
Dynamic Thresholding and Pruning for Regret Minimization

Noam Brown and Christian Kroer and Tuomas Sandholm
Carnegie Mellon University, Computer Science Department,

noamb@cmu.edu, ckroer@cs.cmu.edu, sandholm@cs.cmu.edu

Abstract

Regret minimization is widely used in determining strategies
for imperfect-information games and in online learning. In
large games, computing the regrets associated with a single
iteration can be slow. For this reason, pruning – in which
parts of the decision tree are not traversed in every iteration –
has emerged as an essential method for speeding up iterations
in large games. The ability to prune is a primary reason why
the Counterfactual Regret Minimization (CFR) algorithm us-
ing regret matching has emerged as the most popular iterative
algorithm for imperfect-information games, despite its rela-
tively poor convergence bound. In this paper, we introduce
dynamic thresholding, in which a threshold is set at every
iteration such that any action in the decision tree with proba-
bility below the threshold is set to zero probability. This en-
ables pruning for the first time in a wide range of algorithms.
We prove that dynamic thresholding can be applied to Hedge
while increasing its convergence bound by only a constant
factor in terms of number of iterations. Experiments demon-
strate a substantial improvement in performance for Hedge as
well as the excessive gap technique.

1 Introduction
We introduce dynamic thresholding for online learning al-
gorithms, in which a threshold is set at every iteration such
that any action with probability below the threshold is set to
zero probability. This enables pruning for the first time in a
wide range of algorithms. The theory that we derive applies
to each of the two central goals in the area:

1. Regret minimization in any setting, where there can be
any number of players in a general-sum game, and our
agent may not even know what the game is (except that
the agent knows the available actions when it is her turn
to move).

2. Converging to an ε-Nash equilibrium in a two-player
zero-sum game. Results for (1) immediately imply results
for this setting by having our algorithm be used by both
agents.

We will introduce this first for the application of solving
zero-sum imperfect-information games (that is, games like
heads-up poker), and then explain how the results directly

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

carry over to non-zero-sum games and to general regret min-
imization. Furthermore, the results apply to both extensive-
form and normal-form representations.

Imperfect-information extensive-form games are a way to
model strategic multi-step interactions between players that
have hidden information, such as negotiations, auctions, cy-
bersecurity settings, and medical settings. A Nash equilib-
rium in relatively small two-player zero-sum games contain-
ing around 108 nodes can be found precisely using a linear
program (Gilpin and Sandholm 2007). For larger games,
iterative algorithms are used to converge to an ε-Nash equi-
librium. There are a number of such iterative algorithms,
the most popular of which is Counterfactual Regret Min-
imization (CFR) (Zinkevich et al. 2007). CFR minimizes
regret independently at each decision point (called an infor-
mation set) in the game tree using any regret-minimizing
algorithm. By far the most popular regret-minimizing algo-
rithm to use within CFR is regret matching (RM) and vari-
ants of RM (Hart and Mas-Colell 2000; Gibson et al. 2012;
Gibson 2014; Brown, Ganzfried, and Sandholm 2015).
CFR+, a variant of CFR with RM, was recently used to es-
sentially solve Limit Texas Hold’em, the largest imperfect-
information game ever to be essentially solved and the first
that is played competitively by humans (Bowling et al. 2015;
Tammelin et al. 2015). That game (after lossless abstrac-
tion (Gilpin and Sandholm 2007) as a preprocessor) has over
1013 information sets.

When computing strategies for large imperfect-
information games, repeatedly traversing the entire
game tree with an iterative algorithm may be prohibitively
slow. For this reason, pruning—in which parts of the game
tree are not traversed on every iteration—has emerged as an
essential method for dealing with large games. The ability
to prune is a primary reason why the Counterfactual Regret
Minimization algorithm (CFR) that uses Regret Matching
(RM) at each information set is the most popular algorithm
for imperfect-information games, despite its relatively poor
O(
√
|A|T) cumulative regret.

While regret-minimizing algorithms other than RM can
be used within CFR, and iterative algorithms other than
CFR exist with better convergence bounds in terms of the
number of iterations needed (Hoda et al. 2010; Pays 2014;
Gilpin, Peña, and Sandholm 2012), CFR with RM exhibits
superior empirical performance in large games (Kroer et al.

