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Related Work

* Syntactic Annotation
* Inconsistency and error detection in POS Tagging and Treebanks
e Rule-based approaches (e.g. Ule & Simov (2004))
e Support Vector Machines (e.g. Nakagawa & Matsumoto (2002))
 Variation n-gram method (e.g. Dickinson & Meurers (2003))
* Entropy-based error detection (e.g. Nguyen et al. (2015))

* Semantic Annotation
 Variation n-gram method (Dickinson & Lee (2008))



Introduction

Annotation inconsistencies

Occurrences of same instances
with divergingannotations

Annotation errors Linguistically hard cases?
Incorrectly annotated instances Ambiguities

Example: Example:

X in addition to I missed you last week.

X strawberry _banana_milkshake ? missed = verb.stative OR verb.emotion
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1) Definition from Klebanov and Beigman (2009)




Hypothesis

* Detect high frequency types which are most likely to contain
inconsistencies in a corpus with semantic annotations

* Annotations of multiword expressions and supersenses

* Ranking methods compared to a random baseline

!

Reviewing the highest ranked inconsistency candidates will make
the corpus considerably more consistent.
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Data sets

MULTIWORD EXPRESSIONS

— at least two words, which act
as a single unit

Inconsistencies examples:

take care OR take care of
civil_rights OR civil _rights_issues
surprise birthday party

pumpkin spice latte

SUPERSENSE LABELS

—> coarse-grained semantic classes
or word senses

Inconsistency example:

“Humans live on this world, a tiny
spot in the milky way.”
? verb.object OR verb.location

9): THE UNIVERSITY of EDINBURGH




Multiword Expressions

STREUSLE 2.0

- 55’000 tokens

- Web reviews

- Schneideret al. (2014)

- Adjudicated labels, joint

annotator consensus

- Strong MWEs, weak MWEs
- take_advantage
- highly~recommended

Wiki50 Corpus

100’000 tokens
50 Wikipedia articles
Vincze et al. (2011)
Five specific types of MWEs
- crime_scene (nom. compound)
- high_school (adj. compound)
- spill_the beans (idoms)
- take _a break (light verb const.)
- set_up (verb-part. constructions)
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Supersense Labels

STREUSLE 2.0 Twitter data sets
- Size - 19232 tokens
- Text types - tweets
- Schneider & Smith (2015) - Johannsen et al. (2014)
- Supersense tagset for WordNet?! - Avoided comprehensive annotation
guidelines
- Supersense tagset for WordNet?
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1) 41 labels defined by Ciaramita & Johnson (2003)



Supersense Labels

This store (noun.group) is (verb.stative) proof
(noun.cognition) that you can fool (verb.social) people
(noun.person) with good advertising (noun.act).
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1) 41 labels defined by Ciaramita & Johnson (2003)



Ranking methods

* Discrepancy ranking

* Entropy ranking
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Discrepancy Ranking

1. For each type T, count how many times it is annotated as an MWE in
the corpus and how many times it was not annotated:

T = (annotated : x, not-annotated : y)

2. For each type T, calculate the following weight W':

W=|z—y| =z
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MWESs — Discrepancy Ranking

STREUSLE Wiki50

Rank | MWE x y W | MWE x y W
1 highly recommend 30 3 810 | called for 7T 1 42
2 thank you 26 2 624 | whole body cooling 4 1 12
3 have to 27 16 297 | religious classes 3 1 6
4 highly recommended 14 1 182 | religious instruction 3 1 ©6
5 a couple 13 2 143 | political crisis 3 1 6
6 work with 12 1 132 | brand new 3 1 6
7 a bit 16 10 96 | looking for 4 3 4
8 a little 12 4 96 | left for 2 4 4
9 worked with 10 1 90 | one time 1 5 4
10 | at least 10 2 80 | went on 3 2 3
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Supersense — Discrepancy Ranking

STREUSLE Twitter

Rank | word n o m 1% word n m W
1 place 3 185 10051 day 3 84 2156
2 service 6 200 6400 time 5 64 384
3 staft 2 72 2376 year 2 25 263
4 people 3 84 2072 years 2 18 126
5} car 4 8 1763 night 3 19 101
6 time 3 87 1247 people 2 14 84
7 price 3 61 1179 life 2 13 72
8 experience 3 56 887 work 2 13 46
9 years 2 41 759 today 2 10 26
10 | job 3 50 700 show 3 11 24




Entropy Ranking

1. For each type T, calculate its probability p (relative frequency) of being
annotated and the probability of not being annotated (1-p):

. i

p

2. Then, calculate the entropy H for each type T

H = — Z (pi)loga(ps)
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MWEs - Entropy Ranking

STREUSLE Wiki50
Rank | MWE r y H MWE x y H
1 have been 1 50 0.14 | called for 7 1 0.54
2 to go 1 32 0.20 | one time 1 5 0.65
3 the same 1 32 0.20 | whole body cooling 4 1 0.72
4 go to 1 28 0.21 | went back 1 4 0.72
5 to see 1 27 0.22 | religious classes 3 1 0.81
6 to do 1 24 0.24 | religious instruction 3 1 0.81
7 want to 1 23 0.25 | political crisis 3 1 0.81
8 go back 1 15 0.34 | brand new 3 1 0.81
9 highly recommended 14 1  0.35 | fell to 1 3 0.81
10 | kind of 1 14 0.35 | left for 2 4 0.92
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Supersenses — Entropy Ranking

STREUSLE Twitter
Rank | word n m H word n m H
1 prices 2 36 0.18 people 2 14 0.37
2 area 2 35 0.19 life 2 12 0.39
3 pizza 2 26 0.23 year 2 24 0.40
4 price 3 61 0.24 day 3 84 0.42
5 doctor 2 25 0.24 today 2 10 047
6 staft 2 72 0.25 years 2 18 0.50
7 car 4 86 0.27 brithday 2 8 0.54
8 years 2 41 0.28 night 3 19 0.59
9 salon 2 20 0.29 place 2 7 0.59
10 | problem 2 20 0.29 followers 2 7  0.92
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Evaluation

* Manual evaluation (precision@k)

* Significant results over the baseline
* For both methods
* For MWEs and supersenses
* In all four corpora
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Examples: Inconsistencies

1. -2 ...the staff up_front will surely make sure you get back in time.
—> ... to make_sure everything went well.

2. - Of coursel couldn't make_it~back in_time.
- Well, unless of course the third compressor goes_out.

3. SThus, he laid ground for a brand new way of playing ...
—... as well as brand_new stages altogether.
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Examples: False Positives

1. 2 He has to go to school.
- I’ll have my coffee to_go.

2. =2 | would like to thank you for ...
- Thank_you!
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Results (Supersenses)
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Conclusion

 Two new methods for inconsistency detection
* Appliedto multiword expressions and supersense labels
* Simple methods
e Easy to apply to other annotation phenomena

* Ranking methods successful in detecting inconsistency candidates

* Future work: integrate these methods into an annotation platform, so
that inconsistencies can be caught early
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