Problem Set 2

Due: Tuesday, February 20

Homework policy: I encourage you to try to solve the problems by yourself. However, you may collaborate as long as you do the writeup yourself and list the people you talked with.

Notation used:

$$
\begin{array}{cl}
{[n]} & : \text { the set }\{1,2, \ldots, n\} \\
x^{(i)} & : \text { the } n \text {-bit string } x \text { with its } i \text { th bit flipped, where } i \in[n] \\
x^{(i=b)} & : \text { the } n \text {-bit string } x \text { with its } i \text { th bit set to } b \\
\Delta(x, y) & : \text { the Hamming distance between } x, y \in\{-1,1\}^{n} ; \text { i.e., }\left|\left\{i: x_{i} \neq y_{i}\right\}\right| \\
S & : \\
\|f\|_{2} & :=\sqrt{\langle f, f\rangle}=\sqrt{\mathbf{E}\left[f^{2}\right]} \text { when } f:\{-1,1\}^{n} \rightarrow \mathbb{R} \text { is a function a subset of }[n] \text {, unless otherwise specified } \\
\|y\|_{2} & : \text { when } y \in \mathbb{R}^{n} \text { is a vector, the usual (Euclidean) length of } y ; \text { i.e., } \sqrt{\sum_{i} y_{i}^{2}} \\
f^{\text {odd }} & : \text { when } f:\{-1,1\}^{n} \rightarrow \mathbb{R}, \text { denotes the function } f^{\text {odd }}(x)=(f(x)-f(-x)) / 2 \\
\operatorname{Inf}_{i}^{(\rho)}(f) & :=\sum_{S \ni i} \rho^{|S|-1} \hat{f}(S)^{2} \text { when } f:\{-1,1\}^{n} \rightarrow \mathbb{R} \text { is a function } \\
\operatorname{Inf}_{i}(f) & :=\operatorname{Inf}_{i}^{(1)}(f) \\
\mathbb{I}(f) & :=\sum_{i=1}^{n} \operatorname{Inf}(f) \text { for any } f:\{-1,1\}^{n} \rightarrow \mathbb{R} \\
\operatorname{deg}(f) & : \max \{|S|: \hat{f}(S) \neq 0\} \text { for nonzero } f:\{-1,1\}^{n} \rightarrow \mathbb{R} \\
\operatorname{Pr}_{\boldsymbol{x}}, \mathbf{E}_{\boldsymbol{x}}, \text { etc. } & : \\
& \text { always denotes Probability, Expectation, (Variance, Covariance, } \ldots \text {) with re- } \\
& \text { spect to the uniform probability distribution of } \boldsymbol{x} \text { on its range, unless otherwise } \\
& \text { specified }
\end{array}
$$

1. Poincaré Inequality II. For $i \in[n]$, the i th derivative operator (AKA ith annihilation operator) D_{i} on functions $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is defined by letting $\mathrm{D}_{i} f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ be the function given by

$$
\left(\mathrm{D}_{i} f\right)(x)=\frac{f\left(x^{(i=1)}\right)-f\left(x^{(i=-1)}\right)}{2}
$$

(a) Show that D_{i} acts as the usual derivative with respect to x_{i} by showing that the Fourier expansion of $\mathrm{D}_{i} f$ is

$$
\left(\mathrm{D}_{i} f\right)(x)=\sum_{S \ni i} \hat{f}(S) x_{S \backslash\{i\}}
$$

Conclude that

$$
\operatorname{Inf}_{i}(f)=\left\|D_{i} f\right\|_{2}^{2}
$$

(b) The gradient of f, written $\nabla f:\{-1,1\}^{n} \rightarrow \mathbb{R}^{n}$, is defined by $\nabla f=\left(\mathrm{D}_{1} f, \mathrm{D}_{2} f, \ldots \mathrm{D}_{n} f\right)$. Show that

$$
\underset{\boldsymbol{x}}{\mathbf{E}}\left[\|\nabla f(\boldsymbol{x})\|_{2}^{2}\right]=\mathbb{I}(f)
$$

