Problem Set 2

Due: Monday, Sept. 24, beginning of class
 Turn in problems \#1-\#4, plus either \#5 or \#6

Homework policy: Please work on the homework by yourself; it isn't intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

1. Here are some more linear operators on the vector space of functions $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$:

- The ith expectation operator E_{i}, defined by $\mathrm{E}_{i} f(x)=\frac{f\left(x^{(i \hookleftarrow+1)}\right)+f\left(x^{(i \hookleftarrow-1)}\right)}{2}$.
- The ith directional Laplacian operator L_{i}, defined by $\mathrm{L}_{i} f=f-\mathrm{E}_{i} f$.
- The Laplacian operator L , defined by $\mathrm{L} f=\mathrm{L}_{1} f+\mathrm{L}_{2} f+\cdots+\mathrm{L}_{n} f$.

Prove the following formulas:
(a) $\mathrm{E}_{i} f(x)=\sum_{S \ngtr i} \widehat{f}(S) x^{S}$.
(b) $f(x)=\mathrm{E}_{i} f(x)+x_{i} \mathrm{D}_{i} f(x)$.
(c) $\mathrm{L}_{i} f(x)=\frac{f(x)-f\left(x^{\oplus i}\right)}{2}=\sum_{S \ni i} \widehat{f}(S) x^{S}$.
(d) $\left\langle f, \mathrm{~L}_{i} f\right\rangle=\left\langle\mathrm{L}_{i} f, \mathrm{~L}_{i} f\right\rangle=\operatorname{Inf}_{i}[f]$.
(e) $\mathrm{L} f(x)=(n / 2)\left(f(x)-\underset{i \in[n]}{\operatorname{avg}} f\left(x^{\oplus i}\right)\right)=\sum_{S \subseteq[n]}|S| \widehat{f}(S) x^{S}$.
(f) $\langle f, \mathrm{~L} f\rangle=\mathbf{I}[f]$.
2. In 1965 , the Nassau County (New York) Board used a weighted majority voting system to make its decisions, with the 6 towns getting differing weights based on their population. Specifically, the board used the voting rule $f:\{0,1\}^{6} \rightarrow\{-1,1\}$ defined by $f(x)=\operatorname{sgn}\left(-58+31 x_{1}+31 x_{2}+28 x_{3}+\right.$ $21 x_{4}+2 x_{5}+2 x_{6}$). Compute $\operatorname{Inf}_{i}[f]$ for all $i \in[6]$. (PS: John Banzhaf invented the notion of Inf_{i} while suing on behalf of towns \#5 and \#6.)
3. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be unbiased (i.e., $\mathbf{E}[f]=0$), and let $\operatorname{MaxInf}[f]$ denote $\max _{i \in[n]}\left\{\operatorname{Inf}_{i}[f]\right\}$. Recall that the KKL Theorem implies MaxInf $[f] \geq \Omega\left(\frac{\log n}{n}\right)$. In 1987, this was still a conjecture; all that was known was the following results, independently observed by Alon and by Chor and Geréb-Graus...
(a) Use the Poincaré Inequality to show MaxInf $[f] \geq 1 / n$.
(b) Prove $|\widehat{f}(i)| \leq \operatorname{Inf}_{i}[f]$ for all $i \in[n]$. (Hint: consider $\mathbf{E}\left[\left|\mathbf{D}_{i} f\right|\right]$.)
(c) Prove that $\mathbf{I}[f] \geq 2-n \mathbf{M a x I n f}[f]^{2}$. (Hint: first prove $\mathbf{I}[f] \geq \mathbf{W}^{1}[f]+2\left(1-\mathbf{W}^{1}[f]\right)$ and then use the previous exercise.)
(d) Deduce that MaxInf $[f] \geq \frac{2}{n}-\frac{4}{n^{2}}$.
(Later in 1987, Chor and Geréb-Graus managed to improve the lower bound to $\frac{3}{n}-o(1 / n)$.)
4. (Remark: this is really a problem in combinatorics, not Fourier analysis.)

The polarizations of $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ (also known as compressions, downshifts, or two-point rearrangements) are defined as follows. For $i \in[n]$, the i-polarization of f is the function $f^{\sigma_{i}}:\{-1,1\}^{n} \rightarrow \mathbb{R}$ defined by

$$
f^{\sigma_{i}}(x)= \begin{cases}\max \left\{f\left(x^{(i \mapsto+1)}\right), f\left(x^{(i \mapsto-1)}\right)\right\} & \text { if } x_{i}=+1 \\ \min \left\{f\left(x^{(i \mapsto+1)}\right), f\left(x^{(i \mapsto-1)}\right)\right\} & \text { if } x_{i}=-1\end{cases}
$$