2015). A primary reason for this is that CFR with RM is
able to put zero probability on some actions, and therefore
prune large sections of the game tree, particularly in large
games. That is, it need not traverse the entire game tree
on each iteration. This behavior is shared by some other
regret minimizing algorithms, but is relatively uncommon
and is considered a desirable property (Luo and Schapire
2014). The ability to prune enables each iteration to be
completed far more quickly. While the benefit of pruning
varies depending on the game, it can easily be multiple or-
ders of magnitude even in small games (Lanctot et al. 2009;
Brown and Sandholm 2015). Moreover, the benefits of prun-
ing typically grow with the size of the game.

In this paper we introduce dynamic thresholding that al-
lows pruning to be applied in a wider range of algorithms,
and applied more frequently in settings that already sup-
port pruning. We focus on Hedge (Freund and Schapire
1997; Littlestone and Warmuth 1994), also known as the
exponentially-weighted forecaster, which is the most pop-
ular regret-minimizing algorithm in domains other than
extensive-form game solving, on RM, and on the Exces-
sive Gap Technique (EGT) (Nesterov 2005; Gilpin, Peña,
and Sandholm 2012), which converges to an ε-Nash equi-
librium in two-player zero-sum games in O(1

ε), that is, in
significantly fewer iterations than CFR which converges in
O(1

ε2).
Dynamic thresholding sets a minimum probability thresh-

old on each iteration, and any action with probability be-
low that threshold is set to zero probability. We decrease
the threshold over time, where the decrease is asymptoti-
cally slower than the possible decrease of action probabili-
ties in Hedge and EGT. Thus, poor actions may eventually
be played with probability below the threshold, and those
paths in the game tree can then be pruned using the same
methods as are used in CFR with RM (which we will de-
scribe in detail later in the paper). We prove that dynamic
thresholding increases the convergence bound in Hedge and
RM by only a small constant factor, where the factor de-
pends on how aggressively the threshold is set. This holds
whether Hedge and RM are used as stand-alone algorithms
in any setting, or as subroutines within CFR for game-tree
settings.

The remainder of this paper is structured as follows. In the
next section, we cover background on imperfect-information
extensive-form games, Nash equilibria, and CFR. Then,
we formally introduce dynamic thresholding in CFR with
Hedge/RM and prove its convergence guarantees. Then, we
present experimental results that show that dynamic thresh-
olding leads to a dramatic improvement in the performance
of CFR with Hedge and of EGT. Finally, we will conclude
and discuss other potential future uses of dynamic thresh-
olding.

2 Background
In this section we present the background needed for the rest
of the paper. The first subsection introduces the standard no-
tation. The subsection after that covers CFR, explained in
a more general way than usual because we consider other
regret minimizing algorithms within CFR than the usual,

which is RM. Finally, the third subsection presents the prun-
ing variants that have been introduced for CFR.

Notation
In an imperfect-information extensive-form game there is a
finite set of players, P . H is the set of all possible histo-
ries (nodes) in the game tree, represented as a sequence of
actions, and includes the empty history. A(h) is the actions
available in a history and P (h) ∈ P ∪ c is the player who
acts at that history, where c denotes chance. Chance plays
an action a ∈ A(h) with a fixed probability σc(h, a) that is
known to all players. The history h′ reached after an action
is taken in h is a child of h, represented by h · a = h′, while
h is the parent of h′. More generally, h is an ancestor of h′
(and h′ is a descendant of h), represented by h @ h′, if there
exists a sequence of actions from h to h′. Z ⊆ H are ter-
minal histories for which no actions are available. For each
player i ∈ P , there is a payoff function ui : Z → <. If
P = {1, 2} and u1 = −u2, the game is two-player zero-
sum.

Imperfect information is represented by information sets
for each player i ∈ P by a partition Ii of h ∈ H : P (h) = i.
For any information set I ∈ Ii, all histories h, h′ ∈ I
are indistinguishable to player i, so A(h) = A(h′). I(h)
is the information set I where h ∈ I . P (I) is the player
i such that I ∈ Ii. A(I) is the set of actions such that
for all h ∈ I , A(I) = A(h). |Ai| = maxI∈Ii |A(I)|
and |A| = maxi |Ai|. We define U(I) to be the maxi-
mum payoff reachable from a history in I , and L(I) to be
the minimum. That is, U(I) = maxz∈Z,h∈I:hvz uP (I)(z)
and L(I) = minz∈Z,h∈I:hvz uP (I)(z). We define ∆(I) =
U(I)−L(I) to be the range of payoffs reachable from a his-
tory in I . We similarly define U(I, a), L(I, a), and ∆(I, a)
as the maximum, minimum, and range of payoffs (respec-
tively) reachable from a history in I after taking action a. We
define D(I, a) to be the set of information sets reachable by
player P (I) after taking action a. Formally, I ′ ∈ D(I, a)
if for some history h ∈ I and h′ ∈ I ′, h · a v h′ and
P (I) = P (I ′).

