Analysis of Boolean Functions CMU 18-859S, Spring 2007

PROBLEM SET 2
Due: Tuesday, February 20

Homework policy: | encourage you to try to solve the problems by yourself. However, you may collaborate
as long as you do the writeup yourself and list the people you talked with.

Notation used:

1£1l2

yll2
fodd
Inf\”(f)
I(f)
deg(f)

Pr., E_., etc.

the set{1,2,...,n}

then-bit stringx with its ith bit flipped, where € [n]

then-bit stringx with its ith bit set tob

the Hamming distance betweeny € {—1,1}";i.e.,|[{i : z; # y;}|
always a subset dfi], unless otherwise specified

=/(f.f) = VE[f?]whenf : {-1,1}" — Ris a function

wheny € R" is a vector, the usual (Euclidean) lengthyof.e., />, v?
whenf : {—1,1}" — R, denotes the functiofi°dd(z) = (f(z) — f(—x))/2

=Y g5 P57 f(S)2 whenf : {~1,1}" — Riis a function
= Inf} ()

=Y Infy(f)foranyf: {-1,1}" - R

max{|S| : f(S) # 0} for nonzerof : {—1,1}" — R

. always denotes Probability, Expectation, (Variance, Covariance, ...) with re-

spect to thauniform probability distribution ofx on its range, unless otherwise
specified



1. Poincat Inequality Il.  Fori € [n], theith derivativeoperator (AKAith annihilation operatoy D; on
functionsf : {—1,1}" — R is defined by lettind; f : {—1,1}" — R be the function given by

f(a=0) - fat="Y)

(Dif)(z) = 2

(a) Show thaD, acts as the usual derivative with respecttdy showing that the Fourier expansion of
D;fis
(Dif)(x) = Z f(S)x s\ (4y-

S3i
Conclude that
Inf;(f) = [|Ds ff3-

(b) Thegradientof f, writtenVf : {—1,1}" — R", is defined byW f = (D1 f,Daf,...D,f). Show
that

E [|IV/(2)lI3] = 1(/).

(c) ExpresE, [||V f(x)||3] andVar|f] in terms of weighted sums of squared Fourier coefficients; then
conclude that foralf : {—1,1}" — R,

Var[f] <E[[|Vf]}3] . (1)

(d) Show that whery’s range is{—1, 1}, the above result generalizes Problem 1 from Problem Set 1
(whenT is treated as-1 andF is treated ag).

Remark: In analysis, (1) is known as theoinca® Inequalityfor the discrete cube.

2. Distortion lower bounds for £; — £5. Without going into what all the words mean, the discrete cube
{-1,1}"™ with the Hamming distancA(-, -) is an example of af; metric space For D > 1, we say that
the discrete cube can leenbedded intd, with distortion D if there is a mappind” : {—1,1}" — R™ for
somem € N such that:

¢ (a) [‘no contraction”] |F(z) — F(y)|l2 > Az, y) forall z,y, and
e (b) [‘expansion at mosD”] ||F(z) — F(y)|l2 < D - A(x,y) forall z, y.

In this exercise we will show that every embedding has distortion at {éast

(a) Show that for any : {—1,1}" — R,

T

Bl(@) - (-2’ < B[ (1) - rat=)’]. @
=1

by showing thaf| f°44||2 < I( f) and then expanding definitions. (In fagf°dd|2 < Var[f].)



(b) SupposeF’ : {—1,1}" — R™, and write F'(x) = (fi(z), f2(x),..., fm(z)) for functions f; :
{-1,1}" — R. By summing (2) ovei = 1...m, show that any" with no contraction must have expan-
sion at least/n.

Remark: Congratulations, you've proven the famous Enflo BourEmbedding/; metrics onV points
into ¢, can require distortioR/log N. A nearly matching upper bound 6f(y/log N log log N') was proven
only two years ago, via CS-theory methods.

3. Noise stability. For p € [-1, 1], thenoise operatofl,, (AKA Bonami-Beckner operatpon functions
f:{-1,1}" — Ris defined by letting, f : {—1,1}" — R be the function given by

(Tpf)(x) = E [f(y)),

Y~ px

where the notatioy ~, x means thay is ap-correlated copy of: Eachy; is chosen independently via

—z; with probability — £p.

i = {SCZ with probability 1 + %p,
2

Note that wherp > 0 this is the same as saying is set toz; with probability p and is set uniformly at
random with probabilityi — p. We further define thaoise stability off andg at p to be

Sp(f,9) = (f, Tpg) = E[f (2)(T,9) ()],
and defineS,(f) = S,(f, f) to be thenoise stability off at p.
(a) Show that the Fourier expansionff is
(T, = 3 o9 f(S)as.
SCln]

Conclude that

Sp(f,9) = > P17 (9)a(S).

