PROBLEM SET 2

Due: Monday, Sept. 24, beginning of class Turn in problems #1-#4, plus either #5 or #6

Homework policy: Please work on the homework by yourself; it isn't intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

- 1. Here are some more linear operators on the vector space of functions $f: \{-1,1\}^n \to \mathbb{R}$:
 - The *ith expectation operator* E_i , defined by $E_i f(x) = \frac{f(x^{(i \mapsto +1)}) + f(x^{(i \mapsto -1)})}{2}$.
 - The *ith directional Laplacian operator* L_i , defined by $L_i f = f E_i f$.
 - The *Laplacian operator* L, defined by $Lf = L_1f + L_2f + \cdots + L_nf$.

Prove the following formulas:

(a)
$$E_i f(x) = \sum_{S \ni i} \widehat{f}(S) x^S$$
.

(b)
$$f(x) = E_i f(x) + x_i D_i f(x)$$
.

(c)
$$L_i f(x) = \frac{f(x) - f(x^{\oplus i})}{2} = \sum_{S \ni i} \hat{f}(S) x^S$$
.

(d)
$$\langle f, \mathbf{L}_i f \rangle = \langle \mathbf{L}_i f, \mathbf{L}_i f \rangle = \mathbf{Inf}_i[f].$$

(e)
$$Lf(x) = (n/2)(f(x) - \arg f(x^{\oplus i})) = \sum_{S \subseteq [n]} |S| \hat{f}(S) x^{S}$$
.

(f)
$$\langle f, Lf \rangle = \mathbf{I}[f]$$
.

- 2. In 1965, the Nassau County (New York) Board used a weighted majority voting system to make its decisions, with the 6 towns getting differing weights based on their population. Specifically, the board used the voting rule $f: \{0,1\}^6 \to \{-1,1\}$ defined by $f(x) = \operatorname{sgn}(-58 + 31x_1 + 31x_2 + 28x_3 + 21x_4 + 2x_5 + 2x_6)$. Compute $\operatorname{Inf}_i[f]$ for all $i \in [6]$. (PS: John Banzhaf invented the notion of Inf_i while suing on behalf of towns #5 and #6.)
- 3. Let $f: \{-1,1\}^n \to \{-1,1\}$ be unbiased (i.e., $\mathbf{E}[f]=0$), and let $\mathbf{MaxInf}[f]$ denote $\max_{i \in [n]} \{\mathbf{Inf}_i[f]\}$. Recall that the KKL Theorem implies $\mathbf{MaxInf}[f] \ge \Omega(\frac{\log n}{n})$. In 1987, this was still a conjecture; all that was known was the following results, independently observed by Alon and by Chor and Geréb-Graus...
 - (a) Use the Poincaré Inequality to show $\mathbf{MaxInf}[f] \ge 1/n$.
 - (b) Prove $|\hat{f}(i)| \leq \mathbf{Inf}_i[f]$ for all $i \in [n]$. (Hint: consider $\mathbf{E}[|\mathbf{D}_i f|]$.)
 - (c) Prove that $\mathbf{I}[f] \ge 2 n\mathbf{MaxInf}[f]^2$. (Hint: first prove $\mathbf{I}[f] \ge \mathbf{W}^1[f] + 2(1 \mathbf{W}^1[f])$ and then use the previous exercise.)
 - (d) Deduce that $\mathbf{MaxInf}[f] \ge \frac{2}{n} \frac{4}{n^2}$.

(Later in 1987, Chor and Geréb-Graus managed to improve the lower bound to $\frac{3}{n} - o(1/n)$.)

4. (Remark: this is really a problem in combinatorics, not Fourier analysis.)

The polarizations of $f: \{-1,1\}^n \to \mathbb{R}$ (also known as compressions, downshifts, or two-point rearrangements) are defined as follows. For $i \in [n]$, the *i*-polarization of f is the function $f^{\sigma_i}: \{-1,1\}^n \to \mathbb{R}$ defined by

$$f^{\sigma_i}(x) = \begin{cases} \max\{f(x^{(i \mapsto +1)}), f(x^{(i \mapsto -1)})\} & \text{if } x_i = +1, \\ \min\{f(x^{(i \mapsto +1)}), f(x^{(i \mapsto -1)})\} & \text{if } x_i = -1. \end{cases}$$

