
Analysis of Boolean Functions CMU 18-859S, Spring 2007

PROBLEM SET 2
Due: Tuesday, February 20

Homework policy: I encourage you to try to solve the problems by yourself. However, you may collaborate
as long as you do the writeup yourself and list the people you talked with.

Notation used:

[n] : the set{1, 2, . . . , n}
x(i) : then-bit stringx with its ith bit flipped, wherei ∈ [n]

x(i=b) : then-bit stringx with its ith bit set tob

∆(x, y) : the Hamming distance betweenx, y ∈ {−1, 1}n; i.e., |{i : xi 6= yi}|
S : always a subset of[n], unless otherwise specified

‖f‖2 : =
√
〈f, f〉 =

√
E[f2] whenf : {−1, 1}n → R is a function

‖y‖2 : wheny ∈ Rn is a vector, the usual (Euclidean) length ofy; i.e.,
√∑

i y
2
i

fodd : whenf : {−1, 1}n → R, denotes the functionfodd(x) = (f(x)− f(−x))/2

Inf(ρ)
i (f) : =

∑
S3i ρ

|S|−1f̂(S)2 whenf : {−1, 1}n → R is a function

Infi(f) : = Inf(1)
i (f)

I(f) : =
∑n

i=1 Infi(f) for anyf : {−1, 1}n → R

deg(f) : max{|S| : f̂(S) 6= 0} for nonzerof : {−1, 1}n → R

Prx, Ex, etc. : always denotes Probability, Expectation, (Variance, Covariance, . . . ) with re-
spect to theuniformprobability distribution ofx on its range, unless otherwise
specified
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1. Poincaŕe Inequality II. For i ∈ [n], theith derivativeoperator (AKAith annihilation operator) Di on
functionsf : {−1, 1}n → R is defined by lettingDif : {−1, 1}n → R be the function given by

(Dif)(x) =
f(x(i=1))− f(x(i=−1))

2
.

(a) Show thatDi acts as the usual derivative with respect toxi by showing that the Fourier expansion of
Dif is

(Dif)(x) =
∑

S3i

f̂(S)xS\{i}.

Conclude that
Infi(f) = ‖Dif‖2

2.

(b) Thegradientof f , written∇f : {−1, 1}n → Rn, is defined by∇f = (D1f, D2f, . . .Dnf). Show
that

E
x

[‖∇f(x)‖2
2

]
= I(f).

(c) ExpressEx

[‖∇f(x)‖2
2

]
andVar[f ] in terms of weighted sums of squared Fourier coefficients; then

conclude that for allf : {−1, 1}n → R,

Var[f ] ≤ E
[‖∇f‖2

2

]
. (1)

(d) Show that whenf ’s range is{−1, 1}, the above result generalizes Problem 1 from Problem Set 1
(whenT is treated as−1 andF is treated as1).

Remark: In analysis, (1) is known as thePoincaŕe Inequalityfor the discrete cube.

2. Distortion lower bounds for `1 → `2. Without going into what all the words mean, the discrete cube
{−1, 1}n with the Hamming distance∆(·, ·) is an example of aǹ1 metric space. ForD ≥ 1, we say that
the discrete cube can beembedded intò2 with distortionD if there is a mappingF : {−1, 1}n → Rm for
somem ∈ N such that:

• (a) [“no contraction”] ‖F (x)− F (y)‖2 ≥ ∆(x, y) for all x, y, and

• (b) [“expansion at mostD”] ‖F (x)− F (y)‖2 ≤ D ·∆(x, y) for all x, y.

In this exercise we will show that every embedding has distortion at least
√

n.

(a) Show that for anyf : {−1, 1}n → R,

E
x
[(f(x)− f(−x))2] ≤

n∑

i=1

E
x

[(
f(x(i=1))− f(x(i=−1))

)2
]

, (2)

by showing that‖fodd‖2
2 ≤ I(f) and then expanding definitions. (In fact,‖fodd‖2

2 ≤ Var[f ].)
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(b) SupposeF : {−1, 1}n → Rm, and writeF (x) = (f1(x), f2(x), . . . , fm(x)) for functionsfi :
{−1, 1}n → R. By summing (2) overi = 1 . . .m, show that anyF with no contraction must have expan-
sion at least

√
n.

Remark: Congratulations, you’ve proven the famous Enflo Bound1: Embedding̀ 1 metrics onN points
into `2 can require distortion

√
log N . A nearly matching upper bound ofO(

√
log N log log N) was proven

only two years ago, via CS-theory methods.

3. Noise stability. For ρ ∈ [−1, 1], thenoise operatorTρ (AKA Bonami-Beckner operator) on functions
f : {−1, 1}n → R is defined by lettingTρf : {−1, 1}n → R be the function given by

(Tρf)(x) = E
y∼ρx

[f(y)],

where the notationy ∼ρ x means thaty is aρ-correlated copy ofx: Eachyi is chosen independently via

yi =

{
xi with probability 1

2 + 1
2ρ,

−xi with probability 1
2 − 1

2ρ.

