Homework policy: I encourage you to try to solve the problems by yourself. However, you may collaborate as long as you do the writeup yourself and list the people you talked with.

Do 4 out of 6.

1. Orthogonal decomposition. Given any \(f : \{−1, 1\}^n \rightarrow \mathbb{R} \), consider \(f_S : \{−1, 1\}^n \rightarrow \mathbb{R} \) defined by \(f_S(x) = \hat{f}(S) \chi_S(x) \). We have \(f = \sum_{S \subseteq [n]} f_S \) as functions, and this “orthogonal decomposition” has the following three properties:

 (i) \(f_S(x) \) depends only on the coordinates of \(x \) in \(S \);

 (ii) \(\mathbb{E}_x[f^S(x)f^T(x)] = 0 \) if \(S \neq T \);

 (iii) \(\sum_{T \subseteq S} f^T \), denoted \(f^\leq S \), gives the conditional expectation of \(f \) conditioned on the coordinates in \(S \).

(a) Prove property (iii); i.e., \(f^\leq S(x) = \mathbb{E}_x[f_{\bar{x} \rightarrow S}] \), where the expectation is over the bits in \(\bar{S} = [n] \setminus S \). (Here the notation is that \(x \in \{−1, 1\}^n \), but in the expression \(f_{\bar{x} \rightarrow S} \), we only restrict the \(S \)-coordinates of \(f \) using the \(S \)-bits of \(x \); the \(\bar{S} \)-bits of \(x \) are ignored.)

In the rest of this problem we establish the same kind of decomposition for general real-valued functions on product probability spaces. Specifically, let \(X \) be any finite set and let \(\pi \) be a probability distribution on \(X \). We think of the \(n \)-fold product set \(X^n \) as having the product probability distribution induced by \(\pi \). All \(\Pr[\cdot], \mathbb{E}[\cdot] \) in what follows refer to this product distribution.

(b) We first make property (iii) hold by fiat: For \(S \subseteq [n] \), we define \(f^\leq S : X^n \rightarrow \mathbb{R} \) to be the function depending only on the coordinates in \(S \) giving the conditional expectation; i.e., \(f^\leq S(x) := \mathbb{E}_x[f_{\bar{x} \rightarrow S}] \), where the expectation is over the product probability distribution on the coordinates outside \(S \). Now given this definition, explicitly write how we should define the functions \(f^S, f^T \) from (b), and then use (c).

(c) Show that \(\mathbb{E}_x[f^\leq S(x)f^\leq T(x)] = \mathbb{E}_x[f^\leq (S \cap T)(x)^2] \), straight from our definition of \(f^\leq S \).

(d) Now show property (ii), that \(\mathbb{E}_x[f^S(x)f^T(x)] = 0 \) when \(S \neq T \). (Hint: write your definitions of \(f^S, f^T \) from (b), and then use (c).)

Remark: This “orthogonal decomposition” of functions \(f \) is often a good substitute for Fourier analysis when the domain is a product probability space other than \(\{−1, 1\}^n \).

2. Logarithmic Sobolev Inequality. Consider the Hypercontractive Theorem with \(q = 2, p = 2 - 2\epsilon \), and \(\rho = \sqrt{1 - 2\epsilon} \), where \(\epsilon \in [0, 1/2] \); if we square it, we get

\[
\|T_{\sqrt{1 - 2\epsilon}} f\|_2^2 \leq \|f\|_2^{2 - 2\epsilon}
\]
for any \(f : \{-1, 1\}^n \to \mathbb{R} \).

(a) Show that we have equality at \(\epsilon = 0 \). Explain why we can now conclude that
\[
\frac{\partial}{\partial \epsilon} \| T_{\sqrt{1-2\epsilon}} f \|_2^2 \bigg|_{\epsilon=0} \leq \frac{\partial}{\partial \epsilon} \| f \|_{2-2\epsilon}^2 \bigg|_{\epsilon=0}.
\]
(b) Show that
\[
\frac{\partial}{\partial \epsilon} \| T_{\sqrt{1-2\epsilon}} f \|_2^2 \bigg|_{\epsilon=0} = -2 \mathbb{I}(f).
\]
(c) Show that
\[
\frac{\partial}{\partial \epsilon} \| f \|_{2-2\epsilon}^2 \bigg|_{\epsilon=0} = -\text{Ent}[f^2],
\]
where \(\text{Ent}[g] \) is the functional defined for nonnegative \(g \) by \(\text{Ent}[g] = E[g \ln g] - E[g] \ln E[g] \). \(^1\)