A strategy σi(I) is a probability vector over A(I) for
player i in information set I . The probability of a partic-
ular action a is denoted by σi(I, a). Since all histories in
an information set belonging to player i are indistinguish-
able, the strategies in each of them must be identical. That
is, for all h ∈ I , σi(h) = σi(I) and σi(h, a) = σi(I, a).
We define σi to be a probability vector for player i over all
available strategies Σi in the game. A strategy profile σ is a
tuple of strategies, one for each player. ui(σi, σ−i) is the ex-
pected payoff for player i if all players play according to the
strategy profile 〈σi, σ−i〉. If a series of strategies are played

over T iterations, then σ̄Ti =
∑

t∈T σ
t
i

T .
πσ(h) = Πh′→avhσP (h)(h, a) is the joint probability of

reaching h if all players play according to σ. πσi (h) is the
contribution of player i to this probability (that is, the prob-
ability of reaching h if all players other than i, and chance,
always chose actions leading to h). πσ−i(h) is the contri-
bution of all players other than i, and chance. πσ(h, h′) is
the probability of reaching h′ given that h has been reached,

and 0 if h 6@ h′. In a perfect-recall game, ∀h, h′ ∈ I ∈ Ii,
πi(h) = πi(h

′). In this paper we focus on perfect-recall
games. Therefore, for i = P (I) we define πi(I) = πi(h)
for h ∈ I . We define the average strategy σ̄Ti (I) for an in-
formation set I to be

σ̄Ti (I) =

∑
t∈T π

σt
i
i σ

t
i(I)∑

t∈T π
σt

i (I)
(1)

A best response to σ−i is a strategy σ∗i such that
ui(σ

∗
i , σ−i) = maxσ′

i∈Σi
ui(σ

′
i, σ−i). A Nash equilibrium,

is a strategy profile where every player plays a best re-
sponse. Formally, a Nash equilibrium is a strategy profile
σ∗ such that ∀i, ui(σ∗i , σ∗−i) = maxσ′

i∈Σi
ui(σ

′
i, σ
∗
−i). We

define a Nash equilibrium strategy for player i as a strat-
egy σi that is part of any Nash equilibrium. In two-player
zero-sum games, if σi and σ−i are both Nash equilibrium
strategies, then 〈σi, σ−i〉 is a Nash equilibrium. We de-
fine an ε-equilibrium as a strategy profile σ∗ such that ∀i,
ui(σ

∗
i , σ
∗
−i) + ε ≥ maxσ′

i∈Σi
ui(σ

′
i, σ
∗
−i).

Counterfactual Regret Minimization (CFR)
Counterfactual Regret Minimization (CFR) is the most
popular algorithm for extensive-form imperfect-information
games. In CFR, the strategy vector for each information
set is determined according to a regret-minimization al-
gorithm (Zinkevich et al. 2007). Typically, regret match-
ing (RM) is used as the regret-minimization algorithm in
CFR even though Hedge has a better convergence bound (in
terms of the number of iterations) (Cesa-Bianchi and Lugosi
2006). One reason is that the vanilla version of Hedge does
not support pruning of any paths in extensive-form games
because all probabilities in Hedge are strictly positive. In
section 3 we introduce a modification to Hedge that allows
pruning, so we cover both Hedge and RM in this section.

Our analysis of CFR makes frequent use of counterfactual
value. Informally, this is the expected utility of an informa-
tion set given that player i tries to reach it. For player i at
information set I given a strategy profile σ, this is defined as

vσ(I) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h, z)ui(z)

))
(2)

The counterfactual value of an action a is

vσ(I, a) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h · a, z)ui(z)

))
(3)

Let σt be the strategy profile used on iteration t. The in-
stantaneous regret on iteration t for action a in information
set I is

rt(I, a) = vσ
t

(I, a)− vσ
t

(I) (4)
and the regret for action a in I on iteration T is

RT (I, a) =
∑
t∈T

rt(I, a) (5)

Additionally, RT+(I, a) = max{RT (I, a), 0} and RT (I) =

maxa{RT+(I, a)}. Regret for player i in the entire game is

RTi = max
σ′
i∈Σi

∑
t∈T

(
ui(σ

′
i, σ

t
−i)− ui(σti , σt−i)

