Problem Set 5

Due: Monday, Oct. 15, beginning of class

Homework policy: Please try to work on the homework by yourself; it isn't intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

1. Suppose $f(x)=\operatorname{sgn}\left(a_{0}+a_{1} x_{1}+\cdots a_{n} x_{n}\right)$ is an LTF with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq \cdots \geq\left|a_{n}\right|$. Show that $\operatorname{Inf} f_{1}[f] \geq$ $\boldsymbol{\operatorname { I n f }}_{2}[f] \geq \cdots \geq \boldsymbol{\operatorname { I n f }}_{n}[f]$.
2. In class we will discuss the FKN Theorem and the proof of the following: If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ has $\mathbf{E}[f]=0$ and $\mathbf{W}^{1}[f] \geq 1-\delta$ then f is $O(\delta)$-close to $\pm \chi_{i}$ for some $i \in[n]$. Assuming this, show the following: If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ has $\mathbf{W}^{\leq 1}[f] \geq 1-\delta$ then f is $O(\delta)$-close to a 1 -junta. (Hint: define $g\left(x_{0}, x\right)=x_{0} f\left(x_{0} x\right)$.)
3. (a) Suppose $\ell:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is defined by $\ell(x)=a_{0}+a_{1} x_{1}+\cdots a_{n} x_{n}$. Define $\widetilde{\ell}:\{-1,1\}^{n+1} \rightarrow \mathbb{R}$ by $\widetilde{\ell}\left(x_{0}, \ldots, x_{n}\right)=a_{0} x_{0}+a_{1} x_{1}+\cdots a_{n} x_{n}$. Show that $\|\widetilde{\ell}\|_{1}=\|\ell\|_{1}$ and $\|\widetilde{\ell}\|_{2}^{2}=\|\ell\|_{2}^{2}$.
(b) Show that if $f=\operatorname{sgn}(\ell)$ is any LTF then $\mathbf{W}^{\leq 1}[f] \geq 1 / 2$. (Recall that we proved this in class assuming $a_{0}=0$ using Homework \#2, Problem \#6.)
4. Consider the sequence of LTFs $f_{n}:\{-1,1\}^{n} \rightarrow\{0,1\}$ defined by $f_{n}(x)=1$ if and only if $\sum_{i=1}^{n} \frac{1}{\sqrt{n}} x_{i}>t$. (I.e., f_{n} is the indicator of the Hamming ball of radius $\frac{n}{2}-\frac{t}{2} \sqrt{n}$ centered at $(1,1, \ldots, 1)$.) Show that

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left[f_{n}\right]=\bar{\Phi}(t), \quad \lim _{n \rightarrow \infty} \mathbf{W}^{1}\left[f_{n}\right]=\phi(t)^{2}
$$

where ϕ is the pdf of a standard Gaussian and $\bar{\Phi}$ is the complementary cdf (i.e., $\bar{\Phi}(u)=\int_{u}^{\infty} \phi$). You may use the Central Limit Theorem without worrying about error bounds.
5. For integer $0 \leq k \leq n$, define $\mathcal{K}_{k}:\{-1,1\}^{n} \rightarrow \mathbb{R}$ by $\mathcal{K}_{k}(x)=\sum_{|S|=k} x^{S}$. Since \mathcal{K}_{k} is symmetric, the value $\mathcal{K}_{k}(x)$ depends only on the number z of -1 's in x; or equivalently, on $\sum_{i=1}^{n} x_{i}$. Thus we may define $\mathcal{K}_{k}:\{0,1, \ldots, n\} \rightarrow \mathbb{R}$ by $\mathcal{K}_{k}(z)=\mathcal{K}_{k}(x)$ for any x with $\sum_{i} x_{i}=n-2 z$.
(a) Show that $\mathcal{K}_{k}(z)$ can be expressed as a degree- k polynomial in z. It is called the Kravchuk (or Krawtchouk) polynomial of degree k. (The dependence on n is usually implicit.)
(b) Show that $\sum_{k=0}^{n} \mathcal{K}_{k}(x)=\left\{\begin{array}{ll}2^{n} & \text { if } x=(1, \ldots, 1), \\ 0 & \text { else. }\end{array}\right.$.
(c) Show for $\rho \in[-1,1]$ that $\sum_{k=0}^{n} \mathcal{K}_{k}(x) \rho^{k}=2^{n} \operatorname{Pr}[\boldsymbol{y}=(1, \ldots, 1)]$, where $\boldsymbol{y}=N_{\rho}(x)$.
(d) Deduce the following generating function identity: $\mathcal{K} s_{k}(z)=\left[\rho^{k}\right]\left((1-\rho)^{z}(1+\rho)^{n-z}\right)$; i.e., the coefficient on ρ^{k} in $(1-\rho)^{z}(1+\rho)^{n-z}$.
6. Say that $\overrightarrow{\boldsymbol{Z}}, \overrightarrow{\boldsymbol{Z}}^{\prime}$ are " ρ-correlated d-dimensional Gaussians" if the pairs $\left(\overrightarrow{\boldsymbol{Z}}_{1}, \overrightarrow{\boldsymbol{Z}}^{\prime}{ }_{1}\right), \ldots,\left(\overrightarrow{\boldsymbol{Z}}_{d}, \overrightarrow{\boldsymbol{Z}}^{\prime}{ }_{d}\right)$ are independent ρ-correlated Gaussians. Now given $f: \mathbb{R}^{d} \rightarrow\{-1,1\}$ and $\epsilon \in \mathbb{R}$, define the rotation sensitivity of f at ϵ to be

