Problem Set 4

Due: Monday, Oct. 8, beginning of class

Homework policy: Please try to work on the homework by yourself; it isn't intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

1. Informally: a "one-way permutation" is a bijective function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ which is easy to compute on all inputs but hard to invert on more than a negligible fraction of inputs; a "pseudorandom generator" is a function $g: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{m}$ for $m>k$ whose output on a random input "looks unpredictable" to any efficient algorithm. Goldreich and Levin proposed the following construction of the latter from the former: for $k=2 n, m=2 n+1$, define

$$
g(r, s)=(r, f(s), r \cdot s)
$$

where $r, s \in \mathbb{F}_{2}^{n}$. When g 's input ($\boldsymbol{r}, \boldsymbol{s}$) is uniformly random then so is the first $2 n$ bits of its output (using the fact that f is a bijection). The key to the analysis is showing that the final bit, $\boldsymbol{r} \cdot \boldsymbol{s}$, is highly unpredictable to efficient algorithms even given the first $2 n$ bits $(\boldsymbol{r}, f(\boldsymbol{s})$). This is proved by contradiction.
(a) Suppose that an adversary has a deterministic, efficient algorithm A good at predicting the bit $\boldsymbol{r} \cdot \boldsymbol{s}$:

$$
\underset{\boldsymbol{r}, \boldsymbol{s} \sim \mathbb{F}_{2}^{n}}{\mathbf{P r}^{n}}[A(\boldsymbol{r}, f(\boldsymbol{s}))=\boldsymbol{r} \cdot \boldsymbol{s}] \geq \frac{1}{2}+\gamma .
$$

Show there exists $B \subseteq \mathbb{F}_{2}^{n}$ with $|B| / 2^{n} \geq \frac{1}{2} \gamma$ such that for all $s \in B$,

$$
\underset{\boldsymbol{r} \sim \mathbb{F}_{2}^{n}}{\mathbf{P r}_{2}}[A(\boldsymbol{r}, f(s))=\boldsymbol{r} \cdot s] \geq \frac{1}{2}+\frac{1}{2} \gamma .
$$

(b) Switching to ± 1 notation in the output, deduce $\overline{A_{[n] \mid f(s)}}(s) \geq \gamma$ for all $s \in B$.
(c) Show that the adversary can efficiently compute s given $f(s)$ (with high probability) for any $s \in B$. If γ is nonnegligible this contradicts the assumption that f is "one-way". (Hint: use the Goldreich-Levin algorithm.)
(d) Deduce the same conclusion even if A is a randomized algorithm.
2. Given $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and integer $k \geq 2$ let $A_{k}=\frac{1}{k}\left(\mathbf{W}^{\geq 1}[f]+\mathbf{W}^{\geq 2}[f]+\cdots+\mathbf{W}^{\geq k}[f]\right)$, the "average of the first k tail weights". (Recall $\mathbf{W}^{\geq \ell}[f]=\sum_{|S| \geq \ell} \widehat{f}(S)^{2}$.) Show that $\mathbf{N S}_{1 / k}[f]$ is the same as A_{k} up to universal constants. E.g., you might show $\frac{1-e^{-2}}{2} A_{k} \leq \mathbf{N S}_{1 / k}[f] \leq A_{k}$.
3. Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and let $\epsilon>0$. Show that f is ϵ-concentrated on a collection $\mathscr{F} \subseteq 2^{[n]}$ with $|\mathscr{F}| \leq \Uparrow f \hat{\|}_{1}^{2} / \epsilon$. (Recall the notation from Problem 1 on Homework 3.)
4. For this problem, recall Problem 3 from Homework 3.
(a) Let $H \leq \mathbb{F}_{2}^{n}$ be a subspace and let $z \in \mathbb{F}_{2}^{n}$. Let $\varphi_{H+z}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ be the probability density function associated to the uniform probability distribution on the affine subspace $H+z$. Write the Fourier expansion of φ_{H+z}.
(b) For $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ and $z \in \mathbb{F}_{2}^{n}$, define the function $f^{+z}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ by $f^{+z}(x)=f(x+z)$. Show that $f^{+z}=\varphi_{\{z\}} * f$. (In writing $\varphi_{\{z\}}$ we are treating $\{z\}$ as a 0 -dimensional affine subspace and using the notation of the previous problem.) Show also that $\widehat{f^{+z}}(\gamma)=(-1)^{r \cdot z} \widehat{f}(\gamma)$.
(c) Prove the "Poisson Summation Formula",
(Hint: use Plancherel on $\left\langle\varphi_{H}, f^{+z}\right\rangle$.)
5. Give a direct (Fourier-free) simple proof that if $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and $(\boldsymbol{J} \mid \boldsymbol{z})$ is a δ-random restriction then $\mathbf{E}\left[\operatorname{Inf}_{i}\left[f_{\boldsymbol{J} \mid z}\right]\right]=\delta \operatorname{Inf}_{i}[f]$ for any $i \in[n]$.
6. In this exercise you will prove the "Baby Switching Lemma": If $\phi=T_{1} \vee T_{2} \vee \cdots \vee T_{s}$ is a DNF of width $w \geq 1$ over variables x_{1}, \ldots, x_{n} and $(\boldsymbol{J} \mid \boldsymbol{z})$ is a δ-random restriction ($0<\delta<1 / 3$), then

$$
\operatorname{Pr}\left[f_{J \mid z} \text { is not a constant function }\right] \leq 3 \delta w .
$$

(a) Suppose $R=(J \mid z)$ is a "bad" restriction, meaning that $\phi_{J \mid z}$ is not a constant function. Let i be minimal such that $\left(T_{i}\right)_{J \mid z}$ is neither constantly True or False, and let j be minimal such that x_{j} or \bar{x}_{j} appears in this restricted term. Show there is a unique restriction $R^{\prime}=\left(J \backslash\{j\} \mid z^{\prime}\right)$ extending R which doesn't falsify T_{i}.
(b) Suppose we enumerate all bad restrictions R, and for each we write down the associated R^{\prime} as in part (6a). Show that no restriction is written more than w times.
(c) If $(\boldsymbol{J} \mid \boldsymbol{z})$ is a δ-random restriction and R and R^{\prime} are as in part (6a), show that $\operatorname{Pr}[(\boldsymbol{J} \mid \boldsymbol{z})=$ $R]=\frac{2 \delta}{1-\delta} \operatorname{Pr}\left[(\boldsymbol{J} \mid \boldsymbol{z})=R^{\prime}\right]$.
(d) Complete the proof by showing $\operatorname{Pr}[(\boldsymbol{J} \mid \boldsymbol{z})$ is bad $] \leq 3 \delta w$.