)
(6)

In regret matching, a player picks a distribution over ac-
tions in an information set in proportion to the positive regret
on those actions. Formally, on each iteration T + 1, player i
selects actions a ∈ A(I) according to probabilities

σT+1(I, a) =


RT

+(I,a)∑
a′∈A(I) R

T
+(I,a′)

, if
∑
a′ R

T
+(I, a′) > 0

1
|A(I)| , otherwise

(7)
If a player plays according to regret matching in informa-
tion set I on every iteration then on iteration T , RT (I) ≤
∆(I)

√
|A(I)|

√
T (Cesa-Bianchi and Lugosi 2006).

In Hedge, a player picks a distribution over actions in an
information set according to

σT+1(I, a) =
eηTR

T (I,a)∑
a′∈A(I) e

ηTRT (I,a′)
(8)

where ηT is a tuning parameter. There is a substantial liter-
ature on how to set ηT for best performance (Cesa-Bianchi
and Lugosi 2006; Cesa-Bianchi, Mansour, and Stoltz 2007).
If a player plays according to Hedge in information set I on

every iteration t and uses ηt =
√

2 ln(|A(I)|)
T then on itera-

tion T , RT (I) ≤ ∆(I)
√

2 ln(|A(I)|)T (Cesa-Bianchi and
Lugosi 2006).

If a player plays according to CFR on every iteration then

RTi ≤
∑
I∈Ii

RT (I) (9)

So, as T →∞, R
T
i

T → 0.
In two-player zero-sum games, if both players’ average

regret satisfies RT
i

T ≤ ε, their average strategies 〈σ̄T1 , σ̄T2 〉
form a 2ε-equilibrium (Waugh et al. 2009). Thus, CFR con-
stitutes an anytime algorithm for finding an ε-Nash equilib-
rium in zero-sum games.

Pruning Techniques
In this section we discuss pruning techniques that allow parts
of the game tree to be skipped within CFR iterations.

(Partial) Pruning Typically, regret is updated by travers-
ing each node in the game tree separately for each player,
and calculating the contribution of a history h ∈ I to rt(I, a)
for each action a ∈ A(I). If a history h is reached in which
πσ

t

−i(h) = 0 (that is, an opponent’s reach is zero), then from
(2) and (3) the strategy at h contributes nothing on itera-
tion t to the regret of I(h) (or to the information sets above
it). Moreover, any history that would be reached beyond h
would also contribute nothing to its information set’s regret
because πσ

t

−i(h
′) = 0 for every history h′ where h @ h′

and P (h′) = P (h). Thus, when traversing the game tree
for player i, there is no need to traverse beyond any history
h when πσ

t

−i(h) = 0. The benefit of this form of pruning,
which we refer to as partial pruning, varies depending on
the game, but empirical results show a factor of 30 improve-
ment in some small games (Lanctot et al. 2009).

Regret-Based Pruning (RBP) While partial pruning al-
lows one to prune paths that an opponent reaches with zero
probability, the recently introduced regret-based pruning
(RBP) algorithm allows one to also prune paths that the tra-
verser reaches with zero probability (Brown and Sandholm
2015). However, this pruning is necessarily temporary. Con-
sider an action a ∈ A(I) such that σt(I, a) = 0, and assume
for now that it is known action awill not be played with pos-
itive probability until some far-future iteration t′ (in RM, this
would be the case if Rt(I, a)� 0). Since action a is played
with zero probability on iteration t, the strategy played and
reward received following action a (that is, in D(I, a)) will
not contributed to the regret for any information set preced-
ing action a on iteration t. In fact, what happens in D(I, a)
has no bearing on the rest of the game tree until iteration t′ is
reached. So one can “procrastinate” until iteration t′ in de-
ciding what happened beyond action a on iteration t, t + 1,
..., t′ − 1.

Upon reaching iteration t′, rather than individually mak-
ing up the t′ − t iterations over D(I, a), one can instead do
a single iteration, playing against the average of the oppo-
nents’ strategies in the t′− t iterations that were missed, and
declare that strategy was played on all the t′ − t iterations.
This accomplishes the work of the t′ − t iterations in a sin-
gle traversal. Moreover, since player i never plays action
a with positive probability between iterations t and t′ − 1,
that means every other player can apply partial pruning on
that part of the game tree for the t′ − t iterations, and skip
it completely. This, in turn, means that player i has free rein
to play whatever she wants in D(I, a) without affecting the
regrets of the other players. In light of that, and of the fact
that player i gets to decide what is played in D(I, a) after
knowing what the other players have played, player i might
as well play a strategy that ensures zero regret for all infor-
mation sets I ′ ∈ D(I, a) in the iterations t to t′ − 1. For
instance, player i can play a best response to the opponents’
average strategy from iterations t to t′ − 1; this is what we
do in the experiments in this paper.

