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Lecture 10: Learning DNF, AGC Juntas
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1 Learning DNF in Almost Polynomial Time

From previous lectures, we have learned that if a funcfi@x-concentrated on some collectiSn
then we can learn the function using membership queriesliyn(|S|, 1/¢)poly(n) log(1/6) time.
In the last lecture, we showed that a DNF of widilis e-concentrated on a set of siz€(<), and
concluded that widths DNFs are learnable in time® (<),

Today, we shall improve this bound, by showing that a DNF aftviv is e-concentrated on
a collection of sizav®™=%), We shall hence conclude thably(n)-size DNFs are learnable in
almost polynomial time.

Recall that in the last lecture we introduced Hastad's @viflg Lemma, and we showed that
DNFs of widthw aree-concentrated on degrees up¢w log *).

Theorem 1.1 (Hastad’s Switching Lemma) Létbe computable by a width-DNF, If (I, X) is a
random restriction withk-probability p, thenvd € N,

Pr[DT-depttify_) > d] < (5pu)"

Theorem 1.2 If f is a width<«w DNF, then

Yoo fU)<e

[UI>O(wlog ¢)

To show that a DNF of widthy is e-concentrated on a collection of siz&’™ 0z <) we also
need the following theorem:

Theorem 1.3 If f is a width<«v DNF, then
1\
> (52) <2
U

Proof: Let (I, X) be a random restriction with—probabilityﬁ. After this restriction, the DNF
becomes & (1)-depth decision tree with high probability. Due to Hassa®Wwitching Lemma, we



have the following:

DT-depth{fx_z) = d

I,X

B s all] = 3 Py DTdept o) = dl- E, |1 il
d=0 ’

: 1 I . _ . .
< E (5 20w w) .24 (Hastad’s Switching Lemma, DT of size s hiasFourier norm< s)
w
d=0
"1
— 5 <2

ScI yel-L1)!
> B [BEf (5. X)ys]| =ED_|f(5)]
SCI SCI
R R 1\l
- ¥ i) rwen= Y [fo)]- ()
UCn] UChn]

|U\§O(wlog%)
Proof:
. 1\ & 1"
2> = > “\ 50
> 3 |fw) (m) > > |fw) <20w)
UC[n] |U|<O(wlog )
1 O(wlog%) R
> -
> (55 > i)
|U\§O(wlog%)
[l

Corollary 1.5 If f is a width«w DNF, it's e-concentrated on a collection of sizé& (e ).
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Proof: DefineS = { Ul < O(wlog L) ‘ m} By Parseval, we get thaf| <
wP™s ) We now show thaF is e-concentrated ot§. By Theorem 1.2, we know that

o fU)<e

U¢s
|U|>O(wlog 1)

By Corollary 1.4, we have
ry 2 N . O(wlo; %) € _
> fors 3 |f] max| )| s wotie ot~

U¢s U¢s
|U|<O(wlog 1) [U|<O(wlog 1)

Therefore,f is 2e-concentrated o§. O

Corollary 1.6 poly(n)-size DNFs are-concentrated on collections of size
O(log 2 log * <) n\ O(loglog Z-log %)
(105 ) = (2)
€

And ife = ©(1), then the above is°(°¢1>s™) Note that this uses the fact that siz&NF formulas
are e-close to a widthog(”) DNF.

An open research problem is the following question: pegy(n)-size DNFse-concentrated
on a collection of sizeoly(n), assuming that = ©(1).

2 Learning AC"

We will now study how to learn polynomial-size, constanpiecircuits, AC.
Consider circuits with unbounded fan-in AND, OR, and NOTegatThe size of the circuit is
defined as the number of AND/OR gates. Observe the follovanyg f

Fact 2.1 Letd denote the depth of the circuit. At the expense of a factdriokize, these circuits
can be taken to be “layered”. Here “layered” means that eaayér consists of the same type of
gates, eithetd N D or OR, and adjacent layers contain the opposite gates.

In a layered circuit, the number of layers is the depth of theud, and define theottom fan-in
of a layered circuit to be the maximum fan-in at the lowesel&y.e. closest to the input layer).

Theorem 2.2 (LMN.) Let f be computable by a sizé s, depth< D, and bottom fan-ir< w

circuit. Then
Y fU)P<o(s-2)

|U|>(10w)P



Before we show a proof of the LMN theorem, let us first look ahsccorollaries implied by
this theorem.

Corollary 2.3 If f has a sizes, depthD circuit, then

Y, foy<e

[U|>[O(log £)]”
Proof: Notice that such aif is e-close to a similar circuit with bottom fan-id log(2). O
Corollary 2.4 AC’, i.e., the class of poly-size, constant-depth circuite,laarnable from random
examples in timer°y(°e()) wheren denotes the size of the circuit.
Proof: According to Corollary 2.3, A€circuits are=-concentrated on a collection of size?'y(°e(2),
O
Corollary 2.5 If f has a sizes, depth-D circuit, then

I(f) < [O(log 5)]”

Remark 2.6 Due to Hastad, the above bound can be improve@@og s)]”~*,

Proof:(sketch.) Definé(r) = 3 f(U)2. Recall that

|U|>T
N no O(logs)D R n R
I(f) =Y UFWP = Firy= > Fn+ > F
U r=1 r=1 r=0(log 5)P

n

= Y |UIf(U)?+ F(O(logs)?) - O(log s)” + Y F(r)
|U|<O(log s)P r=0(log 5)P

n

< O(log s)” + Z F(r)

r=0(log )P

ltremainsto showthat S>> F(r) < O(log s)°. By Corollary 2.3,
r=0(log s)P

F(r)= Y JUp <s-279¢"")

