Problem Set 1

Due: Monday, Sept. 17, beginning of class

Homework policy: Please work on the homework by yourself; it isn't intended to be too difficult. Questions about the homework or other course material can be asked on Piazza.

1. Compute the Fourier expansions of the following functions.
(a) The selection function Sel : $\{-1,1\}^{3} \rightarrow\{-1,1\}$ which outputs x_{2} if $x_{1}=-1$ and outputs x_{3} if $x_{1}=1$.
(b) The indicator function $1_{\{a\}}:\{-1,1\}^{n} \rightarrow\{0,1\}$, where $a \in\{-1,1\}^{n}$.
(c) The density function corresponding to the product probability distribution on $\{-1,1\}^{n}$ in which each coordinate has mean $\rho \in[-1,1]$;
(d) The inner product mod 2 function, $\mathrm{IP}_{2 n}: \mathbb{F}_{2}^{2 n} \rightarrow\{-1,1\}$ defined by $\operatorname{IP}_{2 n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=$ $(-1)^{x \cdot y}$. (Here $x \cdot y$ denotes the dot-product in the vector space \mathbb{F}_{2}^{n}.)
(e) The hemi-icosahedron function $\mathrm{HI}:\{-1,1\}^{6} \rightarrow\{-1,1\}$, defined as follows: $\mathrm{HI}(x)$ is 1 if the number of 1 's in x is 1,2 , or $6 . \mathrm{HI}(x)$ is -1 if the number of -1 's in x is 1,2 , or 6. Otherwise, $\mathrm{HI}(x)$ is 1 if and only if one of the ten facets in the following diagram has all three of its vertices 1 :

Figure 1: The hemi-icosahedron
(Please give some indication of how you arrived at the expansion; a bare formula does not suffice.)
2. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Let $\boldsymbol{x}, \boldsymbol{x}^{\prime} \sim\{-1,1\}^{n}$ be independent uniformly random strings and let $\mu=\mathbf{E}[f(\boldsymbol{x})]$. Show that

$$
\begin{aligned}
\operatorname{Var}[f] & =\frac{1}{2} \mathbf{E}\left[\left(f(\boldsymbol{x})-f\left(\boldsymbol{x}^{\prime}\right)\right)^{2}\right]=4 \operatorname{Pr}[f(\boldsymbol{x})=1] \operatorname{Pr}[f(\boldsymbol{x})=-1] \\
& =2 \operatorname{Pr}\left[f(\boldsymbol{x}) \neq f\left(\boldsymbol{x}^{\prime}\right)\right]=\mathbf{E}[|f(\boldsymbol{x})-\mu|] .
\end{aligned}
$$

3. The (boolean) dual of $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is the function f^{\dagger} defined by $f^{\dagger}(x)=-f(-x)$. The function f is said to be odd if it equals its dual; equivalently, if $f(-x)=-f(x)$ for all x. The function f is said to be even if $f(-x)=f(x)$ for all x. Given any function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$, its odd part is the function $f^{\text {odd }}:\{-1,1\}^{n} \rightarrow \mathbb{R}$ defined by $f^{\text {odd }}(x)=(f(x)-f(-x)) / 2$, and its even part is the function $f^{\text {even }}:\{-1,1\}^{n} \rightarrow \mathbb{R}$ defined by $f^{\text {even }}(x)=(f(x)+f(-x)) / 2$.
(a) Express $\widehat{f^{\dagger}}(S)$ in terms of $\widehat{f}(S)$.
(b) Verify that $f=f^{\text {odd }}+f^{\text {even }}$ and that f is odd (respectively, even) if and only if $f=f^{\text {odd }}$ (respectively, $f=f^{\text {even }}$).
(c) Show that

$$
f^{\text {odd }}=\sum_{\substack{S \subseteq[n] \\|S| \text { odd }}} \widehat{f}(S) \chi_{S}, \quad f^{\text {even }}=\sum_{\substack{S \subseteq[n] \\|S| \text { even }}} \widehat{f}(S) \chi_{S}
$$

4. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.
(a) Suppose $\mathbf{W}^{1}[f]=1$. Show that $f(x)= \pm \chi_{S}$ for some $|S|=1$.
(b) Suppose $\mathbf{W}^{\leq 1}[f]=1$. Show that f depends on at most 1 input coordinate.
(c) Suppose $\mathbf{W}^{\leq 2}[f]=1$. Is it true that f depends on at most 2 input coordinates?
5. A Hadamard matrix is any $N \times N$ real matrix with ± 1 entries and orthogonal rows. Particular examples are the Walsh-Hadamard matrices H_{N}, inductively defined for $N=2^{n}$ as follows: $H_{1}=[1], H_{2^{n+1}}=\left[\begin{array}{cc}H_{2^{n}} & H_{2^{n}} \\ H_{2^{n}} & -H_{2^{n}}\end{array}\right]$.
(a) Let's index the rows and columns of $H_{2^{n}}$ by the integers $\left\{0,1,2, \ldots, 2^{n}-1\right\}$ rather than $\left[2^{n}\right]$. Further, let's identify such an integer i with its binary expansion $\left(i_{0}, i_{1}, \ldots, i_{n-1}\right) \in$ \mathbb{F}_{2}^{n}, where i_{0} is the least significant bit and i_{n-1} the most. E.g., if $n=3$, we identify the index $i=6$ with $(0,1,1)$. Now show that the (γ, x) entry of $H_{2^{n}}$ is $(-1)^{\gamma \cdot x}$.
(b) Show that if $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ is represented as a column vector in $\mathbb{R}^{2^{n}}$ (according to the indexing scheme from part (a)) then $2^{-n} H_{2^{n}} f=\widehat{f}$. Here we think of \widehat{f} as also being a function $\mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$, identifying subsets $S \subseteq\{0,1, \ldots, n-1\}$ with their indicator vectors.
(c) Show that taking the Fourier transform is essentially an "involution": $\widehat{\hat{f}}=2^{-n} f$ (using the notations from part (b)).
(d) (Optional.) Show how to compute $H_{2^{n}} f$ using just $n 2^{n}$ additions and subtractions (rather than $2^{2 n}$ additions and subtractions as the usual matrix-vector multiplication algorithm would require). This computation is called the Fast Walsh-Hadamard Transform and is the method of choice for computing the Fourier expansion of a generic function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ when n is large.
6. (Sanders '06.) Let $A \subseteq \mathbb{F}_{2}^{n}$, let $\alpha=|A| / 2^{n}$, and write $1_{A}: \mathbb{F}_{2}^{n} \rightarrow\{0,1\}$ for the indicator function of A.
(a) Show that $\sum_{S \neq \emptyset} \widehat{1_{A}}(S)^{2}=\alpha(1-\alpha)$.
(b) Define $A+A+A=\{x+y+z: x, y, z \in A\}$, where the addition is in \mathbb{F}_{2}^{n}. Show that either $A+A+A=\mathbb{F}_{2}^{n}$ or else there exists $S^{*} \neq \emptyset$ such that $\left|\widehat{1_{A}}\left(S^{*}\right)\right| \geq \frac{\alpha}{1-\alpha} \cdot \alpha$. (Hint: if $A+A+A \neq \mathbb{F}_{2}^{n}$, show there exists $x \in \mathbb{F}_{2}^{n}$ such that $1_{A} * 1_{A} * 1_{A}(x)=0$.)
