Analysis of Boolean Functions CMU 18-859S, Spring 2007

PROBLEM SET 4
Due: Tuesday, April 3, beginning of class

Homework policy: | encourage you to try to solve the problems by yourself. However, you may collaborate
as long as you do the writeup yourself and list the people you talked with.

Do 4 out of 6.

1. Orthogonal decomposition. Given anyf : {—1,1}" — R, considerf® : {—1,1}" — R defined
by f5 = f(S)XS. We havef = qun] f? as functions, and this “orthogonal decomposition” has the
following three properties:

(i) f°(x) depends only on the coordinatesioin S;

(i) Ex[f(2) f" ()] = 0if S #T;

(i) Y- rcg fT, denotedf=*, gives the conditional expectation ptonditioned on the coordinates$h

(a) Prove property (ii); i.e.f<%(z) = E[f,_s], Where the expectation is over the bitsn= [n] \ S.
(Here the notation is that € {—1, 1}", but in the expressioffi,_, s, we only restrict the5-coordinates off
using theS-bits of z; the S-bits of z are ignored.)

In the rest of this problem we establish the same kind of decomposition for general real-valued functions
on product probability spaces. Specifically, }etbe any finite set and let be a probability distribution on
X. We think of then-fold product setX” as having the product probability distribution inducedyAll
Pr[-], E[-] in what follows refer to this product distribution.

(b) We first make property (iii) hold by fiat: F& C [n], we definef<% : X™ — R to be the function
depending only on the coordinatesSrgiving the conditional expectation; i.-=°(z) := E[f,_s], where
the expectation is over the product probability distribution on the coordinates outsitiow given this
definition, explicitly write how we should define the functiofid so that the equationg=° = > rcs fr
hold. Check also that property (i) holds with your definitions. (Hint: inclusion-exclusion.) -

(c) Show thatE, [f=%(z) f=T (z)] = EL[f=5"T)(x)?], straight from our definition of <°.

(d) Now show property (i), thaE,[f°(x)fT ()] = 0 whenS # T. (Hint: write your definitions of
f5, fT from (b), and then use (c).)

Remark: This “orthogonal decomposition” of functiofiss often a good substitute for Fourier analysis
when the domain is a product probability space other thah, 1}".

2. Logarithmic Sobolev Inequality. Consider the Hypercontractive Theorem with= 2, p = 2 — 2e,
andp = /1 — 2¢, wheree € [0, 1/2]; if we square it, we get

IT =13 < 111152

1



foranyf:{—-1,1}" — R.

(a) Show that we have equality at= 0. Explain why we can now conclude that
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whereEnt[g] is the functional defined for nonnegatiyéy Ent[g] = E[gln g] — E[g] InE[g]. *

_ 2
0 - Ent[f ]7

€=

We conclude that for alf : {—1,1}" — R,
Ent[f?] < 2I(f).

This is called the “Logarithmic Sobolev Inequality”, or the “Entropy-Energy Inequality”. (Recall we called
I(f) the “energy” of f in Lecture 1.)

(d) Show that iff : {—1,1}" — {T,F} hasp = Pr[f = T] < 1/2, then

2pIn(1/p) < I(f).
This significantly improves on the Poinéanequality4p(1 — p) < I(f) for smallp.

3. e-biased sets. For every positive integek, there is a fieldf,. with exactly2* elements. There is a
natural way of encoding the names of the field elementslaigstrings,enc : Fyr — F%, and this encoding
has the property thahc(x+y) = enc(z)+enc(y) forall z, y € F,r and alsenc(0) = (0, ...,0). Further,
givenenc(z) andenc(y), one can computenc(zy), enc(z/y), enc(x + y), enc(z — y), in deterministic
poly(k) time?2

(a) LetR denote a random string Iff;, formed as follows: Pick, b € F,« independently and uniformly
at random; then let thih bit of R be (enc(a’), enc(b))r,, where(-, -)r, denotesdot product inFy. Show
that for every nonzero string € F7,

25 3 SERlR )] <,
where in the expectation, we're takifd, S)r, (which is in[F3) and reinterpreting it as a real number.
(Hint: every nonzero degreepolynomial over a field has at mostzeroes.)

