PROBLEM SET 3

Due: Monday, Oct. 1, beginning of class

Homework policy: Please work on the homework by yourself; it isn't intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

- 1. Let $p \in [1,\infty)$. Given $f: \{-1,1\}^n \to \mathbb{R}$ we define its p-norm to be $||f||_p = \mathbf{E}_x[|f(x)|^p]^{1/p}$ and its Fourier p-norm to be $||f||_p = (\sum_S |\widehat{f}(S)|^p)^{1/p}$. We also define $||f||_\infty = \max_X \{|\widehat{f}(S)|\}$ and $||\widehat{f}||_\infty = \max_S \{|\widehat{f}(S)|\}$.
 - (a) For $1 \le p \le q \le \infty$, show that $||f||_p \le ||f||_q$. (Hint: one solution uses the fact that the function $t \mapsto t^{q/p}$ is convex on $[0,\infty)$.) Conversely, show $\hat{|}f\hat{|}_p \ge \hat{|}f\hat{|}_q$.
 - (b) Show that $\|f\|_{\infty} \le \|f\|_1$ and $\|f\|_{\infty} \le \|f\|_1$.
- 2. In this exercise you are asked to prove some fancily-named properties of the noise operator T_{ρ} .
 - (a) Show that T_{ρ} is "positivity-preserving" for all $\rho \in [-1,1]$, meaning $f \ge 0 \Rightarrow T_{\rho}f \ge 0$. Show also that it is "positivity-improving" for all $\rho \in (-1,1)$, meaning $f \ge 0, f \ne 0 \Rightarrow T_{\rho}f > 0$.
 - (b) Show the "semigroup property": $T_{\rho_1} \circ T_{\rho_2} = T_{\rho_1 \rho_2}$ for all $\rho_1, \rho_2, \in [0, 1]$. (If you like, prove it even for $\rho_1, \rho_2 \in [-1, 1]$.)
 - (c) Show that T_{ρ} is a "contraction on L^p " for all $p \ge 1$ and $\rho \in [-1,1]$; i.e., $\|T_{\rho}f\|_p \le \|f\|_p$.
- 3. For functions $f: \mathbb{F}_2^n \to \mathbb{R}$, sometimes it is more natural to index the Fourier coefficients not by subsets $S \subseteq [n]$ but by elements $\gamma \in \mathbb{F}_2^n$; here we identify a subset with its indicator vector. In this case we would write the Fourier expansion as

$$f = \sum_{\gamma \in \mathbb{F}_2^n} \widehat{f}(S) \chi_{\gamma}, \quad \text{where } \chi_{\gamma}(x) = (-1)^{\gamma \cdot x}$$

and $\gamma \cdot x$ is the dot-product of γ and x in the vector space \mathbb{F}_2^n . Note that for $\beta, \gamma \in \mathbb{F}_2^n$ we have $\chi_{\beta} \chi_{\gamma} = \chi_{\beta+\gamma}$.

- (a) Let H be a vector subspace of \mathbb{F}_2^n . Let H^{\perp} be its "perpendicular subspace"; i.e., $H^{\perp} = \{ \gamma \in \mathbb{F}_2^n : \gamma \cdot x = 0 \text{ for all } x \in H \}$. Show that the indicator function $1_H : \mathbb{F}_2^n \to \{0,1\}$ of H has the Fourier expansion $1_H = \sum_{\gamma \in H^{\perp}} 2^{-k} \chi_{\gamma}$, where $k = \dim(H^{\perp})$. (Remark: $k = n \dim(H)$ is sometimes denoted $\operatorname{codim}(H)$.)
- (b) Given the subspace H and also $y \in \mathbb{F}_2^n$, the set $H + y = \{h + y : h \in H\}$ is called an "affine subspace" of \mathbb{F}_2^n . Show that the indicator function $1_{H+y} : \mathbb{F}_2^n \to \{0,1\}$ of this affine subspace has the Fourier expansion $1_{H+y} = \sum_{\gamma \in H^{\perp}} 2^{-k} \chi_{\gamma}(y) \chi_{\gamma}$, where again $k = \dim(H^{\perp})$.
- 4. Suppose the Fourier spectrum of $f: \{-1,1\}^n \to \mathbb{R}$ is ϵ_1 -concentrated on \mathscr{F} and that $g: \{-1,1\}^n \to \mathbb{R}$ satisfies $\|f-g\|_2^2 \le \epsilon_2$. Show that the Fourier spectrum of g is $2(\epsilon_1 + \epsilon_2)$ -concentrated on \mathscr{F} .
- 5. Given $s \in \mathbb{N}^+$, let \mathscr{C} be the class of all functions $f: \{-1,1\}^n \to \{-1,1\}$ expressible as $f(x) = g(h_1(x),\dots,h_s(x))$, where $h_1,\dots,h_s: \{-1,1\}^n \to \{-1,1\}$ are weighted majority functions and $g: \{-1,1\}^s \to \{-1,1\}$ is any function. Show that \mathscr{C} is learnable from random examples to error ϵ in time $n^{O(s^2/\epsilon^2)}$. You may use Peres's Theorem, that $\mathbf{NS}_{\delta}[h] \leq 2\sqrt{\delta}$ for all $\delta \in [0,\frac{1}{2}]$ and all weighted majorities h. (Hint: how can you bound $\mathbf{NS}_{\delta}[f]$?)

- 6. (a) Let $k \in \mathbb{N}^+$ and let $\mathscr{C} = \{f : \{-1,1\}^n \to \{-1,1\} \mid \deg(f) \leq k\}$. (In particular, \mathscr{C} contains all functions computable by depth-k decision trees.) Show that \mathscr{C} is learnable from random examples with error 0 in time $n^k \cdot \operatorname{poly}(n,2^k)$. You may use the following "Degree/Granularity Fact": for every $f \in \mathscr{C}$ and every $S \subseteq [n]$, the Fourier coefficient $\widehat{f}(S)$ is an integer multiple of 2^{1-k} .
 - (b) (Bonus.) Prove the Degree/Granularity Fact.