
Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 10: Learning DNF, AC0, Juntas
Feb 15, 2007

Lecturer: Ryan O’Donnell Scribe: Elaine Shi

1 Learning DNF in Almost Polynomial Time

From previous lectures, we have learned that if a functionf is ǫ-concentrated on some collectionS,
then we can learn the function using membership queries inpoly(|S|, 1/ǫ)poly(n) log(1/δ) time.
In the last lecture, we showed that a DNF of widthw is ǫ-concentrated on a set of sizenO(w

ǫ
), and

concluded that width-w DNFs are learnable in timenO(w
ǫ
).

Today, we shall improve this bound, by showing that a DNF of width w is ǫ-concentrated on
a collection of sizewO(w log 1

ǫ
). We shall hence conclude thatpoly(n)-size DNFs are learnable in

almost polynomial time.
Recall that in the last lecture we introduced Håstad’s Switching Lemma, and we showed that

DNFs of widthw areǫ-concentrated on degrees up toO(w log 1
ǫ
).

Theorem 1.1 (Håstad’s Switching Lemma) Letf be computable by a width-w DNF, If (I,X) is a
random restriction with∗-probabilityρ, then∀d ∈ N,

Pr
I,X

[DT-depth(f
X→I

) > d] ≤ (5ρw)d

Theorem 1.2 If f is a width-w DNF, then

∑

|U |≥O(w log 1
ǫ
)

f̂(U)2 ≤ ǫ

To show that a DNF of widthw is ǫ-concentrated on a collection of sizewO(w log 1
ǫ
), we also

need the following theorem:

Theorem 1.3 If f is a width-w DNF, then

∑

U

(
1

20w

)|U |

|f̂(U)| ≤ 2

Proof: Let (I,X) be a random restriction with∗-probability 1
20w

. After this restriction, the DNF
becomes aO(1)-depth decision tree with high probability. Due to Håstad’s Switching Lemma, we

1

have the following:

E
I,X

[‖f
X→I

‖1] =
n∑

d=0

Pr
I,X

[DT-depth(f
X→I

) = d] · E
I,X

[
‖f

X→I
‖1

∣∣∣∣DT-depth(f
X→I

) = d

]

≤
n∑

d=0

(
5 · 1

20w
· w

)d

· 2d (Håstad’s Switching Lemma, DT of size s hasL1 Fourier norm≤ s)

=

n∑

d=0

1

2d
≤ 2

In addition, we have

2 ≥ E
I,X

[‖f
X→I

‖1] = E
I

E
X

∑

S⊆I

∣∣∣f̂X→I
(S)

∣∣∣

= E
I

∑

S⊆I

E
X

[∣∣∣∣ E
y∈{−1,1}I

[f
X→I

(y)yS]

∣∣∣∣

]

> E
I

∑

S⊆I

∣∣∣∣E
X

E
y
[f(y,X)yS]

∣∣∣∣ = E
I

∑

S⊆I

∣∣∣f̂(S)
∣∣∣

=
∑

U⊆[n]

∣∣∣f̂(U)
∣∣∣ ·Pr

I

[U ⊆ I] =
∑

U⊆[n]

∣∣∣f̂(U)
∣∣∣ ·

(
1

20w

)|U |

2

Corollary 1.4 If f is a width-w DNF, then

∑

|U |≤O(w log 1
ǫ
)

∣∣∣f̂(U)
∣∣∣ ≤ wO(w log 1

ǫ
)

Proof:

2 ≥
∑

U⊆[n]

∣∣∣f̂(U)
∣∣∣ ·

(
1

20w

)|U |

≥
∑

|U |≤O(w log 1
ǫ
)

∣∣∣f̂(U)
∣∣∣ ·

(
1

20w

)|U |

≥
(

1

20w

)O(w log 1
ǫ
) ∑

|U |≤O(w log 1
ǫ
)

∣∣∣f̂(U)
∣∣∣

2

Corollary 1.5 If f is a width-w DNF, it’s ǫ-concentrated on a collection of sizewO(w log 1
ǫ
).

2

Proof: DefineS =
{

U : |U | ≤ O(w log 1
ǫ
),

∣∣∣f̂(U)
∣∣∣ ≥ ǫ

wO(w log 1
ǫ)

}
. By Parseval, we get that|S| ≤

wO(w log 1
ǫ
). We now show thatS is ǫ-concentrated onS. By Theorem 1.2, we know that

∑

U /∈S
|U |≥O(w log 1

ǫ
)

f̂(U)2 ≤ ǫ

By Corollary 1.4, we have

∑

U /∈S
|U |≤O(w log 1

ǫ
)

f̂(U)2 ≤
∑

U /∈S
|U |≤O(w log 1

ǫ
)

∣∣∣f̂(U)
∣∣∣ · max

∣∣∣f̂(U)
∣∣∣ ≤ wO(w log 1

ǫ
) · ǫ

wO(w log 1
ǫ
)

= ǫ

Therefore,f is 2ǫ-concentrated onS. 2

Corollary 1.6 poly(n)-size DNFs areǫ-concentrated on collections of size

(
log

n

ǫ

)O(log n
ǫ

log 1
ǫ
)

=
(n

ǫ

)O(log log n
ǫ
·log 1

ǫ
)

And ifǫ = Θ(1), then the above isnO(log log n). Note that this uses the fact that size-n DNF formulas
are ǫ-close to a width-log(n

ǫ
) DNF.

