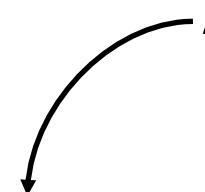
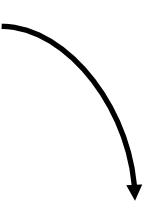
Inconsistency Detection in Semantic **Annotation**

Nora Hollenstein Nathan Schneider Bonnie Webber

Overview


- Related Work
- Introduction
- Hypothesis
- Data sets
 - Multiword Expressions
 - (Supersense Labels)
- Ranking Methods
 - Discrepancy Ranking
 - Entropy Ranking
- Results
- Conclusion

Related Work


- Syntactic Annotation
 - Inconsistency and error detection in POS Tagging and Treebanks
 - Rule-based approaches (e.g. Ule & Simov (2004))
 - Support Vector Machines (e.g. Nakagawa & Matsumoto (2002))
 - Variation n-gram method (e.g. Dickinson & Meurers (2003))
 - Entropy-based error detection (e.g. Nguyen et al. (2015))
- Semantic Annotation
 - Variation n-gram method (Dickinson & Lee (2008))

Introduction

Annotation inconsistencies

Occurrences of same instances with diverging annotations

Annotation errors

Incorrectly annotated instances

Example:

X in addition to

x strawberry_banana_milkshake

Linguistically hard cases¹

Ambiguities

Example:

I missed you last week.

? missed = verb.stative OR verb.emotion

Hypothesis

- Detect high frequency types which are most likely to contain inconsistencies in a corpus with semantic annotations
- Annotations of multiword expressions and supersenses
- Ranking methods compared to a random baseline

Reviewing the highest ranked inconsistency candidates will make the corpus considerably more consistent.

Data sets

MULTIWORD EXPRESSIONS

→ at least two words, which act as a single unit

Inconsistencies examples:

take_care OR take_care_of civil_rights OR civil_rights_issues surprise birthday_party pumpkin spice latte

SUPERSENSE LABELS

→ coarse-grained semantic classes or word senses

Inconsistency example:

"Humans live on this **world**, a tiny spot in the milky way."

? verb.object OR verb.location

Multiword Expressions

STREUSLE 2.0

- 55'000 tokens
- Web reviews
- Schneider et al. (2014)
- Adjudicated labels, joint annotator consensus
- Strong MWEs, weak MWEs
 - take_advantage
 - highly~recommended

Wiki50 Corpus

- 100'000 tokens
- 50 Wikipedia articles
- Vincze et al. (2011)
- Five specific types of MWEs
 - crime_scene (nom. compound)
 - high_school (adj. compound)
 - *spill_the_beans* (idoms)
 - take_a_break (light verb const.)
 - set_up (verb-part. constructions)

Supersense Labels

STREUSLE 2.0

- Size
- Text types
- Schneider & Smith (2015)
- Supersense tagset for WordNet¹

Twitter data sets

- 19232 tokens
- tweets
- Johannsen et al. (2014)
- Avoided comprehensive annotation guidelines
- Supersense tagset for WordNet¹

Supersense Labels

This store (noun.group) is (verb.stative) proof (noun.cognition) that you can fool (verb.social) people (noun.person) with good advertising (noun.act).

Ranking methods

Discrepancy ranking

Entropy ranking

Discrepancy Ranking

For each type T, count how many times it is annotated as an MWE in the corpus and how many times it was not annotated:

$$T = (annotated : x, not-annotated : y)$$

2. For each type T, calculate the following weight W:

$$W = |x - y| \cdot x$$

MWEs – Discrepancy Ranking

	STREUSLE				Wiki50			
Rank	MWE	\overline{x}	\overline{y}	\overline{W}	MWE	\overline{x}	\overline{y}	\overline{W}
1	highly recommend	30	3	810	called for	7	1	42
2	thank you	26	2	624	whole body cooling	4	1	12
3	have to	27	16	297	religious classes	3	1	6
4	highly recommended	14	1	182	religious instruction	3	1	6
5	a couple	13	2	143	political crisis	3	1	6
6	work with	12	1	132	brand new	3	1	6
7	a bit	16	10	96	looking for	4	3	4
8	a little	12	4	96	left for	2	4	4
9	worked with	10	1	90	one time	1	5	4
10	at least	10	2	80	went on	3	2	3