SC[n]

(b) Letf:{—1,1}" — {—1,1} and lete € [0, 1]. Define thenoise sensitivity of at ¢ to be

NSc(f) = Pr[f(z) # f(y)],

m?y

wherex andy are chosen by first choosinguniformly at random and then formingby flipping each bit
of  with probabilitye. Show that

NSe(f) = % - %81726(]{‘)‘

(c) Show that for anyf : {—1,1}" — R we haveIan(p)(f) = S,(D;f), and alsoy>_1 , Infz(p)(f) =
)
5550 (f)-
op™P

Per Enflo,On the nonexistence of uniform homeomorphisms betwgepacesArkiv fér matematik 8, 1969.




4. Noam and Mario’s bound. Let f: {—1,1}" — R be a nonzero function witheg(f) < d.
(a) Generalize Problem 3(b) from Problem Set 1 by showingPraf f (x) # 0] > 2~¢. (Hint: same.)
(b) Show that if in additiory maps into]—1, 1] thenI(f) < d.
(c) Show that if in additiory is boolean-valued (maps infe-1, 1}) then f is ad2?~!-junta.

(d) Theaddress function witk address bitss Addry : {—1, 1}k+2k — {—1,1} defined by

Addrk($1, vy Tl Y1y - '7y2k) = Yz,

wherez = (21, .. .,xy) is identified with a number if2¥]. Show thatleg(Addr;) = k + 1. Conclude that
the junta size in (c) must be at le@st'! + d — 1.

5. Quasirandomness implies low correlation with juntas.

(a) Recall that forf, g : {~1,1}" — R, Cov|f,g] = Ee[f(2)9(z)] — Exl/(z) Eclg(z)]. Give a
formula forCov|f, g] in terms of the Fourier coefficients gfandg.

(b) Show that ifh : {—1,1}" — [—1,1] is (¢, )-quasirandom, the@ov|h, f] < /r/(1 — §)"+/e for
everyr-juntaf : {—1,1}" — {—1, 1}. Explain why this result is trivial i > In(1/¢)/¢.

(Hints: You may need: (a) Cauchy-Schwayz,a;b; < \/>_ a?4/>_ b?; (b) the inequality(1 — z)¥ <
exp(—zy)for0 <z <1,y >0.)

6. PCPPs may as well use Qr  Suppose a property of m-bit strings has PCPPs of lengthm). Show
that it has PCPPs of lengtioly (¢(m)) in which the tester makesqueries and then uses one of thpos-
sible Og predicatesy;, V vi, V vy, Uiy V Uiy V Vig, ...y Uiy V Uiy V Uy,

7. A hardness reduction that doesn't work. Suppose we try the following alternate reduction in at-
tempt to prove that the Unique Games Conjecture imglies; vs. % + n hardness for MagLin for every

n > 0. Given a CSRG = (V, E) over [k] with unique constraints, we reduce it to 3Lin” tester over
(fo : {—1,1}" — {—1,1}),ev as follows: the tester picks an edge w) € E uniformly at random and
then does the &st-Odg test on the collectiod fo44, fodd o 5, .., } whereo,_.,, is the edge constraint on
(v,w). (Recall thatr, ., acts on strings € {—1,1}* by o, (2) = y, wherey; = Tt (i))

(a) Show that the first part of the proof works out even better: The reduction ¢haptances with
val(G) > 1 — Ainto 3Lin CSPs with value at leagt— § — .

(b) Show that the second part of the proof can never work. Specifically, shovetfzatlessof whatG
is, the resultingLin system has an assignment with value at 1&6g8t— 6 /4.



Bonus Problem: Let p(z4,...,x,) be a multilinear polynomial over the reals of degree at ndodtet
= 1, E[X}] = 0,

Xi,...,X, be independent real random variables satisiE{;] = 0, E[X?] =
E[X}] < 9 for eachi € [n]. (For example(X1,...,X,) chosen uniformly at random frof—1, 1}

would be fine.) Show thdE[p(X7, ..., X,)*] < 99E[p(X1, ..., X,)?)%. (Hint: induction.)



