PROBLEM SET 4 **Due: Tuesday, April 3, beginning of class**

Homework policy: I encourage you to try to solve the problems by yourself. However, you may collaborate as long as you do the writeup yourself and list the people you talked with.

Do 4 out of 6.

- **1. Orthogonal decomposition.** Given any $f: \{-1,1\}^n \to \mathbb{R}$, consider $f^S: \{-1,1\}^n \to \mathbb{R}$ defined by $f^S = \hat{f}(S)\chi_S$. We have $f = \sum_{S \subseteq [n]} f^S$ as functions, and this "orthogonal decomposition" has the following three properties:
 - (i) $f^S(x)$ depends only on the coordinates of x in S;
 - (ii) $\mathbf{E}_{\boldsymbol{x}}[f^S(\boldsymbol{x})f^T(\boldsymbol{x})] = 0 \text{ if } S \neq T;$
 - (iii) $\sum_{T \subset S} f^T$, denoted $f^{\leq S}$, gives the conditional expectation of f conditioned on the coordinates in S.
- (a) Prove property (iii); i.e., $f^{\leq S}(x) = \mathbf{E}[f_{x\to S}]$, where the expectation is over the bits in $\bar{S} = [n] \setminus S$. (Here the notation is that $x \in \{-1, 1\}^n$, but in the expression $f_{x\to S}$, we only restrict the S-coordinates of f using the S-bits of x; the \bar{S} -bits of x are ignored.)

In the rest of this problem we establish the same kind of decomposition for general real-valued functions on product probability spaces. Specifically, let X be any finite set and let π be a probability distribution on X. We think of the n-fold product set X^n as having the product probability distribution induced by π . All $\mathbf{Pr}[\cdot]$, $\mathbf{E}[\cdot]$ in what follows refer to this product distribution.

- (b) We first make property (iii) hold by fiat: For $S \subseteq [n]$, we define $f^{\leq S}: X^n \to \mathbb{R}$ to be the function depending only on the coordinates in S giving the conditional expectation; i.e., $f^{\leq S}(x) := \mathbf{E}[f_{x \to S}]$, where the expectation is over the product probability distribution on the coordinates outside S. Now given this definition, explicitly write how we should define the functions f^S so that the equations $f^{\leq S} = \sum_{T \subseteq S} f^T$ hold. Check also that property (i) holds with your definitions. (Hint: inclusion-exclusion.)
 - (c) Show that $\mathbf{E}_{\boldsymbol{x}}[f^{\leq S}(\boldsymbol{x})f^{\leq T}(\boldsymbol{x})] = \mathbf{E}_{\boldsymbol{x}}[f^{\leq (S\cap T)}(\boldsymbol{x})^2]$, straight from our definition of $f^{\leq S}$.
- (d) Now show property (ii), that $\mathbf{E}_{x}[f^{S}(x)f^{T}(x)] = 0$ when $S \neq T$. (Hint: write your definitions of f^{S} , f^{T} from (b), and then use (c).)

Remark: This "orthogonal decomposition" of functions f is often a good substitute for Fourier analysis when the domain is a product probability space other than $\{-1,1\}^n$.

2. Logarithmic Sobolev Inequality. Consider the Hypercontractive Theorem with q=2, $p=2-2\epsilon$, and $\rho=\sqrt{1-2\epsilon}$, where $\epsilon\in[0,1/2]$; if we square it, we get

$$||T_{\sqrt{1-2\epsilon}}f||_2^2 \le ||f||_{2-2\epsilon}^2$$

for any $f: \{-1,1\}^n \to \mathbb{R}$.

(a) Show that we have equality at $\epsilon = 0$. Explain why we can now conclude that

$$\frac{\partial}{\partial \epsilon} \|T_{\sqrt{1-2\epsilon}} f\|_2^2 \bigg|_{\epsilon=0} \leq \frac{\partial}{\partial \epsilon} \|f\|_{2-2\epsilon}^2 \bigg|_{\epsilon=0}.$$

(b) Show that

$$\frac{\partial}{\partial \epsilon} \|T_{\sqrt{1-2\epsilon}} f\|_2^2 \bigg|_{\epsilon=0} = -2\mathbb{I}(f).$$

(c) Show that

$$\frac{\partial}{\partial \epsilon} \|f\|_{2-2\epsilon}^2 \, \Big|_{\epsilon=0} = -\operatorname{Ent}[f^2],$$

where $\mathbf{Ent}[g]$ is the functional defined for nonnegative g by $\mathbf{Ent}[g] = \mathbf{E}[g \ln g] - \mathbf{E}[g] \ln \mathbf{E}[g]$.

