
Analysis of Boolean Functions CMU 18-859S / 21-801A, Fall 2012

PROBLEM SET 4
Due: Monday, Oct. 8, beginning of class

Homework policy: Please try to work on the homework by yourself; it isn’t intended to be too
difficult. Questions about the homework or other course material can be asked on Piazza.

1. Informally: a “one-way permutation” is a bijective function f :Fn
2 →Fn

2 which is easy to compute
on all inputs but hard to invert on more than a negligible fraction of inputs; a “pseudorandom
generator” is a function g :Fk

2 →Fm
2 for m > k whose output on a random input “looks unpre-

dictable” to any efficient algorithm. Goldreich and Levin proposed the following construction of
the latter from the former: for k = 2n, m = 2n+1, define

g(r, s)= (r, f (s), r · s),

where r, s ∈Fn
2 . When g’s input (r,s) is uniformly random then so is the first 2n bits of its

output (using the fact that f is a bijection). The key to the analysis is showing that the final bit,
r · s, is highly unpredictable to efficient algorithms even given the first 2n bits (r, f (s)). This is
proved by contradiction.

(a) Suppose that an adversary has a deterministic, efficient algorithm A good at predicting
the bit r · s:

Pr
r,s∼Fn

2

[A(r, f (s))= r · s]≥ 1
2 +γ.

Show there exists B ⊆Fn
2 with |B|/2n ≥ 1

2γ such that for all s ∈ B,

Pr
r∼Fn

2

[A(r, f (s))= r · s]≥ 1
2 + 1

2γ.

(b) Switching to ±1 notation in the output, deduce áA[n]| f (s)(s)≥ γ for all s ∈ B.

(c) Show that the adversary can efficiently compute s given f (s) (with high probability) for
any s ∈ B. If γ is nonnegligible this contradicts the assumption that f is “one-way”. (Hint:
use the Goldreich–Levin algorithm.)

(d) Deduce the same conclusion even if A is a randomized algorithm.

2. Given f : {−1,1}n → {−1,1} and integer k ≥ 2 let Ak = 1
k (W≥1[ f ]+W≥2[ f ]+ ·· · +W≥k[ f ]), the

“average of the first k tail weights”. (Recall W≥`[ f ] =∑
|S|≥` f̂ (S)2.) Show that NS1/k[ f ] is the

same as Ak up to universal constants. E.g., you might show 1−e−2

2 Ak ≤NS1/k[ f ]≤ Ak.

3. Let f : {−1,1}n →R and let ε> 0. Show that f is ε-concentrated on a collection F ⊆ 2[n] with
|F | ≤ ‖̂ f ‖̂2

1/ε. (Recall the notation from Problem 1 on Homework 3.)

4. For this problem, recall Problem 3 from Homework 3.

(a) Let H ≤Fn
2 be a subspace and let z ∈Fn

2 . Let ϕH+z :Fn
2 →R be the probability density

function associated to the uniform probability distribution on the affine subspace H+ z.
Write the Fourier expansion of ϕH+z.
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(b) For f :Fn
2 →R and z ∈Fn

2 , define the function f +z :Fn
2 →R by f +z(x)= f (x+ z). Show that

f +z =ϕ{z} ∗ f . (In writing ϕ{z} we are treating {z} as a 0-dimensional affine subspace and
using the notation of the previous problem.) Show also that f̂ +z(γ)= (−1)γ·z f̂ (γ).

(c) Prove the “Poisson Summation Formula”,

E
h∼H

[ f (h+ z)]= ∑
γ∈H⊥

χγ(z) f̂ (γ).

(Hint: use Plancherel on 〈ϕH , f +z〉.)
5. Give a direct (Fourier-free) simple proof that if f : {−1,1}n → R and (J | z) is a δ-random

restriction then E[Infi[ fJ|z]]= δInfi[ f ] for any i ∈ [n].

6. In this exercise you will prove the “Baby Switching Lemma”: If φ= T1∨T2∨·· ·∨Ts is a DNF of
width w ≥ 1 over variables x1, . . . , xn and (J | z) is a δ-random restriction (0< δ< 1/3), then

Pr[ fJ|z is not a constant function]≤ 3δw.

(a) Suppose R = (J | z) is a “bad” restriction, meaning that φJ|z is not a constant function.
Let i be minimal such that (Ti)J|z is neither constantly True or False, and let j be minimal
such that x j or x j appears in this restricted term. Show there is a unique restriction
R′ = (J \{ j} | z′) extending R which doesn’t falsify Ti.

(b) Suppose we enumerate all bad restrictions R, and for each we write down the associated R′

as in part (6a). Show that no restriction is written more than w times.

(c) If (J | z) is a δ-random restriction and R and R′ are as in part (6a), show that Pr[(J | z)=
R]= 2δ

1−δ Pr[(J | z)= R′].

(d) Complete the proof by showing Pr[(J | z) is bad]≤ 3δw.
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