[U|>7

Using this fact plus some manipulation, itis nothard to stioat > F(r) < O(logs)P. O

r=0(log s)P

Using this fact, we can derive the following two corollaries
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Corollary 2.7 Parity ¢ AC°, Majority ¢ AC°.
Proof: I(Parity) = n, I(Majority) = O(y/n). O

Definition 2.8 (PRFG.) A functionf : {—1,1}" x {-1,1}" — {—1,1} is a Pseudo-Random
Function Generator (PRFG), if for all Probablistic Polyndah Time (P.P.T) algorithmA with
access to a function,

1

Pr [A(f(S,)) =YES— Pr [Alg)=YES| < —

sc{-1,1}",

A’s random bits A's random bits

whereg is a function picked at random from all functiofis|h : {—1,1}" — {—1,1}}.
Corollary 2.9 Psuedo-random function generatasAC’.

Proof: Suppose thaf € AC°. Then we can construct a P.P.T adversaryuch thatA can tell f
apart from a truly random function with non-negligible padiiity. Consider an adversary that
picks at randonX € {—1,1}", andi € [n]. Ais given an oracle tg, it queriesg at X and X,
A outputs YES iffg(X) # g(X®).

If gis truly random, thed®r[A outputs YE$ = 1/2;if gisin AC?, thenPr[A outputs YES <
I(g)/n = polylog(n)/n. O

After seeing all these applications of the LMN theorem, wevrstiow how to prove it. To
prove the LMN theorem, we need the the following tools:

Observation 2.10 A depth« Decision Tree (DT) is expressible as a widtHDNF or as a widthw
CNF.

Lemma2.1lLetf : {-1,1}" — {—1,1}, let(I,X) be a random restriction witk-probability
p. Thenvd > 5,
> W) <2 Pr [DT-deptlifx_g) > d

|U[>2d/p

Now using Lemma 2.11, we can prove the LMN theorem.
Proof:(LMN.)

Claim 2.12
Pr[DT-deptfy_y) > w] < 527"

The above claim in combination with Lemma 2.11 would conmgtée proof. We now show why
the claim is true.

Observe that we can view choosing random restriction wigimobability (1;—)”~" as the fol-
lowing:



e First choose a random restriction witlrprobabilitwaw.
e Further choose a random restriction ont he surviving véegtwith probabilityﬁ.

Repeat the abovP — 1 times.
After the first restriction, due to Hastad’s Switching Lemrfor any level 2 circuit, the proba-
bility that it doesn’t turn into a depth DT can be bounded as below:

Pr[Doesn’t turn into a depthy DT] < (fo—w) =27Y
w

Due to Observation 2.10, we can express a depiF as a widthew DNF or CNF. Using this,
we can transform the bottom two layers of circuit using thpagite of what they were before, i.e.,
CNF to DNF, and DNF to CNF. This will succeed except with ptabgy 2= x (humber of level
2 gates).

Now the 2nd lowest layer and the 3rd lowest layer will havesame type of gates, so we can
collapse them into a single layer. Observe that this opmratieserves the bottom fan-in, because
the resulting CNF or DNF has width. So we repeat this operatidn— 1 times, and the probability
that the resulting circuit is not a depthDT can be bounded as below:

number of level 2 gates
-+number of level 3 gate
+number of level 2 gate
+ ...

Pr[DT-depth of resulting circuit> w] < X27TW < g.27Y

3 Learning Juntas

We now study how to learn juntas. L@ét= {f : {—1,1}" — {—1,1},andf is anr-junta} denote
the family ofr-juntas. Note thaf,.,, C {poly-size DTg C {poly-size DNF§.

Remark 3.1 To learnC,, it suffices for the algorithm to identify therelevant variables. Since
then we can just draw)(r2") random examples and with high probability, learn the entiteh
table (of size").

Observation 3.2 If f is anr-junta, then every Fourier coefficient ¢fis either0 or > 27" in
absolute value. This is straightforward directly from thefidition of Fourier coefficients, and the
fact thatf only depend om variables.

~

Fact 3.3 If f(.S) # 0, then all variables inS are relevant.



Proof: Supposef(S) = 0, but there exist$ € S irrelevant, according to the definitioﬁ(S) =
E, [f(x)Xs]. But for anyx, consider(®, we have:

f(0)- X = —f(x) - XY

Therefore, everything cancels outﬁﬁS), andf(S) =0.0
Using the above facts, we give one idea for learning juntas show that-juntas are learnable
in time poly(n,2") - n".

~

e Estimatef(0).

e Estimatef(S) for all |S| = 1 up to accuracy . If we find anS such thatf () # 0, then
we know that all variables i are relevant. Note that this takes timpely(n, 2") (7).

e Estimatef(S) for all |S| = 2 up to accuracy’;". If we find ans such thatf(S) # 0, then
we know that all variables i are relevant. Note that this takes timely (n, 2") ().

e Do the above fof5 of size3, 4, ..., r.
Observation 3.4 The above gives usily(n, 2") - n"-time algorithm for learning--juntas.

In the next lecture, we shall improve the above result. Inigaar, we will ask the question,
what kind of functionsf can havef(S) = 0 for all 1 < |S| < d? In particular, iff is not such a
function, then by steg in the above algorithm, we will have found a relevant vaeali not, i.e.,
f(S)=0forall 1 <|S] < d, we will show an algorithm for learning such functions.