(b) As needed for Problem 4 on Homework 3, give efficiently constructiiased sets fof—1,1}"
of size(n/¢)?, whenevemn /¢ is a power of2.

0ln0 = 0.
23pecifically, it is known that for every there is an irreducible polynomia(t) € F» [t] of degreek; then we may také&,. to
be the set of polynomials iR. [t] modulop(¢). The functionenc mapszi."go1 a;t* to (ao, . ..,akx—1). Itis known (Shoup, 1990)

that one can deterministically find an irreduciblén time poly (k). (Also, it’s very easy to find one in tim2°®) which is pretty
much good enough for us.)



4. Tightness of the Hypercontractivity Theorem. It is knowr? that wheng is an even positive integer,
the largest possible ratio dff ||, /|| f || for degreed real-valued boolean functiorfsis achieved, in the limit

asn — oo, by
f=> s 1)
SC[n]
|S|=d
| don't think there is a closed-form formula for the limiting ratio, but it is known tahé1)-d—/*-\/q — i
In this problem we show a slightly weaker lower bound for our favorite case4.

(@) Letf: {—1,1}" — R be the function in (1); assume théts divisible by3 and that» > 2d. Show
that
(d/s,d/s,d/3,d/§,d/3,d/3,n_2d)
(2)°
where the quantity in the numerator is a multinomial coefficient — specifically, the number of ways of
choosing six disjoint//3-size subsets dh]. (Hint: given six disjointd/3-size subsets, consider quadruples
of d-size setsS that hit eachi/3-set twice.)

E[f'] > E[f]?,

(b) Using Stirling’s formula, show that

. (d/3,d/S,d/3,d/g,d/3,d/3,n72d)
lim 3
n—oo (d)

= 0(d™%-99).

(c) [Extra credit.] Problems (a) and (b) give a lower bouncﬂx()tl—l/2 . \/§d) for the largest possible
ratio of || f||4/|| f||2 for degreed f. For extra credit, either: (i) explain Bonami’s original 1970 argument

which gives an upper bound 6f(d—/8 - /3%); or (ii) show that thef in (1) indeed achieve®(d—1/4.v/3")
in the limit asn — oo. Or both.

5. Generalized Chernoff bounds. A Chernoff bound says thatif> 1 and}_" ; a? = 1, then
Prlaix; + - - apx,| > t] < exp (—Q(tQ)) ,

where thee;’s denote i.i.d. randort:1 bits, as usual. Prove the following generalization: pet, . . ., z,,)
be a multilinear polynomial over the reals of degree at rdpand assum&|[p(xy,...,x2)%] =1 (i.e., the
sum of squares gf's coefficients isl). Then fort > 1,

Prlp(@1,...,@0)| = 1] < exp (—Q(27)).

(Hint: Markov plus(2, ¢, (1/+/q — 1)%)-hypercontractivity with large.)

3svante Janson has a published proof; | don’t know if it's the earliest.



6. Learning monotone decision trees in “polynomial” time.

(@) Letf : {—1,1}" — {—1,1} be computable by a depthdecision tree. Show that ;" , f(z’) <
O(v/d). (Hint: mimic the proof that Majority maximizes. f (i) for generalf; but take the expectation over
a random path first.) Conclude thatfifis monotonel(f) < \/DT-depth(f).

(b) Suppose one has access to random examples from a monotone fynéive a learning algorithm
which on inputr, identifies (w.h.p.) a sef which contains all coordinateswith Inf;(f) > 7. The algo-
rithm should run in timepoly(n, 1/7) and the sef/ identified should have siz@(1/72).

(c) Show thatC = {monotonef : DT-depth(f) < logn} is learnable from random examples only in
time n®(1/<*), (Hint: use the Main Lemma that implied Friedgut's Theorem.)