An open research problem is the following question: Arepoly(n)-size DNFsǫ-concentrated
on a collection of sizepoly(n), assuming thatǫ = Θ(1).

2 Learning AC0

We will now study how to learn polynomial-size, constant-depth circuits, AC0.
Consider circuits with unbounded fan-in AND, OR, and NOT gates. The size of the circuit is

defined as the number of AND/OR gates. Observe the following fact:

Fact 2.1 Letd denote the depth of the circuit. At the expense of a factor ofd in size, these circuits
can be taken to be “layered”. Here “layered” means that eacy layer consists of the same type of
gates, eitherAND or OR, and adjacent layers contain the opposite gates.

In a layered circuit, the number of layers is the depth of the circuit, and define thebottom fan-in
of a layered circuit to be the maximum fan-in at the lowest layer (i.e. closest to the input layer).

Theorem 2.2 (LMN.) Let f be computable by a size≤ s, depth≤ D, and bottom fan-in≤ w
circuit. Then ∑

|U |≥(10w)D

f̂(U)2 ≤ O(s · 2−w)

3

Before we show a proof of the LMN theorem, let us first look at some corollaries implied by
this theorem.

Corollary 2.3 If f has a sizes, depthD circuit, then
∑

|U |≥[O(log s
ǫ
)]D

f̂(U)2 ≤ ǫ

Proof: Notice that such anf is ǫ-close to a similar circuit with bottom fan-in≤ log(s
ǫ
). 2

Corollary 2.4 AC0, i.e., the class of poly-size, constant-depth circuits, are learnable from random
examples in timenpoly(log(n

ǫ
)), wheren denotes the size of the circuit.

Proof: According to Corollary 2.3, AC0 circuits areǫ-concentrated on a collection of sizenpoly(log(n
ǫ
)).

2

Corollary 2.5 If f has a size-s, depth-D circuit, then

I(f) ≤ [O(log s)]D

Remark 2.6 Due to H̊astad, the above bound can be improved to[O(log s)]D−1.

Proof:(sketch.) DefinêF (τ) =
∑

|U |>τ

f̂(U)2. Recall that

I(f) =
∑

U

|U |f̂(U)2 =
n∑

r=1

F̂ (r) =

O(log s)D∑

r=1

F̂ (r) +
n∑

r=O(log s)D

F̂ (r)

=
∑

|U |≤O(log s)D

|U |f̂(U)2 + F̂ (O(log s)D) · O(log s)D +

n∑

r=O(log s)D

F̂ (r)

≤ O(log s)D +

n∑

r=O(log s)D

F̂ (r)

It remains to show that
n∑

r=O(log s)D

F̂ (r) ≤ O(log s)D. By Corollary 2.3,

F̂ (τ) =
∑

|U |>τ

f̂(U)2 ≤ s · 2−Ω(τ1/D)

Using this fact plus some manipulation, it is not hard to showthat
n∑

r=O(log s)D

F̂ (r) ≤ O(log s)D. 2

Using this fact, we can derive the following two corollaries:

4

Corollary 2.7 Parity /∈ AC0, Majority /∈ AC0.

Proof: I(Parity) = n, I(Majority) = Θ(
√

n). 2

Definition 2.8 (PRFG.) A functionf : {−1, 1}m × {−1, 1}n → {−1, 1} is a Pseudo-Random
Function Generator (PRFG), if for all Probablistic Polynomial Time (P.P.T) algorithmA with
access to a function,

∣∣∣∣∣∣
Pr

S⊆{−1,1}m,
A’s random bits

[A(f(S, ·)) = YES] − Pr
g,

A’s random bits

[A(g) = YES]

∣∣∣∣∣∣
≤ 1

nω(1)

whereg is a function picked at random from all functions{h|h : {−1, 1}n → {−1, 1}}.

Corollary 2.9 Psuedo-random function generators/∈ AC0.

Proof: Suppose thatf ∈ AC0. Then we can construct a P.P.T adversaryA such thatA can tellf
apart from a truly random function with non-negligible probability. Consider an adversaryA that
picks at randomX ∈ {−1, 1}n, andi ∈ [n]. A is given an oracle tog, it queriesg atX andX(i).
A outputs YES iffg(X) 6= g(X(i)).

