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1 Social Choice Theory
Social choice theory studies the aggregation of many individual preferences into one collective
preference – how one may define “the will of the people”. It is a topic without a home, studied in
economics, political science, and mathematics. We will take a mathematical approach. Throughout
this discussion we will use the convention that an election has n voters and k ≥ 2 candidates.

Definition 1.1 A Voter Preference Profile is a total ordering on the candidates.

Definition 1.2 Pk is the set of all k! voter preference profiles.

Definition 1.3 A Social Choice Function is a function f : Pk
n → [k], mapping n voter prefer-

ences into a winner from the set of candidates.

Remark 1.4 We will most often study the case of elections between two candidates (k = 2).
In this case we label the candidates −1, 1 and identify P2 with {−1, 1} (A preference profile
is identified with the favored candidate). Social choice functions are then boolean functions
f : {−1, 1}n → {−1, 1}.

Examples of social choice functions include:

1. Plurality: The winner is the candidate that was ranked first most often.

2. Borda Count: Each voter gives the i’th ranked candidate (k + 1− i) points. The winner is
the candidate with the most points.

Remark 1.5 In practice, social choice functions would have to specify behavior in case of ties,
but we will ignore this issue which tends to be unenlightening.

1.1 Properties of Social Choice Functions
There are certain criteria that we would like a ‘good’ social choice function f to meet:

1. Relevant: Every coordinate of the function f should be relevant – There should be no voters
whose votes are simply discarded.
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2. Positively Responsive: Suppose that f(q1, . . . , qn) = j. Then for all i, if the preference
profile qi is modified by swapping candidate j with a candidate of higher rank, to give profile
q′i, then f(q1, . . . , q

′
i, . . . , qn) = j. A voter increasing his ranking of candidate j should not

prevent j from winning the election.

3. Faithful (Also called Paretian): If all voter profiles rank j as the #1 candidate, then f(q1, . . . , qn) =
j. (For k = 2: f(−1, . . . ,−1) = −1 and f(1, . . . , 1) = 1.)

4. Neutral: If σ is a permutation on [k] then:

f(σq1, . . . , σqn) = σ(f(qi, . . . , qn))

(For k = 2: f(-x) = -f(x), i.e. f is odd.)

5. Anonymous: For all permutations π on [n]:

f(q1, . . . , qn) = f(qπ(1), . . . , qπ(n))

Equivalently, f depends only on the k! quantities |{qi : qi = q}| for each q ∈ Pk. (For
k = 2: f(x) is a Totally Symmetric function, depending only on

∑n
i=1 xi.)

Remark 1.6 For k = 2, anonymous monotone functions are Unweighted Threshold Functions
f(x) = sgn(

∑n
i=1 xi − θ) for θ 6∈ Z (to avoid ties). Note that if f is also neutral, then for odd n, f

must be the majority function, and for even n, there is no such f . Already we see an impossibility
result for social choice functions with properties that we would like to have.

If strong conditions prove to be impossible to reconcile, we can define weaker conditions. For
example, the “majority of majorities” function (if we let all second level majority functions be on
an equal number of variables) is Weakly Symmetric or Transitive since it satisfies: ∀i 6= i′ there
exists a permutation π on [n] such that:

f(qπ(1), . . . , qπ(n)) = f(q1, . . . , qn) and π(i) = i

The majority of majorities function roughly models the electoral college system used for presiden-
tial elections in the United States, with each inner majority function representing a state. Notice
that if i and i′ in the above definition are within the same ‘state’, then we may use any permuta-
tion on the ‘residents’ of that state that map i to i′. If i and i′ are in different states, we may use
permutations on their states if we additionally swap their states, again mapping i to i′.

Another weaker condition (a relaxed version of neutrality) is to insist that f be Unbiased:
If voter profiles are chosen i.i.d. from the uniform distribution, then each candidate has a 1/k
probability of winning.

Definition 1.7 A Social Welfare Function is a function f : Pk
n → Pk, that is, a method of

vote aggregation that maps voter preferences to an ordering on the candidates, rather than only a
single winner.
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Remark 1.8 Condorcet and Borda (A contemporary of Condorcet) suggested building social wel-
fare functions from social choice functions by doing all

(
k
2

)
pairwise comparisons. Unfortunately,

this method may lead to cycles (recall the Condorcet paradox).

Condorcet was not completely discouraged by his ‘paradox’, however, and was concerned with
how likely it was that cycles would be generated in practice. He wrote in his 1788 On the form of
decisions made by plurality vote: “But after considering the facts, the average values or the results,
we still need to determine their probability.” In order to address such issues, we need randomized
models of voting, which were popularized in the 1970s.

Definition 1.9 The Impartial Culture (IC) Assumption: The voters vote i.i.d. from the uniform
distribution over Pk. (For k = 2 this is the uniform distribution over {−1, 1}n).

Remark 1.10 This is of course an unrealistic assumption – votes are not at all independent. But
perhaps it is a reasonable model. We may eliminate staunch Republicans and Democrats by en-
coding them as fixed properties of the social choice function, and then model the undecided voters
as random.

Definition 1.11 For k = 3 and f : {−1, 1}n → {−1, 1}, Rationality(f) is the probability that
under the IC assumption, f produces no cycles.

Recall:
Rationality(f) =

3

4
− 3

4

∑
S

(−1

3
)|S|f̂(S)2 =

3

4
− 3

4
S− 3

4
(f)

Remark 1.12 Majority is the best boolean function ever!