We conclude that for all $f: \{-1,1\}^n \to \mathbb{R}$,

$$\operatorname{Ent}[f^2] \leq 2\mathbb{I}(f).$$

This is called the "Logarithmic Sobolev Inequality", or the "Entropy-Energy Inequality". (Recall we called $\mathbb{I}(f)$ the "energy" of f in Lecture 1.)

(d) Show that if
$$f:\{-1,1\}^n \to \{{\sf T},{\sf F}\}$$
 has $p={\bf Pr}[f={\sf T}] \le 1/2$, then
$$2p\ln(1/p) \le \mathbb{I}(f).$$

This significantly improves on the Poincaré Inequality $4p(1-p) \leq \mathbb{I}(f)$ for small p.

- 3. ϵ -biased sets. For every positive integer k, there is a field \mathbb{F}_{2^k} with exactly 2^k elements. There is a natural way of encoding the names of the field elements as k-bit strings, enc : $\mathbb{F}_{2^k} \to \mathbb{F}_2^k$, and this encoding has the property that $\operatorname{enc}(x+y) = \operatorname{enc}(x) + \operatorname{enc}(y)$ for all $x, y \in \mathbb{F}_{2^k}$ and also $\operatorname{enc}(0) = (0, \dots, 0)$. Further, given $\operatorname{enc}(x)$ and $\operatorname{enc}(y)$, one can compute $\operatorname{enc}(xy)$, $\operatorname{enc}(x/y)$, $\operatorname{enc}(x+y)$, $\operatorname{enc}(x-y)$, in deterministic $\operatorname{poly}(k)$ time.²
- (a) Let \mathbf{R} denote a random string in \mathbb{F}_2^n , formed as follows: Pick $\mathbf{a}, \mathbf{b} \in \mathbb{F}_{2^k}$ independently and uniformly at random; then let the *i*th bit of \mathbf{R} be $\langle \operatorname{enc}(\mathbf{a}^i), \operatorname{enc}(\mathbf{b}) \rangle_{\mathbb{F}_2}$, where $\langle \cdot, \cdot \rangle_{\mathbb{F}_2}$ denotes *dot product in* \mathbb{F}_2 . Show that for every nonzero string $S \in \mathbb{F}_2^n$,

$$\frac{1}{2} - \frac{1}{2} \cdot \frac{n}{2^k} \leq \mathbf{E}_{\boldsymbol{R}}[\langle \boldsymbol{R}, S \rangle_{\mathbb{F}_2}] \leq \frac{1}{2},$$

where in the expectation, we're taking $\langle \mathbf{R}, S \rangle_{\mathbb{F}_2}$ (which is in \mathbb{F}_2) and reinterpreting it as a real number. (Hint: every nonzero degree-n polynomial over a field has at most n zeroes.)

(b) As needed for Problem 4 on Homework 3, give efficiently constructible ϵ -biased sets for $\{-1,1\}^n$ of size $(n/\epsilon)^2$, whenever n/ϵ is a power of 2.

 $^{^{1}0 \}ln 0 = 0.$

²Specifically, it is known that for every k there is an irreducible polynomial $p(t) \in \mathbb{F}_2[t]$ of degree k; then we may take \mathbb{F}_{2^k} to be the set of polynomials in $\mathbb{F}_2[t]$ modulo p(t). The function enc maps $\sum_{i=0}^{k-1} a_i t^i$ to (a_0, \ldots, a_{k-1}) . It is known (Shoup, 1990) that one can deterministically find an irreducible p in time poly(k). (Also, it's very easy to find one in time $2^{O(k)}$ which is pretty much good enough for us.)