- (a) Show that $\mathbf{E}[f^{\sigma_i}] = \mathbf{E}[f]$.
- (b) Show that $\mathbf{Inf}_i[f^{\sigma_i}] \leq \mathbf{Inf}_i[f]$ for all $j \in [n]$.
- (c) (Optional.) Show that $\mathbf{Stab}_{\varrho}[f^{\sigma_i}] \geq \mathbf{Stab}_{\varrho}[f]$ for all $0 \leq \varrho \leq 1$.
- (d) Show that f^{σ_i} is monotone in the *i*th direction. (We say g is "monotone in the *i*th direction" if $g(x^{(i\mapsto +1)}) \ge g(x^{(i\mapsto -1)})$ for all x.) Further, show that if f is monotone in the jth direction for some $j \in [n]$ then f^{σ_i} is still monotone in the jth direction.
- (e) Let $f^* = f^{\sigma_1 \sigma_2 \cdots \sigma_n}$. Show that f^* is monotone, $\mathbf{E}[f^*] = \mathbf{E}[f]$, $\mathbf{Inf}_j[f^*] \le \mathbf{Inf}_j[f]$ for all $j \in [n]$, and $\mathbf{Stab}_{\varrho}[f^*] \ge \mathbf{Stab}_{\varrho}[f]$ for all $0 \le \varrho \le 1$ (you may use part (c)).
- 5. (Enflo, 1970.) The Hamming distance $\mathrm{Dist}(x,y) = \#\{i: x_i \neq y_i\}$ on the discrete cube $\{-1,1\}^n$ is an example of an ℓ_1 metric space. For $D \geq 1$, we say that the discrete cube can be *embedded into* ℓ_2 with distortion D if there is a mapping $F: \{-1,1\}^n \to \mathbb{R}^m$ for some $m \in \mathbb{N}$ such that:

$$||F(x) - F(y)||_2 \ge \text{Dist}(x, y) \text{ for all } x, y;$$
 ("no contraction")
 $||F(x) - F(y)||_2 \le D \cdot \text{Dist}(x, y) \text{ for all } x, y.$ ("expansion at most D ")

In this problem you will show that the least distortion possible is $D = \sqrt{n}$.

(a) Recalling the definition of f^{odd} from Homework 1, show that for any $f: \{-1,1\}^n \to \mathbb{R}$ we have $\|f^{\text{odd}}\|_2^2 \leq \mathbf{I}[f]$ and hence

$$\mathbf{E}_{\mathbf{x}}[(f(\mathbf{x}) - f(-\mathbf{x}))^{2}] \leq \sum_{i=1}^{n} \mathbf{E}_{\mathbf{x}} \Big[\big(f(\mathbf{x}) - f(\mathbf{x}^{\oplus i}) \big)^{2} \Big].$$

- (b) Suppose $F: \{-1,1\}^n \to \mathbb{R}^m$, and write $F(x) = (f_1(x), f_2(x), \dots, f_m(x))$ for functions $f_i: \{-1,1\}^n \to \mathbb{R}$. By summing the above inequality over $i \in [m]$, show that any F with no contraction must have expansion at least \sqrt{n} .
- (c) Show that there is an embedding *F* achieving distortion \sqrt{n} .
- 6. (Latała–Oleszkiewicz, 1994.) Let V be a vector space with norm $\|\cdot\|$ and fix $w_1,\ldots,w_n\in V$. Define $g:\{-1,1\}^n\to\mathbb{R}$ by $g(x)=\|\sum_{i=1}^nx_iw_i\|$.
 - (a) Recalling the operator L from Problem 1, show that $Lg \le g$ pointwise. (Hint: triangle inequality.)
 - (b) Deduce $2\mathbf{Var}[g] \leq \mathbf{E}[g^2]$ and thus the *Khintchine–Kahane inequality*:

$$\mathbf{E}_{\mathbf{x}}\left[\left\|\sum_{i=1}^{n}\mathbf{x}_{i}w_{i}\right\|\right] \geq \frac{1}{\sqrt{2}} \cdot \mathbf{E}_{\mathbf{x}}\left[\left\|\sum_{i=1}^{n}\mathbf{x}_{i}w_{i}\right\|^{2}\right]^{1/2}.$$

(Hint: first, show that the improved Poincaré inequality $\mathbf{Var}[f] \leq \frac{1}{2}\mathbf{I}[f]$ holds whenever $f: \{-1,1\}^n \to \mathbb{R}$ is even, as defined in Homework 1.)

(c) Show that the constant $\frac{1}{\sqrt{2}}$ above is optimal (Hint: take $V = \mathbb{R}$ and n = 2.)