2 An Ode to Majority
Imagine that we model voting as a game, in which each individual voter tries to guess the outcome
of the election. Each voter derives positive utility if he guesses correctly, and negative utility
otherwise. Then majority is the function that maximizes the social good by maximizing the number
of winners of this game. If most people guessed correctly, perhaps we can interpret their guesses
as “The Will of the People”

Proposition 2.1 Let n be odd and k = 2. Assume IC. Then majority is the unique social choice
function maximizing Ex[|{xi = f(x)}|]

Proposition 2.2
Pr[xi = f(x)] =

1

2
+

1

2
f̂({xi})
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Proof:
Pr[xi = f(x)] = E[

1

2
+

1

2
xif(x)] =

1

2
+

1

2
E[xif(x)] =

1

2
+

1

2
f̂({xi})

2

Proposition 2.3 Equivalently to Proposition 2.2,
∑n

i=1 f̂({i}) is maximized by majority.

Proof:
n∑

i=1

f̂({i}) =
n∑

i=1

Ex[f(x)xi]

= Ex[f(x)
n∑

i=1

xi]

≤ E[|
n∑

i=1

xi|]

with equality if and only if f(x) = sgn(
∑n

i=1 xi), which is majority. 2

Proposition 2.4 If f : {−1, 1}n → {−1, 1} is monotone, then f̂({i}) = Infi(f).

We present two proofs:
Proof: Consider an experiment in which we write down all 2n strings x ∈ {−1, 1} and then pair
all strings that are identical except on their i’th coordinate (Getting 2n−1 pairs). Then Infi(f)
represents a count of the number of pairs such that f(x) = −f(x(i)). Similarly, f̂({i}) represents
a count of the number of pairs such that f(x(i=−1)) = −1 and f(x(i=1)) = 1 minus the number
of pairs such that f(x(i=−1)) = 1 and f(x(i=1)) = −1 (Note that in any other case, the pair
contributes 0 to the expectation f̂({i}) = Ex[xif(x)]). However, the second case can never occur
if f is monotone, since by definition flipping a single bit from −1 to 1 can only increase the value
of f(x). Therefore, both f̂({i}) and Infi(f) are counting the same quantity. 2

Before the second proof we need a definition:

Definition 2.5 Di is the operator on functions f : {−1, 1}n → R such that Dif : {−1, 1} → R
is defined as:

Dif(x) =
f(x(i=1))− f(x(i=−1))

2

Proposition 2.6
Dif(x) =

∑
S3i

f̂(S)xS\{i}

so Di acts as the differentiation operator with respect to i.
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Observation 2.7 If f : {−1, 1}n → {−1, 1} is monotone then Dif(x) ≥ 0.

We are now ready for the second proof:
Proof:

Infi = Ex[Dif(x)2]

= Ex[Dif(x)]

= D̂if(∅)
= f̂({i})

where the second equality follows from the fact that f is boolean valued and monotone. 2

Proposition 2.8

Infi(Maj) =

√
2

π

1√
n
±O(

1

n3/2
)

As a corollary:
n∑

i=1

M̂aj({i}) =

√
2

π

√
n±O(

1√
n

)

Proof: Since bit i is influential in majority only if it casts a ‘deciding vote’ – that is, only if there
would be a tie if bit i were removed, we have:

Infi(Maj) = 2−(n−1)

(
n− 1

n−1
2

)
Writing m = n− 1 and applying Stirling’s Approximation (k! =

√
2πk(k

e
)k(1±O(1/k))) gives:

Infi(Maj) = 2−m

√
2πm(m/e)m

2π(m/2)(m/2e)m
(1±O(

1

m
)

=

√
2

π

1√
m
±O(

1

m3/2
)

2

Corollary 2.9 For monotone functions f :

I(f) =
n∑

i=1

Infi(f)

is maximized by Majn. Therefore for all monotone f :

I(f) ≤ O(
√

n)
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Corollary 2.10 If f is monotone, ∀ε > 0 f is ε-concentrated on {S : |S| ≤ O(
√

n/2)}.

Corollary 2.11 [Bshouty-Tamon ’96] {f : {−1, 1}n → {−1, 1} monotone} is learnable in time
nO(

√
n/ε) << 2n.

Proposition 2.12
W1(Maj) =

∑
|S|=1

M̂aj(S)2 2

π

Recall:

Rationality(f) =
3

4
− 3

4
S− 1

3
(f)

=
3

4
− 3

4
W0(f)− 3

4
(−1

3
)W1(f)− 3

4
(−1

3
)2W2(f)− . . .

Proposition 2.13 Let f be any social choice function. Then:

Rationality(f) ≤ 7

9
+

2

9
W1(f)

and if f is neutral (odd) then additionally:

Rationality(f) ≥ 3

4
+

1

4
W1

Proof:
Rationality(f) ≤ 3

4
+

1

4
W1 +

1

36
(1−W1) =

7

9
+

2

9
W1(f)

If f is odd, then W0 = W2 = W4 = . . . = W2i = . . . = 0. In this case:

Rationality(f) =
3

4
+

1

4
W1 +

1

36
W3 + . . . ≥ 3

4
+

1

4
W1

2

Corollary 2.14
Rationality(Majn) ≤ 7

9
+

2

9
· 2

π
≈ .919

Rationality(Majn) ≥ 3

4
+

1

4
· 2

π
≈ .909

Note that all weakly symmetric functions have the same upper bound.

Proposition 2.15 [Guilbaud ’52]

Rationality(Majn)
3

4
− 3

4
· 2

π
arcsin(−1

3
)
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