

Remark 3.1 AssumingE[Y 2] = 1 then ifE[Y 4] ≤ C (whereC is not too large), thenY has many
of the “reasonable” properties.

Remark 3.2 The scale invariant way to say this isE[Y 4] ≤ C4E[Y 2]2.

We now make the notion of “reasonableness” more precise.

Definition 3.3 If Y is a random variable withE[Y 4] ≤ C4E[Y 2]2, we say thatY is (2, 4, 1
C
)-

hypercontractive.

We now state the hypercontractivity lemma which says that low degree polynomials over ran-
dom bits are hypercontractive (the constant C depends on the degree).

Theorem 3.4 (Hypercontractivity Lemma) If Y = p(x1, x2, . . . , xn), wherep is a multilinear
polynomial of degreed over independent random bitsxi, thenY is (2, 4, ( 1√

3
)d)-hypercontractive,

i.e. E[Y 4] ≤ 9dE[Y 2]2

Proof: By induction onn.
(Basis) Ifn = 0, thenp is a constant. Clearlyd = 0 and thereforeE[p4] = p4 ≤ 90E[p2]2.
Forn ≥ 1, write p(x1, . . . , xn) = r(x1, . . . , xn−1) + xns(x1, . . . , xn)
Note thatdeg(r) ≤ d anddeg(s) ≤ d− 1.

E[p4] = E[(r + xns)4]
= E[r4 + 4r3xns + 6r2x2

ns
2 + 4rx3

ns3 + x4
ns4]

= E[r4] + E[4r3xns] + E[6r2x2
ns2] + E[4rx3

ns3] + E[x4
ns4]

We examine each of the five terms above.

• E[r4] ≤ 9dE[r2]2 by the induction hypothesis
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• E[4r3xns] = 4E[r3s]E[xn] = 0. We used the fact thatxn is independent ofr, s andE[xn] =
0.

• E[6r2x2
ns2] = 6E[r2s2]E[x2

n]. We will examine this term below.

• E[4rx3
ns3] = 4E[rs3]E[x3

n] = 0. We again used thatxn is independent ofr, s andE[x3
n] = 0.

• E[x4
ns4] = E[x4

n]E[s4] ≤ 9d−1E[s2]2E[x4
n] ≤ 9dE[s2]2. We used the induction hypothesis

here again and the fact thats is a degreed− 1 polynomial andE[x4
n] = 1 ≤ 9.

We now get back to the middle term.

E[x2
n]E[r2s2] = E[r2s2]

≤
√

E[r4]
√

E[s4] By the Cauchy-Schwartz inequality
≤ 3dE[r2]3d−1E[s2] By the induction hypothesis

∴, we ultimately get :

E[p4] ≤ 9dE[r2]2 + 6(3dE[r2]3d−1E[s2]) + 9dE[s2]2

= 9dE[r2]2 + 9d(2E[r2]E[s2]) + 9dE[s2]2

≤ 9d[(E[r2] + E[s2])2]
≤ 9d[(E[r2] + 2E[xnrs] + E[x2

ns2])2] Using the fact thatE[xn] = 0 andE[x2
n] = 1

≤ 9dE[(r + xns)2]2

= 9dE[p2]2

2

Remark 3.5 All we used aboutxi’s are :

• independence

• E[xi] = 0,E[x2
i ] = 1,E[x3

i ] = 0

• E[x4
i ] ≤ 9

4 Proving the claim about q(x)

We had made the following claim earlier during the proof of the FKN theorem.

Claim 4.1 If q(x1, . . . , xn)i is a degree 2 polynomial, such that|q(x)| ≤ 22
√

ε with probability
99%, thenE[q(x)2] ≤ 104ε

Proof: AssumeE[q(x)2] = Kε for K > 104. Sinceq2 ≤ 484ε 99% of the time, then it must be
that conditioned on1% of the timeE[q2] ≥ 95Kε, otherwiseE[q2] = 99% · 484ε + 1% · 95Kε =
(0.95K + 500)ε < Kε usingK > 104. But then

E[q4] ≥ 1%(95Kε)2 > 90K2ε2

However,E[q4] ≤ 92E[q2]2 = 81(Kε)2 < 90K2ε2 where the first inequality follows from the
hypercontractivity lemma.2
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