PROBLEM SET 1

Due: Monday, Sept. 17, beginning of class

Homework policy: Please work on the homework by yourself; it isn't intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

- 1. Compute the Fourier expansions of the following functions.
 - (a) The selection function Sel : $\{-1,1\}^3 \to \{-1,1\}$ which outputs x_2 if $x_1 = -1$ and outputs x_3 if $x_1 = 1$.
 - (b) The indicator function $1_{\{a\}}: \{-1,1\}^n \to \{0,1\}$, where $a \in \{-1,1\}^n$.
 - (c) The density function corresponding to the product probability distribution on $\{-1,1\}^n$ in which each coordinate has mean $\rho \in [-1,1]$;
 - (d) The inner product mod 2 function, $IP_{2n} : \mathbb{F}_2^{2n} \to \{-1,1\}$ defined by $IP_{2n}(x_1,\ldots,x_n,y_1,\ldots,y_n) = (-1)^{x \cdot y}$. (Here $x \cdot y$ denotes the dot-product in the vector space \mathbb{F}_2^n .)
 - (e) The hemi-icosahedron function $HI: \{-1,1\}^6 \to \{-1,1\}$, defined as follows: HI(x) is 1 if the number of 1's in x is 1, 2, or 6. HI(x) is -1 if the number of -1's in x is 1, 2, or 6. Otherwise, HI(x) is 1 if and only if one of the ten facets in the following diagram has all three of its vertices 1:

Figure 1: The hemi-icosahedron

(Please give some indication of how you arrived at the expansion; a bare formula does not suffice.)

2. Let $f: \{-1,1\}^n \to \{-1,1\}$. Let $\boldsymbol{x}, \boldsymbol{x}' \sim \{-1,1\}^n$ be independent uniformly random strings and let $\mu = \mathbf{E}[f(\boldsymbol{x})]$. Show that

$$\mathbf{Var}[f] = \frac{1}{2} \mathbf{E}[(f(\boldsymbol{x}) - f(\boldsymbol{x}'))^2] = 4 \mathbf{Pr}[f(\boldsymbol{x}) = 1] \mathbf{Pr}[f(\boldsymbol{x}) = -1]$$
$$= 2 \mathbf{Pr}[f(\boldsymbol{x}) \neq f(\boldsymbol{x}')] = \mathbf{E}[|f(\boldsymbol{x}) - \mu|].$$

3. The (boolean) dual of $f: \{-1,1\}^n \to \mathbb{R}$ is the function f^{\dagger} defined by $f^{\dagger}(x) = -f(-x)$. The function f is said to be odd if it equals its dual; equivalently, if f(-x) = -f(x) for all x. The function f is said to be even if f(-x) = f(x) for all x. Given any function $f: \{-1,1\}^n \to \mathbb{R}$, its odd part is the function $f^{\text{odd}}: \{-1,1\}^n \to \mathbb{R}$ defined by $f^{\text{odd}}(x) = (f(x) - f(-x))/2$, and its even part is the function $f^{\text{even}}: \{-1,1\}^n \to \mathbb{R}$ defined by $f^{\text{even}}(x) = (f(x) + f(-x))/2$.

- (a) Express $\widehat{f}^{\dagger}(S)$ in terms of $\widehat{f}(S)$.
- (b) Verify that $f = f^{\text{odd}} + f^{\text{even}}$ and that f is odd (respectively, even) if and only if $f = f^{\text{odd}}$ (respectively, $f = f^{\text{even}}$).
- (c) Show that

$$f^{\text{odd}} = \sum_{\substack{S \subseteq [n] \\ |S| \text{ odd}}} \widehat{f}(S) \chi_S, \qquad f^{\text{even}} = \sum_{\substack{S \subseteq [n] \\ |S| \text{ even}}} \widehat{f}(S) \chi_S.$$

- 4. Let $f: \{-1,1\}^n \to \{-1,1\}$.
 - (a) Suppose $\mathbf{W}^1[f] = 1$. Show that $f(x) = \pm \chi_S$ for some |S| = 1.
 - (b) Suppose $\mathbf{W}^{\leq 1}[f] = 1$. Show that f depends on at most 1 input coordinate.
 - (c) Suppose $\mathbf{W}^{\leq 2}[f] = 1$. Is it true that f depends on at most 2 input coordinates?
- 5. A Hadamard matrix is any $N \times N$ real matrix with ± 1 entries and orthogonal rows. Particular examples are the Walsh-Hadamard matrices H_N , inductively defined for $N=2^n$ as follows: $H_1=\begin{bmatrix}1\end{bmatrix},\ H_{2^{n+1}}=\begin{bmatrix}H_{2^n}&H_{2^n}\\H_{2^n}&-H_{2^n}\end{bmatrix}.$
 - (a) Let's index the rows and columns of H_{2^n} by the integers $\{0, 1, 2, ..., 2^n 1\}$ rather than $[2^n]$. Further, let's identify such an integer i with its binary expansion $(i_0, i_1, ..., i_{n-1}) \in \mathbb{F}_2^n$, where i_0 is the least significant bit and i_{n-1} the most. E.g., if n = 3, we identify the

index i = 6 with (0, 1, 1). Now show that the (γ, x) entry of H_{2^n} is $(-1)^{\gamma \cdot x}$.

- (b) Show that if $f: \mathbb{F}_2^n \to \mathbb{R}$ is represented as a column vector in \mathbb{R}^{2^n} (according to the indexing scheme from part (a)) then $2^{-n}H_{2^n}f=\widehat{f}$. Here we think of \widehat{f} as also being a function $\mathbb{F}_2^n \to \mathbb{R}$, identifying subsets $S \subseteq \{0,1,\ldots,n-1\}$ with their indicator vectors.
- (c) Show that taking the Fourier transform is essentially an "involution": $\widehat{\widehat{f}} = 2^{-n}f$ (using the notations from part (b)).
- (d) (Optional.) Show how to compute $H_{2^n}f$ using just $n2^n$ additions and subtractions (rather than 2^{2n} additions and subtractions as the usual matrix-vector multiplication algorithm would require). This computation is called the Fast Walsh-Hadamard Transform and is the method of choice for computing the Fourier expansion of a generic function $f: \mathbb{F}_2^n \to \mathbb{R}$ when n is large.
- 6. (Sanders '06.) Let $A \subseteq \mathbb{F}_2^n$, let $\alpha = |A|/2^n$, and write $1_A : \mathbb{F}_2^n \to \{0,1\}$ for the indicator function of A.
 - (a) Show that $\sum_{S\neq\emptyset} \widehat{1}_A(S)^2 = \alpha(1-\alpha)$.
 - (b) Define $A+A+A=\{x+y+z:x,y,z\in A\}$, where the addition is in \mathbb{F}_2^n . Show that either $A+A+A=\mathbb{F}_2^n$ or else there exists $S^*\neq\emptyset$ such that $|\widehat{1_A}(S^*)|\geq\frac{\alpha}{1-\alpha}\cdot\alpha$. (Hint: if $A+A+A\neq\mathbb{F}_2^n$, show there exists $x\in\mathbb{F}_2^n$ such that $1_A*1_A*1_A(x)=0$.)