Supersense – Discrepancy Ranking

	STREUSLE				Twitter			
Rank	word	\overline{n}	m	W	word	n	m	\overline{W}
1	place	3	185	10051	day	3	84	2156
2	service	6	200	6400	time	5	64	384
3	staff	2	72	2376	year	2	25	263
4	people	3	84	2072	years	2	18	126
5	car	4	86	1763	night	3	19	101
6	time	3	87	1247	people	2	14	84
7	price	3	61	1179	life	2	13	72
8	experience	3	56	887	work	2	13	46
9	years	2	41	759	today	2	10	26
10	job	3	50	700	show	3	11	24

Entropy Ranking

1. For each type T, calculate its probability p (relative frequency) of being annotated and the probability of not being annotated (1-p):

$$p = \frac{x}{x+y}$$

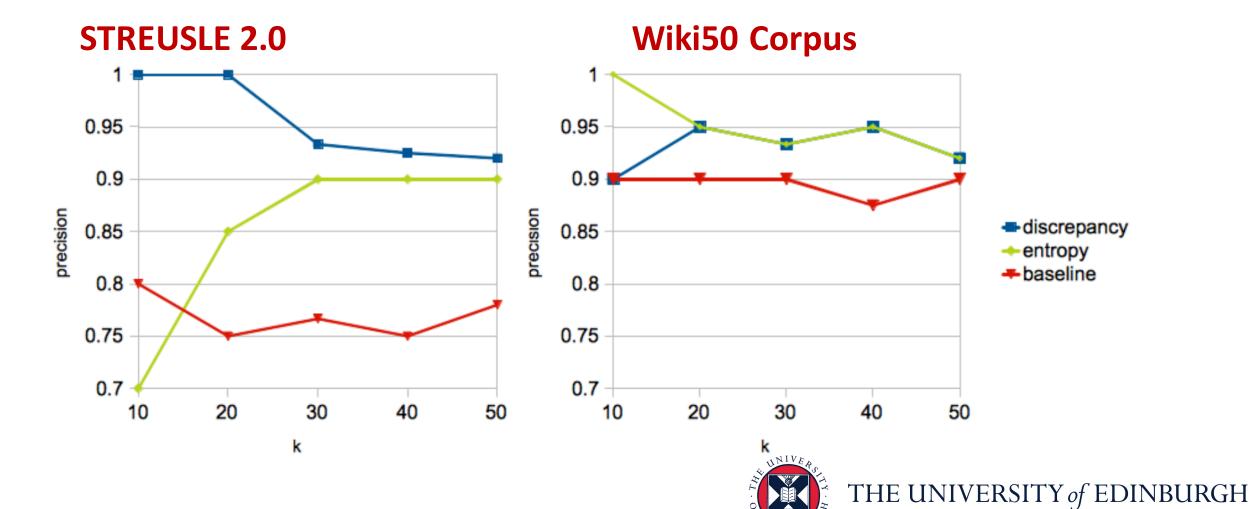
2. Then, calculate the entropy H for each type T:

$$H = -\sum_i (p_i)log_2(p_i)$$

MWEs – Entropy Ranking

	STREUSLE				Wiki50			
Rank	MWE	\boldsymbol{x}	y	H	MWE	x	\overline{y}	H
1	have been	1	50	0.14	called for	7	1	0.54
2	to go	1	32	0.20	one time	1	5	0.65
3	the same	1	32	0.20	whole body cooling	4	1	0.72
4	go to	1	28	0.21	went back	1	4	0.72
5	to see	1	27	0.22	religious classes	3	1	0.81
6	to do	1	24	0.24	religious instruction	3	1	0.81
7	want to	1	23	0.25	political crisis	3	1	0.81
8	go back	1	15	0.34	brand new	3	1	0.81
9	highly recommended	14	1	0.35	fell to	1	3	0.81
10	kind of	1	14	0.35	left for	2	4	0.92