(a) Show that $\mathbf{E}\left[f^{\sigma_{i}}\right]=\mathbf{E}[f]$.
(b) Show that $\operatorname{Inf}_{j}\left[f^{\sigma_{i}}\right] \leq \operatorname{Inf}_{j}[f]$ for all $j \in[n]$.
(c) (Optional.) Show that $\mathbf{S t a b}_{\rho}\left[f^{\sigma_{i}}\right] \geq \mathbf{S t a b}_{\rho}[f]$ for all $0 \leq \rho \leq 1$.
(d) Show that $f^{\sigma_{i}}$ is monotone in the i th direction. (We say g is "monotone in the i th direction" if $g\left(x^{(i \mapsto+1)}\right) \geq g\left(x^{(i \mapsto-1)}\right)$ for all x.) Further, show that if f is monotone in the j th direction for some $j \in[n]$ then $f^{\sigma_{i}}$ is still monotone in the j th direction.
(e) Let $f^{*}=f^{\sigma_{1} \sigma_{2} \cdots \sigma_{n}}$. Show that f^{*} is monotone, $\mathbf{E}\left[f^{*}\right]=\mathbf{E}[f], \operatorname{Inf}_{j}\left[f^{*}\right] \leq \operatorname{Inf}_{j}[f]$ for all $j \in[n]$, and $\mathbf{S t a b}_{\rho}\left[f^{*}\right] \geq \mathbf{S t a b}_{\rho}[f]$ for all $0 \leq \rho \leq 1$ (you may use part (c)).
5. (Enflo, 1970.) The Hamming distance $\operatorname{Dist}(x, y)=\#\left\{i: x_{i} \neq y_{i}\right\}$ on the discrete cube $\{-1,1\}^{n}$ is an example of an ℓ_{1} metric space. For $D \geq 1$, we say that the discrete cube can be embedded into ℓ_{2} with distortion D if there is a mapping $F:\{-1,1\}^{n} \rightarrow \mathbb{R}^{m}$ for some $m \in \mathbb{N}$ such that:

$$
\begin{array}{lr}
\|F(x)-F(y)\|_{2} \geq \operatorname{Dist}(x, y) \text { for all } x, y ; & \text { ("no contraction") } \\
\|F(x)-F(y)\|_{2} \leq D \cdot \operatorname{Dist}(x, y) \text { for all } x, y . & \text { ("expansion at most } D ")
\end{array}
$$

In this problem you will show that the least distortion possible is $D=\sqrt{n}$.
(a) Recalling the definition of $f^{\text {odd }}$ from Homework 1 , show that for any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ we have $\left\|f^{\text {odd }}\right\|_{2}^{2} \leq \mathbf{I}[f]$ and hence

$$
\underset{\boldsymbol{x}}{\mathbf{E}}\left[(f(\boldsymbol{x})-f(-\boldsymbol{x}))^{2}\right] \leq \sum_{i=1}^{n} \underset{\boldsymbol{x}}{\mathbf{E}}\left[\left(f(\boldsymbol{x})-f\left(\boldsymbol{x}^{\oplus i}\right)\right)^{2}\right]
$$

(b) Suppose $F:\{-1,1\}^{n} \rightarrow \mathbb{R}^{m}$, and write $F(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$ for functions $f_{i}:\{-1,1\}^{n} \rightarrow$ \mathbb{R}. By summing the above inequality over $i \in[m]$, show that any F with no contraction must have expansion at least \sqrt{n}.
(c) Show that there is an embedding F achieving distortion \sqrt{n}.
6. (Latała-Oleszkiewicz, 1994.) Let V be a vector space with norm $\|\cdot\|$ and fix $w_{1}, \ldots, w_{n} \in V$. Define $g:\{-1,1\}^{n} \rightarrow \mathbb{R}$ by $g(x)=\left\|\sum_{i=1}^{n} x_{i} w_{i}\right\|$.
(a) Recalling the operator L from Problem 1, show that $\mathrm{L} g \leq g$ pointwise. (Hint: triangle inequality.)
(b) Deduce $2 \operatorname{Var}[g] \leq \mathbf{E}\left[g^{2}\right]$ and thus the Khintchine-Kahane inequality:

$$
\underset{\boldsymbol{x}}{\mathbf{E}}\left[\left\|\sum_{i=1}^{n} \boldsymbol{x}_{i} w_{i}\right\|\right] \geq \frac{1}{\sqrt{2}} \cdot \underset{\boldsymbol{x}}{\mathbf{E}}\left[\left\|\sum_{i=1}^{n} \boldsymbol{x}_{i} w_{i}\right\|^{2}\right]^{1 / 2}
$$

(Hint: first, show that the improved Poincaré inequality $\operatorname{Var}[f] \leq \frac{1}{2} \mathbf{I}[f]$ holds whenever $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is even, as defined in Homework 1.)
(c) Show that the constant $\frac{1}{\sqrt{2}}$ above is optimal (Hint: take $V=\mathbb{R}$ and $n=2$.)