(c) Express $\mathbf{E}_{\boldsymbol{x}}\left[\|\nabla f(\boldsymbol{x})\|_{2}^{2}\right]$ and $\operatorname{Var}[f]$ in terms of weighted sums of squared Fourier coefficients; then conclude that for all $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\operatorname{Var}[f] \leq \mathbf{E}\left[\|\nabla f\|_{2}^{2}\right] \tag{1}
\end{equation*}
$$

(d) Show that when f 's range is $\{-1,1\}$, the above result generalizes Problem 1 from Problem Set 1 (when T is treated as -1 and F is treated as 1).

Remark: In analysis, (1) is known as the Poincaré Inequality for the discrete cube.
2. Distortion lower bounds for $\ell_{1} \rightarrow \ell_{2}$. Without going into what all the words mean, the discrete cube $\{-1,1\}^{n}$ with the Hamming distance $\Delta(\cdot, \cdot)$ is an example of an ℓ_{1} metric space. For $D \geq 1$, we say that the discrete cube can be embedded into ℓ_{2} with distortion D if there is a mapping $F:\{-1,1\}^{n} \rightarrow \mathbb{R}^{m}$ for some $m \in \mathbb{N}$ such that:

- (a) ["no contraction"] $\|F(x)-F(y)\|_{2} \geq \Delta(x, y)$ for all x, y, and
- (b) ["expansion at most $D "] \quad\|F(x)-F(y)\|_{2} \leq D \cdot \Delta(x, y)$ for all x, y.

In this exercise we will show that every embedding has distortion at least \sqrt{n}.
(a) Show that for any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\underset{\boldsymbol{x}}{\mathbf{E}}\left[(f(\boldsymbol{x})-f(-\boldsymbol{x}))^{2}\right] \leq \sum_{i=1}^{n} \underset{\boldsymbol{x}}{\mathbf{E}}\left[\left(f\left(\boldsymbol{x}^{(i=1)}\right)-f\left(\boldsymbol{x}^{(i=-1)}\right)\right)^{2}\right] \tag{2}
\end{equation*}
$$

by showing that $\left\|f^{\text {odd }}\right\|_{2}^{2} \leq \mathbb{I}(f)$ and then expanding definitions. (In fact, $\left\|f^{\text {odd }}\right\|_{2}^{2} \leq \operatorname{Var}[f]$.)
(b) Suppose $F:\{-1,1\}^{n} \rightarrow \mathbb{R}^{m}$, and write $F(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$ for functions f_{i} : $\{-1,1\}^{n} \rightarrow \mathbb{R}$. By summing (2) over $i=1 \ldots m$, show that any F with no contraction must have expansion at least \sqrt{n}.

Remark: Congratulations, you've proven the famous Enflo Bound ${ }^{1}$: Embedding ℓ_{1} metrics on N points into ℓ_{2} can require distortion $\sqrt{\log N}$. A nearly matching upper bound of $O(\sqrt{\log N} \log \log N)$ was proven only two years ago, via CS-theory methods.
3. Noise stability. For $\rho \in[-1,1]$, the noise operator T_{ρ} (AKA Bonami-Beckner operator) on functions $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is defined by letting $T_{\rho} f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ be the function given by

$$
\left(T_{\rho} f\right)(x)=\underset{\boldsymbol{y} \sim \sim_{\rho} x}{\mathbf{E}}[f(\boldsymbol{y})],
$$

where the notation $\boldsymbol{y} \sim{ }_{\rho} x$ means that \boldsymbol{y} is a ρ-correlated copy of x : Each \boldsymbol{y}_{i} is chosen independently via

$$
\boldsymbol{y}_{i}= \begin{cases}x_{i} & \text { with probability } \frac{1}{2}+\frac{1}{2} \rho \\ -x_{i} & \text { with probability } \frac{1}{2}-\frac{1}{2} \rho\end{cases}
$$