Note that whenρ ≥ 0 this is the same as sayingyi is set toxi with probabilityρ and is set uniformly at
random with probability1− ρ. We further define thenoise stability off andg at ρ to be

Sρ(f, g) = 〈f, Tρg〉 = E
x
[f(x)(Tρg)(x)],

and defineSρ(f) = Sρ(f, f) to be thenoise stability off at ρ.

(a) Show that the Fourier expansion ofTρf is

(Tρf)(x) =
∑

S⊆[n]

ρ|S|f̂(S)xS .

Conclude that
Sρ(f, g) =

∑

S⊆[n]

ρ|S|f̂(S)ĝ(S).

(b) Letf : {−1, 1}n → {−1, 1} and letε ∈ [0, 1]. Define thenoise sensitivity off at ε to be

NSε(f) = Pr
x,y

[f(x) 6= f(y)],

wherex andy are chosen by first choosingx uniformly at random and then formingy by flipping each bit
of x with probabilityε. Show that

NSε(f) = 1
2 − 1

2S1−2ε(f).

(c) Show that for anyf : {−1, 1}n → R we haveInf(ρ)
i (f) = Sρ(Dif), and also

∑n
i=1 Inf(ρ)

i (f) =
∂
∂ρSρ(f).

1Per Enflo,On the nonexistence of uniform homeomorphisms betweenLp-spaces, Arkiv f ör matematik 8, 1969.
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4. Noam and Mario’s bound. Let f : {−1, 1}n → R be a nonzero function withdeg(f) ≤ d.

(a) Generalize Problem 3(b) from Problem Set 1 by showing thatPrx[f(x) 6= 0] ≥ 2−d. (Hint: same.)

(b) Show that if in additionf maps into[−1, 1] thenI(f) ≤ d.

(c) Show that if in additionf is boolean-valued (maps into{−1, 1}) thenf is ad2d−1-junta.

(d) Theaddress function withk address bitsis Addrk : {−1, 1}k+2k → {−1, 1} defined by

Addrk(x1, . . . , xk, y1, . . . , y2k) = yx,

wherex = (x1, . . . , xk) is identified with a number in[2k]. Show thatdeg(Addrk) = k + 1. Conclude that
the junta size in (c) must be at least2d−1 + d− 1.

5. Quasirandomness implies low correlation with juntas.

(a) Recall that forf, g : {−1, 1}n → R, Cov[f, g] = Ex[f(x)g(x)] − Ex[f(x)]Ex[g(x)]. Give a
formula forCov[f, g] in terms of the Fourier coefficients off andg.

(b) Show that ifh : {−1, 1}n → [−1, 1] is (ε, δ)-quasirandom, thenCov[h, f ] <
√

r/(1− δ)r
√

ε for
everyr-juntaf : {−1, 1}n → {−1, 1}. Explain why this result is trivial ifr ≥ ln(1/ε)/δ.

(Hints: You may need: (a) Cauchy-Schwarz,
∑

aibi ≤
√∑

a2
i

√∑
b2
i ; (b) the inequality(1 − x)y ≤

exp(−xy) for 0 ≤ x < 1, y ≥ 0.)

6. PCPPs may as well use Or3. Suppose a propertyP of m-bit strings has PCPPs of length`(m). Show
that it has PCPPs of lengthpoly(`(m)) in which the tester makes3 queries and then uses one of the8 pos-
sible Or3 predicates:vi1 ∨ vi2 ∨ vi3 , vi1 ∨ vi2 ∨ vi3 , . . . , vi1 ∨ vi2 ∨ vi3 .

7. A hardness reduction that doesn’t work. Suppose we try the following alternate reduction in at-
tempt to prove that the Unique Games Conjecture implies1− η vs. 1

2 + η hardness for Max-3Lin for every
η > 0. Given a CSPG = (V,E) over [k] with unique constraints, we reduce it to a “3Lin” tester over
(fv : {−1, 1}n → {−1, 1})v∈V as follows: the tester picks an edge(v, w) ∈ E uniformly at random and
then does the H̊ast-Oddδ test on the collection{fodd

v , fodd
w ◦ σv→w} whereσv→w is the edge constraint on

(v, w). (Recall thatσv→w acts on stringsx ∈ {−1, 1}k by σv→w(x) = y, whereyj = xσ−1
v→w(i).)

(a) Show that the first part of the proof works out even better: The reduction mapsG instances with
val(G) ≥ 1− λ into 3Lin CSPs with value at least1− δ − λ.

(b) Show that the second part of the proof can never work. Specifically, show thatregardlessof whatG
is, the resulting3Lin system has an assignment with value at least5/8− δ/4.
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Bonus Problem: Let p(x1, . . . , xn) be a multilinear polynomial over the reals of degree at mostd. Let
X1, . . . , Xn be independent real random variables satisfyingE[Xi] = 0, E[X2

i ] = 1, E[X3
i ] = 0,

E[X4
i ] ≤ 9 for eachi ∈ [n]. (For example,(X1, . . . ,Xn) chosen uniformly at random from{−1, 1}n

would be fine.) Show thatE[p(X1, . . . ,Xn)4] ≤ 9dE[p(X1, . . . ,Xn)2]2. (Hint: induction.)
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