
Analysis of Boolean Functions CMU 18-859S, Spring 2007

PROBLEM SET 4
Due: Tuesday, April 3, beginning of class

Homework policy: I encourage you to try to solve the problems by yourself. However, you may collaborate
as long as you do the writeup yourself and list the people you talked with.

Do 4 out of 6.

1. Orthogonal decomposition. Given anyf : {−1, 1}n → R, considerfS : {−1, 1}n → R defined
by fS = f̂(S)χS . We havef =

∑
S⊆[n] f

S as functions, and this “orthogonal decomposition” has the
following three properties:

(i) fS(x) depends only on the coordinates ofx in S;
(ii) Ex[fS(x)fT (x)] = 0 if S 6= T ;
(iii)

∑
T⊆S fT , denotedf≤S , gives the conditional expectation off conditioned on the coordinates inS.

(a) Prove property (iii); i.e.,f≤S(x) = E[fx→S ], where the expectation is over the bits inS̄ = [n] \ S.
(Here the notation is thatx ∈ {−1, 1}n, but in the expressionfx→S , we only restrict theS-coordinates off
using theS-bits ofx; theS̄-bits ofx are ignored.)

In the rest of this problem we establish the same kind of decomposition for general real-valued functions
on product probability spaces. Specifically, letX be any finite set and letπ be a probability distribution on
X. We think of then-fold product setXn as having the product probability distribution induced byπ. All
Pr[·],E[·] in what follows refer to this product distribution.

(b) We first make property (iii) hold by fiat: ForS ⊆ [n], wedefinef≤S : Xn → R to be the function
depending only on the coordinates inS giving the conditional expectation; i.e.,f≤S(x) := E[fx→S ], where
the expectation is over the product probability distribution on the coordinates outsideS. Now given this
definition, explicitly write how we should define the functionsfS so that the equationsf≤S =

∑
T⊆S fT

hold. Check also that property (i) holds with your definitions. (Hint: inclusion-exclusion.)

(c) Show thatEx[f≤S(x)f≤T (x)] = Ex[f≤(S∩T )(x)2], straight from our definition off≤S .

(d) Now show property (ii), thatEx[fS(x)fT (x)] = 0 whenS 6= T . (Hint: write your definitions of
fS , fT from (b), and then use (c).)

Remark: This “orthogonal decomposition” of functionsf is often a good substitute for Fourier analysis
when the domain is a product probability space other than{−1, 1}n.

2. Logarithmic Sobolev Inequality. Consider the Hypercontractive Theorem withq = 2, p = 2 − 2ε,
andρ =

√
1− 2ε, whereε ∈ [0, 1/2]; if we square it, we get

‖T√1−2εf‖
2
2 ≤ ‖f‖2

2−2ε
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for anyf : {−1, 1}n → R.

(a) Show that we have equality atε = 0. Explain why we can now conclude that

∂

∂ε
‖T√1−2εf‖

2
2

∣∣∣
ε=0

≤ ∂

∂ε
‖f‖2

2−2ε

∣∣∣
ε=0

.

(b) Show that
∂

∂ε
‖T√1−2εf‖

2
2

∣∣∣
ε=0

= −2I(f).

(c) Show that
∂

∂ε
‖f‖2

2−2ε

∣∣∣
ε=0

= −Ent[f2],

whereEnt[g] is the functional defined for nonnegativeg by Ent[g] = E[g ln g]−E[g] lnE[g]. 1

We conclude that for allf : {−1, 1}n → R,

Ent[f2] ≤ 2I(f).

This is called the “Logarithmic Sobolev Inequality”, or the “Entropy-Energy Inequality”. (Recall we called
I(f) the “energy” off in Lecture 1.)

(d) Show that iff : {−1, 1}n → {T, F} hasp = Pr[f = T] ≤ 1/2, then

2p ln(1/p) ≤ I(f).

This significantly improves on the Poincaré Inequality4p(1− p) ≤ I(f) for smallp.

3. ε-biased sets. For every positive integerk, there is a fieldF2k with exactly2k elements. There is a
natural way of encoding the names of the field elements ask-bit strings,enc : F2k → Fk

2, and this encoding
has the property thatenc(x+y) = enc(x)+enc(y) for all x, y ∈ F2k and alsoenc(0) = (0, . . . , 0). Further,
given enc(x) andenc(y), one can computeenc(xy), enc(x/y), enc(x + y), enc(x − y), in deterministic
poly(k) time.2

(a) LetR denote a random string inFn
2 , formed as follows: Picka, b ∈ F2k independently and uniformly

at random; then let theith bit of R be〈enc(ai), enc(b)〉F2 , where〈·, ·〉F2 denotesdot product inF2. Show
that for every nonzero stringS ∈ Fn

2 ,

1
2
− 1

2
· n

2k
≤ ER[〈R, S〉F2 ] ≤

1
2
,

where in the expectation, we’re taking〈R, S〉F2 (which is in F2) and reinterpreting it as a real number.
(Hint: every nonzero degree-n polynomial over a field has at mostn zeroes.)