Note that when $\rho \geq 0$ this is the same as saying \boldsymbol{y}_{i} is set to x_{i} with probability ρ and is set uniformly at random with probability $1-\rho$. We further define the noise stability of f and g at ρ to be

$$
\mathbb{S}_{\rho}(f, g)=\left\langle f, T_{\rho} g\right\rangle=\underset{\boldsymbol{x}}{\mathbf{E}}\left[f(\boldsymbol{x})\left(T_{\rho} g\right)(\boldsymbol{x})\right]
$$

and define $\mathbb{S}_{\rho}(f)=\mathbb{S}_{\rho}(f, f)$ to be the noise stability of f at ρ.
(a) Show that the Fourier expansion of $T_{\rho} f$ is

$$
\left(T_{\rho} f\right)(x)=\sum_{S \subseteq[n]} \rho^{|S|} \hat{f}(S) x_{S}
$$

Conclude that

$$
\mathbb{S}_{\rho}(f, g)=\sum_{S \subseteq[n]} \rho^{|S|} \hat{f}(S) \hat{g}(S)
$$

(b) Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and let $\epsilon \in[0,1]$. Define the noise sensitivity of f at ϵ to be

$$
\mathbb{N S}_{\epsilon}(f)=\underset{\boldsymbol{x}, \boldsymbol{y}}{\mathbf{P r}}[f(\boldsymbol{x}) \neq f(\boldsymbol{y})]
$$

where \boldsymbol{x} and \boldsymbol{y} are chosen by first choosing \boldsymbol{x} uniformly at random and then forming \boldsymbol{y} by flipping each bit of \boldsymbol{x} with probability ϵ. Show that

$$
\mathbb{N S}_{\epsilon}(f)=\frac{1}{2}-\frac{1}{2} \mathbb{S}_{1-2 \epsilon}(f)
$$

(c) Show that for any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ we have $\operatorname{Inf}_{i}^{(\rho)}(f)=\mathbb{S}_{\rho}\left(D_{i} f\right)$, and also $\sum_{i=1}^{n} \operatorname{Inf}_{i}^{(\rho)}(f)=$ $\frac{\partial}{\partial \rho} \mathbb{S}_{\rho}(f)$.

[^0]4. Noam and Mario's bound. Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ be a nonzero function with $\operatorname{deg}(f) \leq d$.
(a) Generalize Problem 3(b) from Problem Set 1 by showing that $\operatorname{Pr}_{\boldsymbol{x}}[f(\boldsymbol{x}) \neq 0] \geq 2^{-d}$. (Hint: same.)
(b) Show that if in addition f maps into $[-1,1]$ then $\mathbb{I}(f) \leq d$.
(c) Show that if in addition f is boolean-valued (maps into $\{-1,1\}$) then f is a $d 2^{d-1}$-junta.
(d) The address function with k address bits is $\operatorname{Addr}_{k}:\{-1,1\}^{k+2^{k}} \rightarrow\{-1,1\}$ defined by
$$
\operatorname{Addr}_{k}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{2^{k}}\right)=y_{x}
$$
where $x=\left(x_{1}, \ldots, x_{k}\right)$ is identified with a number in $\left[2^{k}\right]$. Show that $\operatorname{deg}\left(\operatorname{Addr}_{k}\right)=k+1$. Conclude that the junta size in (c) must be at least $2^{d-1}+d-1$.