If g is truly random, thenPr[A outputs YES] = 1/2; if g is in AC0, thenPr[A outputs YES] ≤
I(g)/n = poly log(n)/n. 2

After seeing all these applications of the LMN theorem, we now show how to prove it. To
prove the LMN theorem, we need the the following tools:

Observation 2.10 A depth-w Decision Tree (DT) is expressible as a width-w DNF or as a width-w
CNF.

Lemma 2.11 Let f : {−1, 1}n → {−1, 1}, let (I,X) be a random restriction with∗-probability
ρ. Then∀d ≥ 5, ∑

|U |≥2d/ρ

f̂(U)2 ≤ 2 Pr
(I,X)

[DT-depth(f
X→I

) > d]

Now using Lemma 2.11, we can prove the LMN theorem.
Proof:(LMN.)

Claim 2.12
Pr
I,X

[DT-depth(f
X→I

) > w] ≤ s · 2−w

The above claim in combination with Lemma 2.11 would complete the proof. We now show why
the claim is true.

Observe that we can view choosing random restriction with∗-probability(1
10w

)D−1 as the fol-
lowing:

5

• First choose a random restriction with∗-probability 1
10w

.

• Further choose a random restriction ont he surviving variables with probability 1
10w

.

• . . .

Repeat the aboveD − 1 times.
After the first restriction, due to Håstad’s Switching Lemma, for any level 2 circuit, the proba-

bility that it doesn’t turn into a depth-w DT can be bounded as below:

Pr[Doesn’t turn into a depthw DT] ≤
(

5w

10w

)w

= 2−w

Due to Observation 2.10, we can express a depth-w DT as a width-w DNF or CNF. Using this,
we can transform the bottom two layers of circuit using the opposite of what they were before, i.e.,
CNF to DNF, and DNF to CNF. This will succeed except with probability 2−w× (number of level
2 gates).

Now the 2nd lowest layer and the 3rd lowest layer will have thesame type of gates, so we can
collapse them into a single layer. Observe that this operation preserves the bottom fan-in, because
the resulting CNF or DNF has widthw. So we repeat this operationD−1 times, and the probability
that the resulting circuit is not a depth-w DT can be bounded as below:

Pr[DT-depth of resulting circuit> w] ≤

number of level 2 gates
+number of level 3 gates
+number of level 2 gates
+ . . .

 × 2−w ≤ s · 2−w

2

3 Learning Juntas

We now study how to learn juntas. LetCr = {f : {−1, 1}n → {−1, 1}, andf is anr-junta} denote
the family ofr-juntas. Note thatClog n ⊆ {poly-size DTs} ⊆ {poly-size DNFs}.

Remark 3.1 To learnCr, it suffices for the algorithm to identify ther relevant variables. Since
then we can just drawO(r2r) random examples and with high probability, learn the entiretruth
table (of size2r).

Observation 3.2 If f is an r-junta, then every Fourier coefficient off is either0 or ≥ 2−r in
absolute value. This is straightforward directly from the definition of Fourier coefficients, and the
fact thatf only depend onr variables.

Fact 3.3 If f̂(S) 6= 0, then all variables inS are relevant.

6

Proof: Supposêf(S) 6= 0, but there existsi ∈ S irrelevant, according to the definition,̂f(S) =
Ex [f(x)XS]. But for anyx, considerx(i), we have:

f(x) · XS = −f(x(i)) ·X(i)
S

Therefore, everything cancels out in̂f(S), andf̂(S) = 0. 2

Using the above facts, we give one idea for learning juntas, and show thatr-juntas are learnable
in timepoly(n, 2r) · nr.

• Estimatef̂(∅).

• Estimatef̂(S) for all |S| = 1 up to accuracy2
−r

4
. If we find anS such thatf̂(S) 6= 0, then

we know that all variables inS are relevant. Note that this takes timepoly(n, 2r)
(

n
1

)
.

• Estimatef̂(S) for all |S| = 2 up to accuracy2
−r

4
. If we find anS such thatf̂(S) 6= 0, then

we know that all variables inS are relevant. Note that this takes timepoly(n, 2r)
(

n
2

)
.

• Do the above forS of size3, 4, . . . , r.

Observation 3.4 The above gives us apoly(n, 2r) · nr-time algorithm for learningr-juntas.

In the next lecture, we shall improve the above result. In particular, we will ask the question,
what kind of functionsf can havef̂(S) = 0 for all 1 ≤ |S| ≤ d? In particular, iff is not such a
function, then by stepd in the above algorithm, we will have found a relevant variable. If not, i.e.,
f̂(S) = 0 for all 1 ≤ |S| ≤ d, we will show an algorithm for learning such functions.

7

