
Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 11: Learning juntas with Siegenthaler’s Theorem
Feb. 20, 2007

Lecturer: Ryan O’Donnell Scribe: Yi Wu

1 The problem of learning r-junta
Problem: Let Cr = {f : {−1, 1}nand f is r-junta}, we are given access to uniform random exam-
ples and our goal is to learn f with high confidence.

This lecture, we will present an algorithm running in time n0.704r.

2 Learning Tools
Below are some tools needed in analyzing the algorithm of learning r-junta.

2.1 Finding a single relevant variable is enough
The following proposition illustrate that we only need to find efficient algorithm that is able to
return single relevant variable.

Proposition 2.1 If there is an algorithm running in time nαpoly(n, 2r, log(1
δ
)) which can guaran-

tee to find a relevant variable given an r-junta or to determine if f is constant. Then we can learn
the class Cr in the same time.

Proof: First we can determine if f is constant with probability bigger than 1−δ in time O(2r log(1/δ))(we
have high probability get all 2r possible input).

Suppose we have found that coordinate i is relevant variable for f . Consider then two restriction
of f :

f−1→i, f1→i

This is some (r − 1)junta. We can still simulate random access the for this two functions. If we
want to draw M examples for one of the function say f−1→i, we can draw 2M log(1/δ) examples
from f and keep ones with xi = −1. Doing that simulation, we can use the black box algorithm to
find relevant variable for f−1→i, f1→i. And we can keep branching on the two relevant variable we
find. Essentially, we can construct a tree for f . And the depth of the tree is at most r . Each node
of the tree is function f restricted on some set of k (0 ≤ k ≤ r) relevant variables. And we can
always simulating M random access to that function by 2kM log(1/δ) examples. Notice that the
black box algorithm run at most 2r times and each time the example we need to draw is at most
2r times of the original samples. So the time of finding the r relevant variables is still within time

1

nαpoly(n, 2r, log(1
δ
)). After identifying the r relevant variables, we can simply draw 2r log(1/δ)

variables and with high probability we will see every 2r input and decide truth table of the r-junta.
Overall, this is an nαpoly(n, 2r, log(1

δ
)) algorithm.2

2.2 Learning low degree fourier expansion
From the previous section, we know in order to learn r-junta, it suffice to find an algorithm to
identify relevant variables. If a function has a non-zero degree ≤ d term in fourier expansion, we
can achieve that goal as following:

We first estimate all fourier coefficients up to degree d with accuracy ±2d/4, and then round
them to integer of multiplier of 2d. Notice f̂(s) = Ex[f(x)χs(x)], we can estimate all the low
degree coefficient f̂(s) accurately within time ndpoly(n, 2r, log(1/δ)). We then have the accurate
value of the coefficients up to degree d. Notice variable in a non-zero fourier expansion term is
relevant. By checking the fourier term, we can identify the relevant variables.

2.3 Learning low degree function on F2

This section, we will show the algorithm finding relevant variables for function of low degree on
F2.

Proposition 2.2 Let f : Fn
2 → F2, then f can be uniquely represented as a multilinear polynomial

over F2.

Proof: Write down the interpolation as following:

f =
∑
a∈F n

2

f(a)
n∏

i=1

(xi − ai)

Expand it and we will get multi-linear polynomial. 2

Example 2.3 parity(x1, x2...xn) is degree 1 in F2.

Example 2.4 And(x1...xn) = x1x2..xn is degree n in F2.

Example 2.5 x1 ∧ x2.. ∧ xd−1

⊕
xr−d

⊕
...xr = x1x2..xr−d−1 + xr−d + ...xr

Theorem 2.6 The class of function {f : F n
2 → F2, degF2(f) ≤ e} is learnable for random exam-

ples in time nwepoly(n)log(1/δ).Here ω is the coefficients that you can do n × n matrix multipli-
cation or inversion in time nω+O(1). The best w known currently is 2.376.

2

Proof:Here is the sketchy of the proof.
We draw m examples where X = (xj, f(xj))j=1...m, here m = neO(2elog(1/δ)). We want to
find a function p have degreeF2 ≤ e and it is consistent with the data. By easy learning theory, p
is equal to f with high probability. We write down a linear equation for each samples:

∑

|s|≤e

cs

∏
i∈S

xi = f(xi)

We view cs as unknown variables we want to find. There are at most ne unknown variable cs in the
expansion of f at F2. So we can solve the problem with a matrix inversion in time O(new).2

3 Main algorithm for Learning r-junta

3.1 T. Siegenthaler’ theorem
Definition 3.1 g : {−1, 1}r → {−1, 1} is called dth order immune if ĝ(s) = 0,∀0 < |s| < d.

Proposition 3.2 (In homework 1) A function g is dth order immune ⇐⇒ E[gX→I] = E[g] for
any restriction |I| ≤ d.

Example 3.3 (x1

⊕
x2..

⊕
x2r/3) ∧ (xr/3+1

⊕
..xr) is 2r/3 order immune.

Next theorem from T. Siegenthaler shows that a function is either of low degree in Fourier expan-
sion or of low degree in F2.

Theorem 3.4 Let g : {T, F}r → {T, F} be dth order correlation immune. Then the F2 polyno-
mial for g has degree at most r − d.

Proof:Assume d < r, otherwise, g is constant function. So the fourier expansions of g looks like:

gR(x) = ĝ(φ) +
∑

r>|s|>d

ĝ(s)χs(x)

Let hR = gR

⊕
PARITY[r], it suffice to show degF2(h) ≤ r − d because we have in F2 that

hF2 = gF2 + x1 + ...xn .

(a) If ĝ(φ) = 0, then fourier expansion of h(x) has degree at most r− d− 1. We now show how
to convert it into its F2 form by following procedure:

1. Replace each xi with 1− 2xi,

2. Halve it and subtract it from 1
2

.

3. Reduce polynomial’s coefficient by mod 2.

3

After step 1 when we replace term like x1...xn with (1−2x1)(1−2x2)...(1−2xn) the degree
can not go up(or down). At step 2, the degree is unchanged. And the coefficients are integers
after step 2 because we can uniquely write h into its multilinear form by adding up terms
like x1x2(1−x3)...f(1, 1, 0...) and the expansion of it only have integer coefficients. At step
3, the degree can only go down(some high degree may be even). So over all, this conversion
shows h(hence g) is at most of degree r − d− 1 in F2.

(b) If g(φ) 6= 0, we can still do the conversion of h into F2. Compared with situation (a),
we have one more term of the form ĝ(φ)(1 − 2x1)...(1 − 2xr) after the first step and
−1

2

∑
(−2)sg(φ)

∏
i∈s xi after the second step. Notice that after step 2, all coefficient should

be integer. So −1
2

∑
(−2)r−dg(φ) is integer because the other term from case (a) has degree

up to r − d− 1. Then all the term with degree ≥ r − d + 1 is even. Hence they are dropped
off when doing the mod 2. So the degree is at most r − d in F2.

2

3.2 Algorithm of learning k-junta
Given all the preparation, we have our final theorem:

Theorem 3.5 The class of r-junta over n-bits can be learned under uniform distribution with
confidence 1− δ, in time nwr/(w+1)poly(n, 2r, log(1/δ).

Proof: Run the algorithm finding low degree fourier coefficients up to degree d = wr/(w + 1), it
is within time nwr/(w+1). If no relevant variable found, then g is at most r− d = r/(w + 1) degree
in F2. Use the algorithm in Theorem 2.9, we can find relevant variable in nwr/(w+1).2

4