5. Quasirandomness implies low correlation with juntas.

(a) Recall that for $f, g:\{-1,1\}^{n} \rightarrow \mathbb{R}, \operatorname{Cov}[f, g]=\mathbf{E}_{\boldsymbol{x}}[f(\boldsymbol{x}) g(\boldsymbol{x})]-\mathbf{E}_{\boldsymbol{x}}[f(\boldsymbol{x})] \mathbf{E}_{\boldsymbol{x}}[g(\boldsymbol{x})]$. Give a formula for $\operatorname{Cov}[f, g]$ in terms of the Fourier coefficients of f and g.
(b) Show that if $h:\{-1,1\}^{n} \rightarrow[-1,1]$ is (ϵ, δ)-quasirandom, then $\operatorname{Cov}[h, f]<\sqrt{r /(1-\delta)^{r}} \sqrt{\epsilon}$ for every r-junta $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Explain why this result is trivial if $r \geq \ln (1 / \epsilon) / \delta$.
(Hints: You may need: (a) Cauchy-Schwarz, $\sum a_{i} b_{i} \leq \sqrt{\sum a_{i}^{2}} \sqrt{\sum b_{i}^{2}}$; (b) the inequality $(1-x)^{y} \leq$ $\exp (-x y)$ for $0 \leq x<1, y \geq 0$.)
6. PCPPs may as well use Or_{3}. Suppose a property \mathcal{P} of m-bit strings has PCPPs of length $\ell(m)$. Show that it has PCPPs of length poly $(\ell(m))$ in which the tester makes 3 queries and then uses one of the 8 possible Or_{3} predicates: $v_{i_{1}} \vee v_{i_{2}} \vee v_{i_{3}}, \quad \bar{v}_{i_{1}} \vee v_{i_{2}} \vee v_{i_{3}}, \quad \ldots, \quad \bar{v}_{i_{1}} \vee \bar{v}_{i_{2}} \vee \bar{v}_{i_{3}}$.
7. A hardness reduction that doesn't work. Suppose we try the following alternate reduction in attempt to prove that the Unique Games Conjecture implies $1-\eta$ vs. $\frac{1}{2}+\eta$ hardness for Max-3Lin for every $\eta>0$. Given a $\operatorname{CSP} \mathcal{G}=(V, E)$ over $[k]$ with unique constraints, we reduce it to a " 3 Lin" tester over $\left(f_{v}:\{-1,1\}^{n} \rightarrow\{-1,1\}\right)_{v \in V}$ as follows: the tester picks an edge $(v, w) \in E$ uniformly at random and then does the Håst- $\operatorname{Odd}_{\delta}$ test on the collection $\left\{f_{v}^{\text {odd }}, f_{w}^{\text {odd }} \circ \sigma_{v \rightarrow w}\right\}$ where $\sigma_{v \rightarrow w}$ is the edge constraint on (v, w). (Recall that $\sigma_{v \rightarrow w}$ acts on strings $x \in\{-1,1\}^{k}$ by $\sigma_{v \rightarrow w}(x)=y$, where $y_{j}=x_{\sigma_{v \rightarrow w}^{-1}(i)}$.)
(a) Show that the first part of the proof works out even better: The reduction maps \mathcal{G} instances with $\operatorname{val}(\mathcal{G}) \geq 1-\lambda$ into 3 Lin CSPs with value at least $1-\delta-\lambda$.
(b) Show that the second part of the proof can never work. Specifically, show that regardless of what \mathcal{G} is, the resulting 3 L in system has an assignment with value at least $5 / 8-\delta / 4$.

Bonus Problem: Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial over the reals of degree at most d. Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ be independent real random variables satisfying $\mathbf{E}\left[\boldsymbol{X}_{i}\right]=0, \mathbf{E}\left[\boldsymbol{X}_{i}^{2}\right]=1, \mathbf{E}\left[\boldsymbol{X}_{i}^{3}\right]=0$, $\mathbf{E}\left[\boldsymbol{X}_{i}^{4}\right] \leq 9$ for each $i \in[n]$. (For example, $\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)$ chosen uniformly at random from $\{-1,1\}^{n}$ would be fine.) Show that $\mathbf{E}\left[p\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)^{4}\right] \leq 9^{d} \mathbf{E}\left[p\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)^{2}\right]^{2}$. (Hint: induction.)

[^0]: ${ }^{1}$ Per Enflo, On the nonexistence of uniform homeomorphisms between L_{p}-spaces, Arkiv för matematik 8, 1969 .