$$
\mathbf{R S}_{f}(\epsilon)=\mathbf{P r}\left[f(\overrightarrow{\boldsymbol{Z}}) \neq f\left(\overrightarrow{\boldsymbol{Z}}^{\prime}\right)\right]
$$

where $\overrightarrow{\boldsymbol{Z}}$ and $\overrightarrow{\boldsymbol{Z}}^{\prime}$ are $\cos (\epsilon)$-correlated d-dimensional Gaussians.
(a) Show that $\mathbf{R S}_{f}(0)=0, \mathbf{R S}_{f}(\pi / 2)=\frac{1}{2}$ if $\operatorname{Pr}[f(\overrightarrow{\boldsymbol{Z}})=1]=\frac{1}{2}$, and $\mathbf{R S}_{f}(\pi)=1$ if f is an odd function (meaning $f(-x)=-f(x)$).
(b) For $j=0,1, \ldots, \ell$, let \vec{u}_{j} be the unit vector in \mathbb{R}^{2} making an angle of $j \epsilon$ with the x-axis. Let $\overrightarrow{\boldsymbol{Y}}$ be a standard 2-dimensional Gaussian and define $\boldsymbol{Z}_{j}=\left\langle\vec{u}_{j}, \overrightarrow{\boldsymbol{Y}}\right\rangle$. Show that \boldsymbol{Z}_{j} and \boldsymbol{Z}_{j+k} are $\cos (k \epsilon)$-correlated standard Gaussians.
(c) Describe how to generate a sequence of d-dimensional Gaussians $\overrightarrow{\boldsymbol{Z}}^{(0)}, \ldots, \overrightarrow{\boldsymbol{Z}}^{(\ell)}$ such that each pair $\overrightarrow{\boldsymbol{Z}}^{(j)}, \overrightarrow{\boldsymbol{Z}}^{(j+k)}$ is $\cos (k e)$-correlated (as defined in the first sentence of this problem).
(d) Show that for any $f: \mathbb{R}^{d} \rightarrow\{-1,1\}, \epsilon \in \mathbb{R}$, and $\ell \in \mathbb{N}^{+}$we have $\mathbf{R S}_{f}(\ell \epsilon) \leq \ell \mathbf{R S}_{f}(\epsilon)$. (Hint: previous part + union bound.)
(e) Let $f: \mathbb{R}^{d} \rightarrow\{-1,1\}$ satisfy $\operatorname{Pr}[f(\overrightarrow{\boldsymbol{Z}})=1]=1 / 2$ where $\overrightarrow{\boldsymbol{Z}}$ is a d-dimensional Gaussian. Let $\epsilon=\frac{\pi}{2 \ell}$ for some $\ell \in \mathbb{N}^{+}$. Show that $\mathbf{R S}_{f}(\epsilon) \geq \epsilon / \pi$. (This last result is a special case of a 1985 theorem of Borell and is also generalization of a special case of the Gaussian Isoperimetric Inequality...)
7. (Bonus problem due to [JOW'12].) Let \boldsymbol{X} and \boldsymbol{Y} be symmetric random variables (meaning $-\boldsymbol{X}$ has the same distribution as \boldsymbol{X}, and similarly for $\boldsymbol{Y})$. Show that $\min \{\operatorname{Var}[\boldsymbol{X}], \operatorname{Var}[\boldsymbol{Y}]\} \leq$ $C \cdot \operatorname{Var}[|\boldsymbol{X}+\boldsymbol{Y}|]$ for some universal constant C.

