Analysis of Boolean Functions
CMU 18-859S / 21-801A, Fall 2012

Problem Set 4
Due: Monday, Oct. 8, beginning of class

Homework policy: Please try to work on the homework by yourself; it isn’t intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

1. Informally: a “one-way permutation” is a bijective function \(f: \mathbb{F}_2^n \to \mathbb{F}_2^n \) which is easy to compute on all inputs but hard to invert on more than a negligible fraction of inputs; a “pseudorandom generator” is a function \(g: \mathbb{F}_2^k \to \mathbb{F}_2^m \) for \(m > k \) whose output on a random input “looks unpredictable” to any efficient algorithm. Goldreich and Levin proposed the following construction of the latter from the former: for \(k = 2n \), \(m = 2n + 1 \), define

\[
g(r, s) = (r, f(s), r \cdot s),
\]

where \(r, s \in \mathbb{F}_2^n \). When \(g \)'s input \((r, s)\) is uniformly random then so is the first \(2n \) bits of its output (using the fact that \(f \) is a bijection). The key to the analysis is showing that the final bit, \(r \cdot s \), is highly unpredictable to efficient algorithms even *given* the first \(2n \) bits \((r, f(s))\). This is proved by contradiction.

(a) Suppose that an adversary has a deterministic, efficient algorithm \(A \) good at predicting the bit \(r \cdot s \):

\[
\Pr_{r,s \in \mathbb{F}_2^n} [A(r, f(s)) = r \cdot s] \geq \frac{1}{2} + \gamma.
\]

Show there exists \(B \subseteq \mathbb{F}_2^n \) with \(|B|/2^n \geq \frac{1}{2} \gamma \) such that for all \(s \in B \),

\[
\Pr_{r \sim \mathbb{F}_2^n} [A(r, f(s)) = r \cdot s] \geq \frac{1}{2} + \frac{1}{2} \gamma.
\]

(b) Switching to \(\pm 1 \) notation in the output, deduce \(\hat{A}_{|n|/f(s)}(s) \geq \gamma \) for all \(s \in B \).

(c) Show that the adversary can efficiently compute \(s \) given \(f(s) \) (with high probability) for any \(s \in B \). If \(\gamma \) is nonnegligible this contradicts the assumption that \(f \) is “one-way”. (Hint: use the Goldreich–Levin algorithm.)

(d) Deduce the same conclusion even if \(A \) is a randomized algorithm.

2. Given \(f: \{-1,1\}^n \to \{-1,1\} \) and integer \(k \geq 2 \) let \(A_k = \frac{1}{k}(W^{e_1[f]} + W^{e_2[f]} + \cdots + W^{e_k[f]}) \), the “average of the first \(k \) tail weights”. (Recall \(W^{e,f}[f] = \sum_{|S| \geq \ell} \hat{f}(S)^2 \)). Show that \(\text{NS}_{1/k}[f] \) is the same as \(A_k \) up to universal constants. E.g., you might show \(1-\frac{1}{2}2^{-k} A_k \leq \text{NS}_{1/k}[f] \leq A_k \).

3. Let \(f: \{-1,1\}^n \to \mathbb{R} \) and let \(\epsilon > 0 \). Show that \(f \) is \(\epsilon \)-concentrated on a collection \(F \subseteq 2^n \) with \(|F| \leq \|f\|_2^2/\epsilon \). (Recall the notation from Problem 1 on Homework 3.)

4. For this problem, recall Problem 3 from Homework 3.

(a) Let \(H \subseteq \mathbb{F}_2^n \) be a subspace and let \(z \in \mathbb{F}_2^n \). Let \(\varphi_{H+z}: \mathbb{F}_2^n \to \mathbb{R} \) be the probability density function associated to the uniform probability distribution on the affine subspace \(H + z \). Write the Fourier expansion of \(\varphi_{H+z} \).
(b) For \(f : \mathbb{F}_2^n \rightarrow \mathbb{R} \) and \(z \in \mathbb{F}_2^n \), define the function \(f^+ z : \mathbb{F}_2^n \rightarrow \mathbb{R} \) by \(f^+ z(x) = f(x + z) \). Show that \(f^+ z = \varphi(z) \ast f \). (In writing \(\varphi(z) \) we are treating \(\{z\} \) as a 0-dimensional affine subspace and using the notation of the previous problem.) Show also that \(\hat{f}^+ z(\gamma) = (-1)^{\gamma \cdot z} \hat{f}(\gamma) \).

(c) Prove the “Poisson Summation Formula”,

\[
E_{h \sim H} [f(h + z)] = \sum_{\gamma \in H^+} \chi_f(z) \hat{f}(\gamma).
\]

(Hint: use Plancherel on \(\langle \varphi_H, f^+ z \rangle \).)

5. Give a direct (Fourier-free) simple proof that if \(f : \{-1,1\}^n \rightarrow \mathbb{R} \) and \((J \mid z) \) is a \(\delta \)-random restriction then \(\mathbb{E}[\inf_i [f_{J \mid z}]] = \delta \inf_i [f] \) for any \(i \in [n] \).

6. In this exercise you will prove the “Baby Switching Lemma”: If \(\varphi = T_1 \vee T_2 \vee \cdots \vee T_s \) is a DNF of width \(w \geq 1 \) over variables \(x_1, \ldots, x_n \) and \((J \mid z) \) is a \(\delta \)-random restriction \((0 < \delta < 1/3) \), then

\[\Pr[f_{J \mid z} \text{ is not a constant function}] \leq 3\delta w. \]

(a) Suppose \(R = (J \mid z) \) is a “bad” restriction, meaning that \(\varphi_{J \mid z} \) is not a constant function. Let \(i \) be minimal such that \((T_i)_{J \mid z} \) is neither constantly True or False, and let \(j \) be minimal such that \(x_j \) or \(\overline{x}_j \) appears in this restricted term. Show there is a unique restriction \(R' = (J \setminus \{j\} \mid z') \) extending \(R \) which doesn’t falsify \(T_i \).

(b) Suppose we enumerate all bad restrictions \(R \), and for each we write down the associated \(R' \) as in part (6a). Show that no restriction is written more than \(w \) times.

(c) If \((J \mid z) \) is a \(\delta \)-random restriction and \(R \) and \(R' \) are as in part (6a), show that \(\Pr[(J \mid z) = R] = \Pr[(J \mid z) = R'] \).

(d) Complete the proof by showing \(\Pr[(J \mid z) \text{ is bad}] \leq 3\delta w. \)