Analysis of Boolean Functions CMU 18-859S / 21-801A, Fall 2012

PROBLEM SET 4
Due: Monday, Oct. 8, beginning of class

Homework policy: Please try to work on the homework by yourself; it isn’t intended to be too
difficult. Questions about the homework or other course material can be asked on Piazza.

1. Informally: a “one-way permutation” is a bijective function f : Fj — IFJ which is easy to compute
on all inputs but hard to invert on more than a negligible fraction of inputs; a “pseudorandom
generator” is a function g : IF’Z" — [F3' for m > k whose output on a random input “looks unpre-
dictable” to any efficient algorithm. Goldreich and Levin proposed the following construction of
the latter from the former: for 2 =2n, m = 2n + 1, define

g(r,s)=(r,f(s),r-s),

where r,s € F;. When g’s input (r,s) is uniformly random then so is the first 2n bits of its
output (using the fact that f is a bijection). The key to the analysis is showing that the final bit,
r-s, is highly unpredictable to efficient algorithms even given the first 2n bits (r, f(s)). This is
proved by contradiction.

(a) Suppose that an adversary has a deterministic, efficient algorithm A good at predicting
the bit r - s:
Pr [A(r,f(s))=r-s]=1+7y.
r,s~IFy

Show there exists B < IF; with |B|/2" = %)f such that for all s € B,

Pr [A(r,f(s) =r-s]= 1+iy.

(b) Switching to +1 notation in the output, deduce mw) =1y for all s € B.

(c) Show that the adversary can efficiently compute s given f(s) (with high probability) for
any s € B. If y is nonnegligible this contradicts the assumption that f is “one-way”. (Hint:
use the Goldreich—Levin algorithm.)

(d) Deduce the same conclusion even if A is a randomized algorithm.
2. Given f :{-1,1)" — {-1,1} and integer k& = 2 let A, = $:(WZ1[f1+ W=2[f1+ .-+ WZ*[£]), the

“average of the first % tail weights”. (Recall W=‘[f]= Y iS|=¢ £(8)2.) Show that NSy:[f]is the
same as Ap, up to universal constants. E.g., you might show 1_2672 A <NSqylf1<Ayp.

3. Let f:{-1,1}* — R and let ¢ > 0. Show that f is e-concentrated on a collection ¥ < 2" with
I Z| <l f ﬂ?/e. (Recall the notation from Problem 1 on Homework 3.)

4. For this problem, recall Problem 3 from Homework 3.

(a) Let H <} be a subspace and let z € I']. Let pp.+, : F; — R be the probability density
function associated to the uniform probability distribution on the affine subspace H + z.
Write the Fourier expansion of ¢z ;.



(b) For f:IF} — R and z € IF}, define the function f*?: F} — R by f**(x) = f(x +2). Show that
1% =@ * f. (In writing ¢, we are treating {z} as a 0-dimensional affine subspace and
using the notation of the previous problem.) Show also that f*2(y) = (=1)"?f(y).

(¢) Prove the “Poisson Summation Formula”,

E[f(h+2)]= ) Xy @F ().

yeHL
(Hint: use Plancherel on (@, f*%).)

. Give a direct (Fourier-free) simple proof that if f:{-1,1}" — R and (J | 2) is a §-random
restriction then E[Inf;[fj.]] = §Inf;[f] for any i € [n].

. In this exercise you will prove the “Baby Switching Lemma”: If ¢ =T1vToVv:--v T is a DNF of
width w =1 over variables x1,...,x, and (J | 2) is a 6-random restriction (0 < § < 1/3), then

Pr(f;, is not a constant function] < 36w.

(a) Suppose R =(J | z) is a “bad” restriction, meaning that ¢, is not a constant function.
Let i be minimal such that (T';)|, is neither constantly True or False, and let j be minimal
such that x; or x; appears in this restricted term. Show there is a unique restriction
R’ =(J\{j}|2') extending R which doesn’t falsify T';.

(b) Suppose we enumerate all bad restrictions R, and for each we write down the associated R’
as in part (6a). Show that no restriction is written more than w times.

(c¢) If(J | 2) is a 6-random restriction and R and R’ are as in part (6a), show that Pr[(J | 2) =
R]=ZPr((J|z)=R'l.
(d) Complete the proof by showing Pr[(¢J | 2) is bad] < 3dw.



