Lecture 12: Approximate Arrow's theorem using the hypercontractivity lem

 Feb. 29, 2007Lecturer: Ryan O'Donnell
Scribe: Amitabh Basu

1 Approximate Arrow's theorem

In previous lectures, we investigated how to get a social welfare function for ranking 3 candidates given a social choice function for pairwise comparisons. Arrow's theorem tells us that dictators are the only functions which are guaranteed to give a non-cyclic ranking. More generally, given a boolean social choice function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, under the Impartial Culture assumption, we had obtained the exact probability for a rational outcome :

$$
\begin{aligned}
\operatorname{Pr}[\text { no cycles }] & =\operatorname{Pr}[\text { NAE test passes }] \\
& =\frac{3}{4}-\frac{3}{4} \sum_{S \subseteq[n]}\left(-\frac{1}{3}\right)^{|S|} \hat{f}(S)^{2} \\
& \leq \frac{7}{9}+\frac{2}{9} W_{1}(f)
\end{aligned}
$$

where $W_{1}(f)$ is the weight of the first level of fourier coefficients, i.e. $W_{1}(f)=\sum_{|S|=1} \hat{f}(S)^{2}$.
Remark 1.1 The above probability equals 1 if and only if $W_{1}(f)=1$, which implies that f is either a dictator or an anti-dictator (Refer to Homework 1).

In this lecture, we want to ask if the above probability is not required to be exactly 1 , then do there exist functions "considerably different" from dictators which can also give rational outcomes with a reasonably high probabilty. To put it more formally, we want to ask the following :

Suppose we have $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ such that $\operatorname{Pr}[$ no cycles $]=1-\epsilon$. Is $\mathrm{f} O(\epsilon)$-close to being a (anti-)dictator? It turns out that the answer to the question is yes. This is due to the following theorem by Friedgut, Kalai and Naor from 2002.

Theorem 1.2 (FKN theorem) If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ has $\sum_{|S|>1} \hat{f}(S)^{2}<\epsilon$, then f is $O(\epsilon)$ close to a 1 -junta.

Remark 1.3 The constant in $O(\cdot)$ above is quite small $(\approx 2-4)$.
Corollary 1.4 If $W_{1}(f)=1-\epsilon$ then f is $O(\epsilon)$-close to a dictator or an anti-dictator.
The above corollary shows that the answer to the question posed above is yes, because

$$
\begin{array}{lclc}
& & \operatorname{Pr}[\text { no cycles }] & = \\
\Leftrightarrow & 1-\epsilon & & 1-\epsilon \\
\Leftrightarrow & W_{1}(f) & \geq & \frac{7}{9}+\frac{2}{9} W_{1}(f) \\
\Leftrightarrow & \frac{9}{2} \epsilon
\end{array}
$$

We now prove the Friedgut, Kalai, Naor theorem.
Proof: It suffices to prove the corollary above, because suppose we have f such that $\sum_{|S| \leq 1} \hat{f}(S)^{2}=$ $1-\epsilon$. Define another function $g:\{-1,1\}^{n+1} \rightarrow\{-1,1\}$ by $g\left(x_{0}, x\right)=x_{0} \cdot f\left(x_{0} x\right)$. If the Fourier expansion of f is :

$$
f(x)=\hat{f}(\phi)+\hat{f}(\{1\}) x_{1}+\cdots+\hat{f}(\{n\}) x_{n}+\hat{f}(\{1,2\}) x_{1} x_{2}+\ldots
$$

then

$$
g(x)=\hat{f}(\phi) x_{0}+\hat{f}(\{1\}) x_{1}+\cdots+\hat{f}(\{n\}) x_{n}+\hat{f}(\{1,2\}) x_{0} x_{1} x_{2}+\ldots
$$

$\therefore W_{1}(g)=1-\epsilon$. Note that $\hat{f}(\phi)$ goes to level 1 in g.
Assuming the corollary, g is $O(\epsilon)$-close to some dictator or some anti-dictator. $\therefore|\hat{g}(i)| \geq$ $1-O(\epsilon)$ for some $0 \leq i \leq n$.
$\therefore|\hat{f}(S)| \geq 1-O(\epsilon)$ for some S with $|S| \leq 1$. Hence f is $O(\epsilon)$-close to a 1-junta.
Remark 1.5 In proving the corollary, we can assume f is balanced. Henceforth, we will assume $\hat{f}(\phi)=0$.

We now prove the corollary. We express f as $f(x)=\sum_{i=1}^{n} \hat{f}(i) x_{i}+\sum_{|S|>1} \hat{f}(S) x_{S}$. We denote the first term (with lower order coefficients) by $l(x)$ and the second term (with higher order coefficients) by $h(x)$. Note that $l, h:\{-1,1\}^{n} \rightarrow \Re$, but when they are added together they always "magically" add upto 1 or -1 .