We conclude that for all \(f : \{-1, 1\}^n \to \mathbb{R} \),
\[
\text{Ent}[f^2] \leq 2 \mathbb{I}(f).
\]
This is called the “Logarithmic Sobolev Inequality”, or the “Entropy-Energy Inequality”. (Recall we called \(\mathbb{I}(f) \) the “energy” of \(f \) in Lecture 1.)

(d) Show that if \(f : \{-1, 1\}^n \to \{\text{T}, \text{F}\} \) has \(p = \Pr[f = \text{T}] \leq 1/2 \), then
\[
2p \ln(1/p) \leq \mathbb{I}(f).
\]
This significantly improves on the Poincaré Inequality \(4p(1-p) \leq \mathbb{I}(f) \) for small \(p \).

3. \(\epsilon \)-biased sets. For every positive integer \(k \), there is a field \(\mathbb{F}_{2^k} \) with exactly \(2^k \) elements. There is a natural way of encoding the names of the field elements as \(k \)-bit strings, \(\text{enc} : \mathbb{F}_{2^k} \to \{0,1\}^k \), and this encoding has the property that \(\text{enc}(x+y) = \text{enc}(x) + \text{enc}(y) \) for all \(x, y \in \mathbb{F}_{2^k} \) and also \(\text{enc}(0) = (0, \ldots, 0) \). Further, given \(\text{enc}(x) \) and \(\text{enc}(y) \), one can compute \(\text{enc}(xy), \text{enc}(x/y), \text{enc}(x+y), \text{enc}(x-y) \), in deterministic \(\text{poly}(k) \) time.\(^2\)

(a) Let \(R \) denote a random string in \(\mathbb{F}_{2^k}^n \), formed as follows: Pick \(a, b \in \mathbb{F}_{2^k} \) independently and uniformly at random; then let the \(i \)th bit of \(R \) be \(\langle \text{enc}(a^i), \text{enc}(b) \rangle_{\mathbb{F}_2} \), where \(\langle \cdot, \cdot \rangle_{\mathbb{F}_2} \) denotes dot product in \(\mathbb{F}_2 \). Show that for every nonzero string \(S \in \mathbb{F}_2^n \),
\[
\frac{1}{2} - \frac{1}{2} \cdot \frac{n}{2^k} \leq E[\langle R, S \rangle_{\mathbb{F}_2}] \leq \frac{1}{2},
\]
where in the expectation, we’re taking \(\langle R, S \rangle_{\mathbb{F}_2} \) (which is in \(\mathbb{F}_2 \)) and reinterpreting it as a real number. (Hint: every nonzero degree-\(n \) polynomial over a field has at most \(n \) zeroes.)

(b) As needed for Problem 4 on Homework 3, give efficiently constructible \(\epsilon \)-biased sets for \(\{-1, 1\}^n \) of size \((n/\epsilon)^2\), whenever \(n/\epsilon \) is a power of 2.

\(^1\)0 \ln 0 = 0.

\(^2\)Specifically, it is known that for every \(k \) there is an irreducible polynomial \(p(t) \in \mathbb{F}_2[t] \) of degree \(k \); then we may take \(\mathbb{F}_{2^k} \) to be the set of polynomials in \(\mathbb{F}_2[t] \) modulo \(p(t) \). The function \(\text{enc} \) maps \(\sum_{i=0}^{k-1} a_i t^i \) to \((a_0, \ldots, a_{k-1}) \). It is known (Shoup, 1990) that one can deterministically find an irreducible \(p \) in time \(\text{poly}(k) \). (Also, it’s very easy to find one in time \(2^{O(k)} \) which is pretty much good enough for us.)
4. Tightness of the Hypercontractivity Theorem. It is known\(^3\) that when \(q\) is an even positive integer, the largest possible ratio of \(\|f\|_q/\|f\|_2\) for degree-\(d\) real-valued boolean functions \(f\) is achieved, in the limit as \(n \to \infty\), by

\[
 f = \sum_{S \subseteq [n] \atop |S| = d} x_S. \tag{1}
\]

I don’t think there is a closed-form formula for the limiting ratio, but it is known to be \(\Theta_q(1) \cdot d^{-1/4} \cdot \sqrt{q - 1}^d\). In this problem we show a slightly weaker lower bound for our favorite case, \(q = 4\).