Supersenses – Entropy Ranking

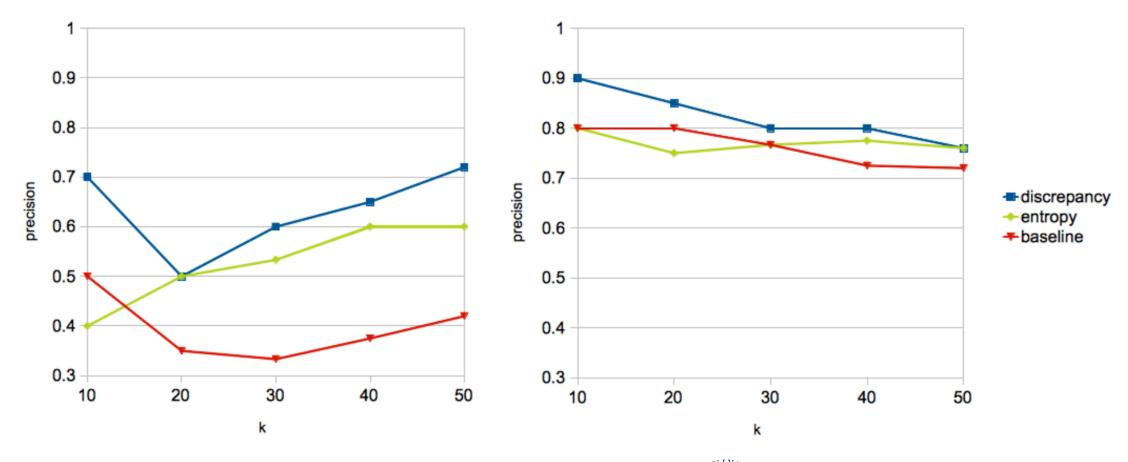

	STREUSLE				Twitter			
Rank	word	n	m	H	word	\overline{n}	m	H
1	prices	2	36	0.18	people	2	14	0.37
2	area	2	35	0.19	life	2	12	0.39
3	pizza	2	26	0.23	year	2	24	0.40
4	price	3	61	0.24	day	3	84	0.42
5	doctor	2	25	0.24	today	2	10	0.47
6	staff	2	72	0.25	years	2	18	0.50
7	car	4	86	0.27	brithday	2	8	0.54
8	years	2	41	0.28	night	3	19	0.59
9	salon	2	20	0.29	place	2	7	0.59
10	problem	2	20	0.29	followers	2	7	0.92

Evaluation

- Manual evaluation (precision@k)
- Significant results over the baseline
 - For both methods
 - For MWEs and supersenses
 - In all four corpora

Results (MWEs)

Examples: Inconsistencies


- 1. → ...the staff up_front will surely **make sure** you get back in time.
 - → ... to make_sure everything went well.
- 2. \rightarrow Of_course | couldn't make_it~back in_time.
 - → Well, unless of course the third compressor goes_out.
- \rightarrow Thus, he laid ground for a **brand new** way of playing ...
 - →... as well as **brand_new** stages altogether.

Examples: False Positives

- \rightarrow He has **to go** to school.
 - → I'll have my coffee **to_go**.

- 2. \rightarrow I would like to **thank you** for ...
 - → Thank_you!

Results (Supersenses)

Conclusion

- Two new methods for inconsistency detection
 - Applied to multiword expressions and supersense labels
 - Simple methods
 - Easy to apply to other annotation phenomena
- Ranking methods successful in detecting inconsistency candidates
- Future work: integrate these methods into an annotation platform, so that inconsistencies can be caught early

References (1)

- B. Beigman Klebanov and E. Beigman. *Difficult cases: From data to learning, and back,* 2009.
- N. Schneider, S. Onuffer, N. Kazour, E. Danchik, M. T. Mordowanec, H. Conrad, and N. A. Smith. *Comprehensive annotation of multiword expressions in a social web corpus*. In Proc. of LREC, 2014.
- V. Vincze, I. Nagy T., and G. Berend. *Multiword expressions and named entities in the Wiki50 corpus*. In RANLP, pages 289–295, 2011.
- N. Schneider and N. A. Smith. *A corpus and model integrating multiword expressions and supersenses*. In Proc. of NAACL-HLT, 2015.
- A. Johannsen, D. Hovy, H. M. Alonso, B. Plank, and A. Søgaard. *More or less supervised supersenses tagging of Twitter*. Lexical and Computational Semantics (*SEM 2014), 1, 2014.

References (2)

Dickinson, Markus, and W. Detmar Meurers. *Detecting inconsistencies in treebanks*. *Proceedings of TLT*. Vol. 3. 2003.

Nguyen, Phuong-Thai, et al. *Vietnamese treebank construction and entropy-based* error detection. Language Resources and Evaluation 49.3 (2015): 487-519.

- T. Nakagawa and Y. Matsumoto. *Detecting errors in corpora using support vector machines*. In Proceedings of the 19th International Conference on Computational linguistics, volume 1, pages 1–7. Association for Computational Linguistics, 2002.
- T. Ule and K. Simov. *Unexpected productions may well be errors*. In LREC, 2004.
- M. Ciaramita and M. Johnson. *Supersense tagging of unknown nouns in WordNet*. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pages 168–175. Association for Computational Linguistics, 2003.