By the hypothesis, $\sum_{i=1}^{n} \hat{f}(i)^{2}=1-\epsilon$, which implies $\|h\|_{2}^{2}=\mathbf{E}\left[h(x)^{2}\right]=\sum_{|S|>1} \hat{f}(S)^{2}=\epsilon$ It is easy to see that

$$
\begin{aligned}
f^{2} & \equiv 1 \text { (the square of a boolean function is identically } 1 \text {) } \\
(l+h)^{2} & \equiv 1 \\
l^{2}+h(2 l+h) & \equiv 1 \\
l^{2}+h(2 f-h) & \equiv 1
\end{aligned}
$$

- $l(x)^{2}=\left(\sum_{i=1}^{n} \hat{f}(i) x_{i}\right)^{2}=\sum_{i=1}^{n} \hat{f}(i)^{2}+\sum_{i \neq j} \hat{f}(i) \hat{f}(j) x_{i} x_{j}$. If we let $q(x)=\sum_{i \neq j} \hat{f}(i) \hat{f}(j) x_{i} x_{j}$, then $l(x)^{2}=1-\epsilon+q(x)$.
- Consider $h(2 f-h) . \because \mathbf{E}[h(x)]=0, \mathbf{E}\left[h(x)^{2}\right]=\epsilon$, by Chebyshev's inequality,

$$
\operatorname{Pr}[\mid h(x) \geq 10 \sqrt{\epsilon}] \leq 0.01(1 \% \text { of the time })
$$

When $h(x)$ is not too large, $h(2 f-h) \leq 10 \sqrt{\epsilon}(2+10 \sqrt{\epsilon}) \leq 21 \sqrt{\epsilon}$ (assuming ϵ is sufficiently small)
Substituting the two facts derived above into $l^{2}+h(2 f-h) \equiv 1$, we have

$$
q(x) \leq 22 \sqrt{\epsilon} \quad \text { with probability } \geq 99 \%
$$

The above fact implies that $q(x)^{2} \leq 484 \epsilon$ with probability at least 0.99 . The next crucial idea in the proof is the intuition that if $q(x)$ is a "reasonable" random variable then probably $\mathbf{E}\left[q(x)^{2}\right] \leq 10^{4} \epsilon$ (some large constant times ϵ). In fact if we can prove that fact about $q(x)$ then we are done as shown below.

$$
\begin{aligned}
10^{4} \epsilon & \geq \mathbf{E}\left[q(x)^{2}\right] \\
& =\sum_{i \neq j} \hat{f}(i)^{2} \hat{f}(j)^{2} \quad \text { (By Parseval) } \\
& =\left[\sum_{i} \hat{f}(i)^{2}\right]^{2}-\sum_{i} \hat{f}(i)^{4} \\
& =(1-\epsilon)^{2}-\sum_{i} \hat{f}(i)^{4} \\
\Rightarrow \quad \sum_{i} \hat{f}(i)^{4} & \geq 1-O(\epsilon) \\
\Rightarrow 1-O(\epsilon) & \leq \max _{i} \hat{f}(i)^{2} \sum_{i=1}^{n} \hat{f}(i)^{2} \\
& \leq \max ^{\hat{f}}(i)^{2} \quad \text { (By Parseval) }
\end{aligned}
$$

$\therefore \exists i$ such that $\hat{f}(i)^{2} \geq 1-O(\epsilon)$.
We now proceed to develop the tools we would need prove the claim made earlier about the $q(x)$.

2 Reasonable Random Variable Principle

Inspired by the SCS Reasonable Person Principle, we have the following definitions for a "reasonable" random variable. Say Y has $\mathbf{E}[Y]=0, \mathbf{E}\left[Y^{2}\right]=1$. We expect a "reasonable" random variable to satisfy the following :

- $\mathbf{E}\left[|Y|^{3}\right]$ and $\mathbf{E}\left[|Y|^{4}\right]$ should not be too large.
- $\operatorname{Pr}\left[Y \geq 10^{6}\right]$ should not be too large.
- $\operatorname{Pr}[Y \geq 0]$ should be at least some decent value.

So in some sense, we want the random variable to be "well-behaved" (analogously for the reasonable person in SCS). Some examples of very reasonable random variables are illustrated below.

- Y is a random ± 1 bit
- $Y \sim N(0,1)$, i.e. Y is a Gaussian
- Y is uniform on $[-\sqrt{3}, \sqrt{3}]$
- $Y=\sum_{i=1}^{n} a_{i} x_{i}$ such that $\sum_{i=1}^{n} a_{i}^{2}=1$, and each x_{i} is a random bit. Two special cases are if all the a_{i} 's are small e.g. $\frac{1}{\sqrt{n}}$ then Y behaves similar to a Gaussian, and if one of the a_{i} 's is close to 1 then $Y \approx x_{i}$ (random bit).