(a) Let \(f : \{-1, 1\}^n \to \mathbb{R}\) be the function in (1); assume that \(d\) is divisible by 3 and that \(n \geq 2d\). Show that

\[
 \mathbb{E}[f^4] \geq \frac{(d/3,d/3,d/3,d/3,d/3,n-2d)}{\binom{n}{d}^2} \mathbb{E}[f^2]^2,
\]

where the quantity in the numerator is a multinomial coefficient — specifically, the number of ways of choosing six disjoint \(d/3\)-size subsets of \([n]\). (Hint: given six disjoint \(d/3\)-size subsets, consider quadruples of \(d\)-size sets \(S\) that hit each \(d/3\)-set twice.)

(b) Using Stirling’s formula, show that

\[
 \lim_{n \to \infty} \left(\frac{\binom{n}{d}^2}{d/3,d/3,d/3,d/3,d/3,n-2d} \right) = \Theta(d^{-2} \cdot 9^d).
\]

(c) [Extra credit.] Problems (a) and (b) give a lower bound of \(\Omega(d^{-1/2} \cdot \sqrt{3}^d)\) for the largest possible ratio of \(\|f\|_4/\|f\|_2\) for degree-\(d\) \(f\). For extra credit, either: (i) explain Bonami’s original 1970 argument which gives an upper bound of \(O(d^{-1/8} \cdot \sqrt{3}^d)\); or (ii) show that the \(f\) in (1) indeed achieves \(\Theta(d^{-1/4} \cdot \sqrt{3}^d)\) in the limit as \(n \to \infty\). Or both.

5. Generalized Chernoff bounds. A Chernoff bound says that if \(t \geq 1\) and \(\sum_{i=1}^n a_i^2 = 1\), then

\[
 \mathbb{P}[|a_1 x_1 + \cdots + a_n x_n| \geq t] \leq \exp \left(-\Omega(t^2)\right),
\]

where the \(x_i\)’s denote i.i.d. random ±1 bits, as usual. Prove the following generalization: Let \(p(x_1, \ldots, x_n)\) be a multilinear polynomial over the reals of degree at most \(d\), and assume \(\mathbb{E}[p(x_1, \ldots, x_2)^2] = 1\) (i.e., the sum of squares of \(p\)’s coefficients is 1). Then for \(t \geq 1\),

\[
 \mathbb{P}[|p(x_1, \ldots, x_n)| \geq t] \leq \exp \left(-\Omega(t^{2/d})\right).
\]

(Hint: Markov plus \((2, q, (1/\sqrt{q - 1})^d)\)-hypercontractivity with large \(q\).)

\(^3\)Svante Janson has a published proof; I don’t know if it’s the earliest.

(a) Let \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \) be computable by a depth-\(d \) decision tree. Show that \(\sum_{i=1}^{n} \hat{f}(i) \leq O(\sqrt{d}) \). (Hint: mimic the proof that Majority maximizes \(\sum \hat{f}(i) \) for general \(f \); but take the expectation over a random path first.) Conclude that if \(f \) is monotone, \(I(f) \leq \sqrt{\text{DT-depth}(f)} \).

(b) Suppose one has access to random examples from a monotone function \(f \). Give a learning algorithm which on input \(\tau \), identifies (w.h.p.) a set \(J \) which contains all coordinates \(i \) with \(\text{Inf}_i(f) \geq \tau \). The algorithm should run in time \(\text{poly}(n, 1/\tau) \) and the set \(J \) identified should have size \(O(1/\tau^2) \).

(c) Show that \(C = \{ \text{monotone } f : \text{DT-depth}(f) \leq \log n \} \) is learnable from random examples only in time \(n^{O(1/\epsilon^2)} \). (Hint: use the Main Lemma that implied Friedgut’s Theorem.)