## Problem Set 3

Due: Monday, Oct. 1, beginning of class
Homework policy: Please work on the homework by yourself; it isn't intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

1. Let $p \in[1, \infty)$. Given $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ we define its $p$-norm to be $\|f\|_{p}=\mathbf{E}_{\boldsymbol{x}}\left[|f(\boldsymbol{x})|^{p}\right]^{1 / p}$ and its Fourier $p$-norm to be $\hat{\|} f \hat{\Pi}_{p}=\left(\sum_{S}|\widehat{f}(S)|^{p}\right)^{1 / p}$. We also define $\|f\|_{\infty}=\max _{x}\{|f(x)|\}$ and $\hat{\|} f \hat{\Pi}_{\infty}=$ $\max _{S}\{|\widehat{f}(S)|\}$.
(a) For $1 \leq p \leq q \leq \infty$, show that $\|f\|_{p} \leq\|f\|_{q}$. (Hint: one solution uses the fact that the function $t \rightarrow t^{q / p}$ is convex on $[0, \infty)$.) Conversely, show $\hat{\|} f \hat{\Pi}_{p} \geq \hat{\|} f \hat{\|}_{q}$.
(b) Show that $\hat{\|} f \hat{\Pi}_{\infty} \leq\|f\|_{1}$ and $\|f\|_{\infty} \leq \hat{\|} f \hat{\Pi}_{1}$.
2. In this exercise you are asked to prove some fancily-named properties of the noise operator $\mathrm{T}_{\rho}$.
(a) Show that $\mathrm{T}_{\rho}$ is "positivity-preserving" for all $\rho \in[-1,1]$, meaning $f \geq 0 \Rightarrow \mathrm{~T}_{\rho} f \geq 0$.

Show also that it is "positivity-improving" for all $\rho \in(-1,1)$, meaning $f \geq 0, f \not \equiv 0 \Rightarrow \mathrm{~T}_{\rho} f>0$.
(b) Show the "semigroup property": $\mathrm{T}_{\rho_{1}} \circ \mathrm{~T}_{\rho_{2}}=\mathrm{T}_{\rho_{1} \rho_{2}}$ for all $\rho_{1}, \rho_{2}, \in[0,1]$.
(If you like, prove it even for $\rho_{1}, \rho_{2} \in[-1,1]$.)
(c) Show that $\mathrm{T}_{\rho}$ is a "contraction on $L^{p "}$ for all $p \geq 1$ and $\rho \in[-1,1]$; i.e., $\left\|\mathrm{T}_{\rho} f\right\|_{p} \leq\|f\|_{p}$.
3. For functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$, sometimes it is more natural to index the Fourier coefficients not by subsets $S \subseteq[n]$ but by elements $\gamma \in \mathbb{F}_{2}^{n}$; here we identify a subset with its indicator vector. In this case we would write the Fourier expansion as

$$
f=\sum_{\gamma \in \mathbb{F}_{2}^{n}} \widehat{f}(S) \chi_{\gamma}, \quad \text { where } \chi_{\gamma}(x)=(-1)^{\gamma \cdot x}
$$

and $\gamma \cdot x$ is the dot-product of $\gamma$ and $x$ in the vector space $\mathbb{F}_{2}^{n}$. Note that for $\beta, \gamma \in \mathbb{F}_{2}^{n}$ we have $\chi_{\beta} \chi_{\gamma}=\chi_{\beta+\gamma}$.
(a) Let $H$ be a vector subspace of $\mathbb{F}_{2}^{n}$. Let $H^{\perp}$ be its "perpendicular subspace"; i.e., $H^{\perp}=$ $\left\{\gamma \in \mathbb{F}_{2}^{n}: \gamma \cdot x=0\right.$ for all $\left.x \in H\right\}$. Show that the indicator function $1_{H}: \mathbb{F}_{2}^{n} \rightarrow\{0,1\}$ of $H$ has the Fourier expansion $1_{H}=\sum_{r \in H^{\perp}} 2^{-k} \chi_{\gamma}$, where $k=\operatorname{dim}\left(H^{\perp}\right)$. (Remark: $k=n-\operatorname{dim}(H)$ is sometimes denoted $\operatorname{codim}(H)$.)
(b) Given the subspace $H$ and also $y \in \mathbb{F}_{2}^{n}$, the set $H+y=\{h+y: h \in H\}$ is called an "affine subspace" of $\mathbb{F}_{2}^{n}$. Show that the indicator function $1_{H+y}: \mathbb{F}_{2}^{n} \rightarrow\{0,1\}$ of this affine subspace has the Fourier expansion $1_{H+y}=\sum_{\gamma \in H^{\perp}} 2^{-k} \chi_{\gamma}(y) \chi_{\gamma}$, where again $k=\operatorname{dim}\left(H^{\perp}\right)$.
4. Suppose the Fourier spectrum of $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is $\epsilon_{1}$-concentrated on $\mathscr{F}$ and that $g:\{-1,1\}^{n} \rightarrow$ $\mathbb{R}$ satisfies $\|f-g\|_{2}^{2} \leq \epsilon_{2}$. Show that the Fourier spectrum of $g$ is $2\left(\epsilon_{1}+\epsilon_{2}\right)$-concentrated on $\mathscr{F}$.
5. Given $s \in \mathbb{N}^{+}$, let $\mathscr{C}$ be the class of all functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ expressible as $f(x)=$ $g\left(h_{1}(x), \ldots, h_{s}(x)\right)$, where $h_{1}, \ldots, h_{s}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ are weighted majority functions and $g$ : $\{-1,1\}^{s} \rightarrow\{-1,1\}$ is any function. Show that $\mathscr{C}$ is learnable from random examples to error $\epsilon$ in time $n^{O\left(s^{2} / \epsilon^{2}\right)}$. You may use Peres's Theorem, that $\mathbf{N S}_{\delta}[h] \leq 2 \sqrt{\delta}$ for all $\delta \in\left[0, \frac{1}{2}\right]$ and all weighted majorities $h$. (Hint: how can you bound $\mathbf{N S}_{\delta}[f]$ ?)
6. (a) Let $k \in \mathbb{N}^{+}$and let $\mathscr{C}=\left\{f:\{-1,1\}^{n} \rightarrow\{-1,1\} \mid \operatorname{deg}(f) \leq k\right\}$. (In particular, $\mathscr{C}$ contains all functions computable by depth- $k$ decision trees.) Show that $\mathscr{C}$ is learnable from random examples with error 0 in time $n^{k} \cdot \operatorname{poly}\left(n, 2^{k}\right)$. You may use the following "Degree/Granularity Fact": for every $f \in \mathscr{C}$ and every $S \subseteq[n]$, the Fourier coefficient $\widehat{f}(S)$ is an integer multiple of $2^{1-k}$.
(b) (Bonus.) Prove the Degree/Granularity Fact.