An example of a random variable which is NOT reasonable is :

$$
y=\begin{array}{ll}
0 & \text { with prob } 1-2^{-m} \\
1
\end{array} \quad \begin{aligned}
& \text { with prob } 2^{-m}
\end{aligned} \text { where } m \text { is large }
$$

To make sure that $\mathbf{E}[Y]=0, \mathbf{E}\left[Y^{2}\right]=1$ we need to make slight modifications - subtract a tiny bit and rescale. An easy example of such a random variable as a polynomial is $Y=\left(1+x_{1}\right)(1+$ $\left.x_{2}\right) \ldots\left(1+x_{m}\right) 2^{m / 2}$ where the x_{i} 's are random ± 1 bits.

We now come to the fabled "hypercontractivity" lemma which says that low degree polynomials over random bits are reasonable as defined above.

3 Hypercontractivity Lemma

We outlined in the previous section, the conditions a random variable Y should satisfy to be "reasonable".

Remark 3.1 Assuming $\mathbf{E}\left[Y^{2}\right]=1$ then if $\mathbf{E}\left[Y^{4}\right] \leq C$ (where C is not too large), then Y has many of the "reasonable" properties.

Remark 3.2 The scale invariant way to say this is $\mathbf{E}\left[Y^{4}\right] \leq C^{4} \mathbf{E}\left[Y^{2}\right]^{2}$.
We now make the notion of "reasonableness" more precise.
Definition 3.3 If Y is a random variable with $\mathbf{E}\left[Y^{4}\right] \leq C^{4} \mathbf{E}\left[Y^{2}\right]^{2}$, we say that Y is (2, 4, $\frac{1}{C}$)hypercontractive.

We now state the hypercontractivity lemma which says that low degree polynomials over random bits are hypercontractive (the constant C depends on the degree).

Theorem 3.4 (Hypercontractivity Lemma) If $Y=p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where p is a multilinear polynomial of degree d over independent random bits x_{i}, then Y is $\left(2,4,\left(\frac{1}{\sqrt{3}}\right)^{d}\right)$-hypercontractive, i.e. $\mathbf{E}\left[Y^{4}\right] \leq 9^{d} \mathbf{E}\left[Y^{2}\right]^{2}$

Proof: By induction on n.
(Basis) If $n=0$, then p is a constant. Clearly $d=0$ and therefore $\mathbf{E}\left[p^{4}\right]=p^{4} \leq 9^{0} \mathbf{E}\left[p^{2}\right]^{2}$.
For $n \geq 1$, write $p\left(x_{1}, \ldots, x_{n}\right)=r\left(x_{1}, \ldots, x_{n-1}\right)+x_{n} s\left(x_{1}, \ldots, x_{n}\right)$
Note that $\operatorname{deg}(r) \leq d$ and $\operatorname{deg}(s) \leq d-1$.

$$
\begin{aligned}
\mathbf{E}\left[p^{4}\right] & =\mathbf{E}\left[\left(r+x_{n} s\right)^{4}\right] \\
& =\mathbf{E}\left[r^{4}+4 r^{3} x_{n} s+6 r^{2} x_{n}^{2} s^{2}+4 r x_{n}^{3} s^{3}+x_{n}^{4} s^{4}\right] \\
& =\mathbf{E}\left[r^{4}\right]+\mathbf{E}\left[4 r^{3} x_{n} s\right]+\mathbf{E}\left[6 r^{2} x_{n}^{2} s^{2}\right]+\mathbf{E}\left[4 r x_{n}^{3} s^{3}\right]+\mathbf{E}\left[x_{n}^{4} s^{4}\right]
\end{aligned}
$$

We examine each of the five terms above.

- $\mathbf{E}\left[r^{4}\right] \leq 9^{d} \mathbf{E}\left[r^{2}\right]^{2}$ by the induction hypothesis
- $\mathbf{E}\left[4 r^{3} x_{n} s\right]=4 \mathbf{E}\left[r^{3} s\right] \mathbf{E}\left[x_{n}\right]=0$. We used the fact that x_{n} is independent of r, s and $\mathbf{E}\left[x_{n}\right]=$ 0.
- $\mathbf{E}\left[6 r^{2} x_{n}^{2} s^{2}\right]=6 \mathbf{E}\left[r^{2} s^{2}\right] \mathbf{E}\left[x_{n}^{2}\right]$. We will examine this term below.
- $\mathbf{E}\left[4 r x_{n}^{3} s^{3}\right]=4 \mathbf{E}\left[r s^{3}\right] \mathbf{E}\left[x_{n}^{3}\right]=0$. We again used that x_{n} is independent of r, s and $\mathbf{E}\left[x_{n}^{3}\right]=0$.
- $\mathbf{E}\left[x_{n}^{4} s^{4}\right]=\mathbf{E}\left[x_{n}^{4}\right] \mathbf{E}\left[s^{4}\right] \leq 9^{d-1} \mathbf{E}\left[s^{2}\right]^{2} \mathbf{E}\left[x_{n}^{4}\right] \leq 9^{d} E\left[s^{2}\right]^{2}$. We used the induction hypothesis here again and the fact that s is a degree $d-1$ polynomial and $\mathbf{E}\left[x_{n}^{4}\right]=1 \leq 9$.