(b) As needed for Problem 4 on Homework 3, give efficiently constructibleε-biased sets for{−1, 1}n

of size(n/ε)2, whenevern/ε is a power of2.
10 ln 0 = 0.
2Specifically, it is known that for everyk there is an irreducible polynomialp(t) ∈ F2[t] of degreek; then we may takeF2k to

be the set of polynomials inF2[t] modulop(t). The functionenc maps
Pk−1

i=0 ait
i to (a0, . . . , ak−1). It is known (Shoup, 1990)

that one can deterministically find an irreduciblep in time poly(k). (Also, it’s very easy to find one in time2O(k) which is pretty
much good enough for us.)
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4. Tightness of the Hypercontractivity Theorem. It is known3 that whenq is an even positive integer,
the largest possible ratio of‖f‖q/‖f‖2 for degree-d real-valued boolean functionsf is achieved, in the limit
asn →∞, by

f =
∑

S⊆[n]
|S|=d

xS . (1)

I don’t think there is a closed-form formula for the limiting ratio, but it is known to beΘq(1)·d−1/4·
√

q − 1d.
In this problem we show a slightly weaker lower bound for our favorite case,q = 4.

(a) Letf : {−1, 1}n → R be the function in (1); assume thatd is divisible by3 and thatn ≥ 2d. Show
that

E[f4] ≥

(
n

d/3,d/3,d/3,d/3,d/3,d/3,n−2d

)(
n
d

)2 E[f2]2,

where the quantity in the numerator is a multinomial coefficient — specifically, the number of ways of
choosing six disjointd/3-size subsets of[n]. (Hint: given six disjointd/3-size subsets, consider quadruples
of d-size setsS that hit eachd/3-set twice.)

(b) Using Stirling’s formula, show that

lim
n→∞

(
n

d/3,d/3,d/3,d/3,d/3,d/3,n−2d

)(
n
d

)2 = Θ(d−2 · 9d).

(c) [Extra credit.] Problems (a) and (b) give a lower bound ofΩ(d−1/2 ·
√

3
d
) for the largest possible

ratio of ‖f‖4/‖f‖2 for degree-d f . For extra credit, either: (i) explain Bonami’s original 1970 argument

which gives an upper bound ofO(d−1/8 ·
√

3
d
); or (ii) show that thef in (1) indeed achievesΘ(d−1/4 ·

√
3

d
)

in the limit asn →∞. Or both.

5. Generalized Chernoff bounds. A Chernoff bound says that ift ≥ 1 and
∑n

i=1 a2
i = 1, then

Pr[|a1x1 + · · · anxn| ≥ t] ≤ exp
(
−Ω(t2)

)
,

where thexi’s denote i.i.d. random±1 bits, as usual. Prove the following generalization: Letp(x1, . . . , xn)
be a multilinear polynomial over the reals of degree at mostd, and assumeE[p(x1, . . . ,x2)2] = 1 (i.e., the
sum of squares ofp’s coefficients is1). Then fort ≥ 1,

Pr[|p(x1, . . . ,xn)| ≥ t] ≤ exp
(
−Ω(t2/d)

)
.

(Hint: Markov plus(2, q, (1/
√

q − 1)d)-hypercontractivity with largeq.)

3Svante Janson has a published proof; I don’t know if it’s the earliest.
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6. Learning monotone decision trees in “polynomial” time.
(a) Let f : {−1, 1}n → {−1, 1} be computable by a depth-d decision tree. Show that

∑n
i=1 f̂(i) ≤

O(
√

d). (Hint: mimic the proof that Majority maximizes
∑

f̂(i) for generalf ; but take the expectation over
a random path first.) Conclude that iff is monotone,I(f) ≤

√
DT-depth(f ).

(b) Suppose one has access to random examples from a monotone functionf . Give a learning algorithm
which on inputτ , identifies (w.h.p.) a setJ which contains all coordinatesi with Infi(f) ≥ τ . The algo-
rithm should run in timepoly(n, 1/τ) and the setJ identified should have sizeO(1/τ2).

(c) Show thatC = {monotonef : DT-depth(f ) ≤ log n} is learnable from random examples only in
timenO(1/ε2). (Hint: use the Main Lemma that implied Friedgut’s Theorem.)
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