
Analysis of Boolean Functions CMU 18-859S / 21-801A, Fall 2012

PROBLEM SET 2
Due: Monday, Sept. 24, beginning of class

Turn in problems #1–#4, plus either #5 or #6

Homework policy: Please work on the homework by yourself; it isn’t intended to be too difficult.
Questions about the homework or other course material can be asked on Piazza.

1. Here are some more linear operators on the vector space of functions f : {−1,1}n →R:

• The ith expectation operator Ei, defined by Ei f (x)= f (x(i 7→+1))+ f (x(i 7→−1))
2

.

• The ith directional Laplacian operator Li, defined by Li f = f −Ei f .

• The Laplacian operator L, defined by L f =L1 f +L2 f +·· ·+Ln f .

Prove the following formulas:

(a) Ei f (x)= ∑
S 63i

f̂ (S)xS.

(b) f (x)=Ei f (x)+ xiDi f (x).

(c) Li f (x)= f (x)− f (x⊕i)
2

= ∑
S3i

f̂ (S)xS.

(d) 〈 f ,Li f 〉 = 〈Li f ,Li f 〉 = Infi[ f ].

(e) L f (x)= (n/2)
(
f (x)− avg

i∈[n]
f (x⊕i)

)= ∑
S⊆[n]

|S| f̂ (S)xS.

(f) 〈 f ,L f 〉 = I[ f ].

2. In 1965, the Nassau County (New York) Board used a weighted majority voting system to make
its decisions, with the 6 towns getting differing weights based on their population. Specifically,
the board used the voting rule f : {0,1}6 → {−1,1} defined by f (x)= sgn(−58+31x1+31x2+28x3+
21x4 +2x5 +2x6). Compute Infi[ f ] for all i ∈ [6]. (PS: John Banzhaf invented the notion of Infi
while suing on behalf of towns #5 and #6.)

3. Let f : {−1,1}n → {−1,1} be unbiased (i.e., E[ f ]= 0), and let MaxInf[ f ] denote maxi∈[n]{Infi[ f ]}.
Recall that the KKL Theorem implies MaxInf[ f ]≥Ω( logn

n ). In 1987, this was still a conjecture;
all that was known was the following results, independently observed by Alon and by Chor and
Geréb-Graus. . .

(a) Use the Poincaré Inequality to show MaxInf[ f ]≥ 1/n.

(b) Prove | f̂ (i)| ≤ Infi[ f ] for all i ∈ [n]. (Hint: consider E[|Di f |].)
(c) Prove that I[ f ]≥ 2−nMaxInf[ f ]2. (Hint: first prove I[ f ]≥W1[ f ]+2(1−W1[ f ]) and then

use the previous exercise.)

(d) Deduce that MaxInf[ f ]≥ 2
n − 4

n2 .

(Later in 1987, Chor and Geréb-Graus managed to improve the lower bound to 3
n − o(1/n).)
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4. (Remark: this is really a problem in combinatorics, not Fourier analysis.)

The polarizations of f : {−1,1}n →R (also known as compressions, downshifts, or two-point
rearrangements) are defined as follows. For i ∈ [n], the i-polarization of f is the function
f σi : {−1,1}n →R defined by

f σi (x)=
{

max{ f (x(i 7→+1)), f (x(i 7→−1))} if xi =+1,
min { f (x(i 7→+1)), f (x(i 7→−1))} if xi =−1.

(a) Show that E[ f σi ]=E[ f ].
(b) Show that Inf j[ f σi ]≤ Inf j[ f ] for all j ∈ [n].
(c) (Optional.) Show that Stabρ[ f σi ]≥Stabρ[ f ] for all 0≤ ρ ≤ 1.
(d) Show that f σi is monotone in the ith direction. (We say g is “monotone in the ith direction”

if g(x(i 7→+1))≥ g(x(i 7→−1)) for all x.) Further, show that if f is monotone in the jth direction
for some j ∈ [n] then f σi is still monotone in the jth direction.

(e) Let f ∗ = f σ1σ2···σn . Show that f ∗ is monotone, E[ f ∗]=E[ f ], Inf j[ f ∗]≤ Inf j[ f ] for all j ∈ [n],
and Stabρ[ f ∗]≥Stabρ[ f ] for all 0≤ ρ ≤ 1 (you may use part (c)).

5. (Enflo, 1970.) The Hamming distance Dist(x, y)= #{i : xi 6= yi} on the discrete cube {−1,1}n is an
example of an `1 metric space. For D ≥ 1, we say that the discrete cube can be embedded into `2
with distortion D if there is a mapping F : {−1,1}n →Rm for some m ∈N such that:

‖F(x)−F(y)‖2 ≥Dist(x, y) for all x, y; (“no contraction”)

‖F(x)−F(y)‖2 ≤ D ·Dist(x, y) for all x, y. (“expansion at most D”)

In this problem you will show that the least distortion possible is D =p
n.

(a) Recalling the definition of f odd from Homework 1, show that for any f : {−1,1}n →R we
have ‖ f odd‖2

2 ≤ I[ f ] and hence

E
x

[( f (x)− f (−x))2]≤
n∑

i=1
E
x

[(
f (x)− f (x⊕i)

)2
]
.

(b) Suppose F : {−1,1}n →Rm, and write F(x)= ( f1(x), f2(x), . . . , fm(x)) for functions f i : {−1,1}n →
R. By summing the above inequality over i ∈ [m], show that any F with no contraction
must have expansion at least

p
n.

(c) Show that there is an embedding F achieving distortion
p

n.

6. (Latała–Oleszkiewicz, 1994.) Let V be a vector space with norm ‖ · ‖ and fix w1, . . . ,wn ∈ V .
Define g : {−1,1}n →R by g(x)= ‖∑n

i=1 xiwi‖.

(a) Recalling the operator L from Problem 1, show that Lg ≤ g pointwise. (Hint: triangle
inequality.)

(b) Deduce 2Var[g]≤E[g2] and thus the Khintchine–Kahane inequality:

E
x

[∥∥∥∥ n∑
i=1

xiwi

∥∥∥∥]
≥ 1p

2
·E

x

[∥∥∥∥ n∑
i=1

xiwi

∥∥∥∥2]1/2

.

(Hint: first, show that the improved Poincaré inequality Var[ f ] ≤ 1
2I[ f ] holds whenever

f : {−1,1}n →R is even, as defined in Homework 1.)
(c) Show that the constant 1p

2
above is optimal (Hint: take V =R and n = 2.)
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