We now get back to the middle term.

$$
\begin{array}{rlr}
\mathbf{E}\left[x_{n}^{2}\right] \mathbf{E}\left[r^{2} s^{2}\right] & =\mathbf{E}\left[r^{2} s^{2}\right] \\
& \leq \sqrt{\mathbf{E}\left[r^{4}\right]} \sqrt{\mathbf{E}\left[s^{4}\right]} \quad \text { By the Cauchy-Schwartz inequality } \\
& \leq 3^{d} \mathbf{E}\left[r^{2}\right] 3^{d-1} E\left[s^{2}\right] \quad \text { By the induction hypothesis }
\end{array}
$$

\therefore, we ultimately get :

$$
\begin{aligned}
\mathbf{E}\left[p^{4}\right] & \leq 9^{d} \mathbf{E}\left[r^{2}\right]^{2}+6\left(3^{d} \mathbf{E}\left[r^{2}\right] 3^{d-1} E\left[s^{2}\right]\right)+9^{d} \mathbf{E}\left[s^{2}\right]^{2} \\
& =9^{d} \mathbf{E}\left[r^{2}\right]^{2}+9^{d}\left(2 \mathbf{E}\left[r^{2}\right] \mathbf{E}\left[s^{2}\right]\right)+9^{d} \mathbf{E}\left[s^{2}\right]^{2} \\
& \leq 9^{d}\left[\left(\mathbf{E}\left[r^{2}\right]+\mathbf{E}\left[s^{2}\right]\right)^{2}\right] \\
& \leq 9^{d}\left[\left(\mathbf{E}\left[r^{2}\right]+2 \mathbf{E}\left[x_{n} r s\right]+\mathbf{E}\left[x_{n}^{2} s^{2}\right]\right)^{2}\right] \quad \text { Using the fact that } \mathbf{E}\left[x_{n}\right]=0 \text { and } \mathbf{E}\left[x_{n}^{2}\right]=1 \\
& \leq 9^{d} \mathbf{E}\left[\left(r+x_{n} s\right)^{2}\right]^{2} \\
& =9^{d} \mathbf{E}\left[p^{2}\right]^{2}
\end{aligned}
$$

Remark 3.5 All we used about x_{i} 's are :

- independence
- $\mathbf{E}\left[x_{i}\right]=0, \mathbf{E}\left[x_{i}^{2}\right]=1, \mathbf{E}\left[x_{i}^{3}\right]=0$
- $\mathbf{E}\left[x_{i}^{4}\right] \leq 9$

4 Proving the claim about $q(x)$

We had made the following claim earlier during the proof of the FKN theorem.
Claim 4.1 If $q\left(x_{1}, \ldots, x_{n}\right) i$ is a degree 2 polynomial, such that $|q(x)| \leq 22 \sqrt{\epsilon}$ with probability 99%, then $\mathbf{E}\left[q(x)^{2}\right] \leq 10^{4} \epsilon$
Proof: Assume $\mathbf{E}\left[q(x)^{2}\right]=K \epsilon$ for $K>10^{4}$. Since $q^{2} \leq 484 \epsilon 99 \%$ of the time, then it must be that conditioned on 1% of the time $\mathbf{E}\left[q^{2}\right] \geq 95 K \epsilon$, otherwise $\mathbf{E}\left[q^{2}\right]=99 \% \cdot 484 \epsilon+1 \% \cdot 95 K \epsilon=$ $(0.95 K+500) \epsilon<K \epsilon$ using $K>10^{4}$. But then

$$
\mathbf{E}\left[q^{4}\right] \geq 1 \%(95 K \epsilon)^{2}>90 K^{2} \epsilon^{2}
$$

However, $\mathbf{E}\left[q^{4}\right] \leq 9^{2} \mathbf{E}\left[q^{2}\right]^{2}=81(K \epsilon)^{2}<90 K^{2} \epsilon^{2}$ where the first inequality follows from the hypercontractivity lemma.