4. Tightness of the Hypercontractivity Theorem. It is known³ that when q is an even positive integer, the largest possible ratio of $||f||_q/||f||_2$ for degree-d real-valued boolean functions f is achieved, in the limit as $n \to \infty$, by

$$f = \sum_{\substack{S \subseteq [n] \\ |S| = d}} x_S. \tag{1}$$

I don't think there is a closed-form formula for the limiting ratio, but it is known to be $\Theta_q(1) \cdot d^{-1/4} \cdot \sqrt{q-1}^d$. In this problem we show a slightly weaker lower bound for our favorite case, q=4.

(a) Let $f: \{-1,1\}^n \to \mathbb{R}$ be the function in (1); assume that d is divisible by 3 and that $n \geq 2d$. Show that

$$\mathbf{E}[f^4] \ge \frac{\binom{d/3, d/3, d/3, d/3, d/3, d/3, n-2d}{\binom{n}{d}^2} \mathbf{E}[f^2]^2,$$

where the quantity in the numerator is a multinomial coefficient — specifically, the number of ways of choosing six disjoint d/3-size subsets of [n]. (Hint: given six disjoint d/3-size subsets, consider quadruples of d-size sets S that hit each d/3-set twice.)

(b) Using Stirling's formula, show that

$$\lim_{n \to \infty} \frac{\binom{d}{d/3, d/3, d/3, d/3, d/3, d/3, n-2d}}{\binom{n}{d}^2} = \Theta(d^{-2} \cdot 9^d).$$

- (c) [Extra credit.] Problems (a) and (b) give a lower bound of $\Omega(d^{-1/2} \cdot \sqrt{3}^d)$ for the largest possible ratio of $\|f\|_4/\|f\|_2$ for degree-d f. For extra credit, either: (i) explain Bonami's original 1970 argument which gives an upper bound of $O(d^{-1/8} \cdot \sqrt{3}^d)$; or (ii) show that the f in (1) indeed achieves $\Theta(d^{-1/4} \cdot \sqrt{3}^d)$ in the limit as $n \to \infty$. Or both.
- **5. Generalized Chernoff bounds.** A Chernoff bound says that if $t \ge 1$ and $\sum_{i=1}^n a_i^2 = 1$, then

$$\mathbf{Pr}[|a_1\boldsymbol{x}_1 + \cdots a_n\boldsymbol{x}_n| \ge t] \le \exp\left(-\Omega(t^2)\right),\,$$

where the x_i 's denote i.i.d. random ± 1 bits, as usual. Prove the following generalization: Let $p(x_1, \ldots, x_n)$ be a multilinear polynomial over the reals of degree at most d, and assume $\mathbf{E}[p(x_1, \ldots, x_2)^2] = 1$ (i.e., the sum of squares of p's coefficients is 1). Then for $t \geq 1$,

$$\mathbf{Pr}[|p(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)| \geq t] \leq \exp\left(-\Omega(t^{2/d})\right).$$

(Hint: Markov plus $(2, q, (1/\sqrt{q-1})^d)$ -hypercontractivity with large q.)

³Svante Janson has a published proof; I don't know if it's the earliest.

6. Learning monotone decision trees in "polynomial" time.

- (a) Let $f: \{-1,1\}^n \to \{-1,1\}$ be computable by a depth-d decision tree. Show that $\sum_{i=1}^n \hat{f}(i) \le O(\sqrt{d})$. (Hint: mimic the proof that Majority maximizes $\sum \hat{f}(i)$ for general f; but take the expectation over a random path first.) Conclude that if f is monotone, $\mathbb{I}(f) \le \sqrt{\text{DT-depth}(f)}$.
- (b) Suppose one has access to random examples from a monotone function f. Give a learning algorithm which on input τ , identifies (w.h.p.) a set J which contains all coordinates i with $\mathrm{Inf}_i(f) \geq \tau$. The algorithm should run in time $\mathrm{poly}(n,1/\tau)$ and the set J identified should have size $O(1/\tau^2)$.
- (c) Show that $\mathcal{C} = \{\text{monotone } f : \text{DT-depth}(f) \leq \log n\}$ is learnable from random examples only in time $n^{O(1/\epsilon^2)}$. (Hint: use the Main Lemma that implied Friedgut's Theorem.)