Regret-based pruning only allows a player to skip travers-
ing D(I, a) for as long as σt(I, a) = 0. Thus, in RM if
Rt0(I, a) < 0 we can prune the game tree beyond action a
from iteration t0 onward in consecutive iterations as long as
for the current iteration t1 we have

t0∑
t=1

vσ
t

(I, a) +

t1∑
t=t0+1

πσ
t

−i(I)U(I, a) ≤
t1∑
t=1

vσ
t

(I) (10)

Once this no longer holds, skipping ceases. If we later find
another t0 that satisfies Rt0(I, a) < 0, we do another se-
quence of iterations where we skip traversing after a, and so
on.

3 Dynamic Thresholding
The pruning methods described in Section 2 can only be ap-
plied when an action is played with zero probability. This
makes pruning incompatible with Hedge, because in Hedge
all the action probabilities are strictly positive. This mo-
tivates our introduction of dynamic thresholding, in which
low-probability actions are set to zero probability.

In dynamic thresholding for Hedge, when each successive
iteration t is computed we set any action with probability

less than (C−1)
√

ln(|A(I)|)√
2|A(I)|2

√
t

(where C ≥ 1) to zero probabil-
ity and normalize the remaining action probabilities accord-
ingly so they sum to 1. We then use this new probability
vector to determine the regrets of iteration t + 1. If an ac-
tion is thresholded, this deviation from what Hedge calls for
may lead to worse performance and therefore higher regret.
In particular, since the altered probability vectors determine
the regrets for future iterations, there is a risk that this error
could snowball. However, using the threshold that we just
specified above, we ensure that the new regret is within a
constant factor C of the traditional regret bound.
Theorem 1. If player P (I) plays according to Hedge
in an information set I for T iterations using threshold
(C−1)

√
ln(|A(I)|)√

2|A(I)|2
√
t

with C ≥ 1 on every iteration t, then

RT (I) ≤ C
√

2∆(I)
√

ln(|A(I)|)
√
T .

All proofs can be found in an accompanying online ap-
pendix.

To apply the above theorem within CFR, we get from
Equation 9 that one can then just sum the regrets of all in-
formation sets I to bound the total regret for this player.

Dynamic thresholding can in general be applied to any re-
gret minimization algorithm. We present Theorem 1 specif-
ically for Hedge in order to tailor the threshold for that al-
gorithm, which provides a tighter theoretical bound. In The-
orem 2, we also show that dynamic thresholding can be ap-
plied to RM. However, it results in very little, if any, addi-
tional pruning. This is because RM is very unlikely in prac-
tice to put extremely small probabilities on actions. Never-
theless, we prove that dynamic thresholding applies to RM
for the sake of completeness and for its potential theoretical
applications. Note that the formula for the threshold is now
different.
Theorem 2. If player P (I) plays according to regret match-
ing in an information set I for T iterations using thresh-
old C2−1

2C|A(I)|2
√
t

with C ≥ 1 on every iteration t, then

RT (I) ≤ C∆(I)
√
|A(I)|

√
T .

Again, to apply the above theorem within CFR, we get
from Equation 9 that one can then just sum the regrets of all
information sets I to bound the total regret for this player.

4 Regret-Based Pruning for Hedge
In this section we describe how dynamic thresholding en-
ables regret-based pruning when using Hedge. To use RBP,
it is necessary to determine a lower bound on the number of
iterations for which an action will have zero probability. In
RM without dynamic thresholding this is simply the mini-
mum number of iterations it would take an action to achieve
positive regret, as shown in (10). In Hedge with dynamic
thresholding, we instead must determine the minimum num-
ber of iterations it would take for an action to reach proba-
bility above the dynamic threshold.

Let RT0(I, a) be the regret for an action a in information

set I on iteration T0. If σT0(I, a) <
(C−1)

√
ln(|A(I)|)√

2|A(I)|2
√
T0

, where

σT0(I, a) is defined according to (8), then pruning can begin
on iteration T0. By Theorem 1, we can prune the game tree
following action a on any consecutive iteration T after that
if

eηT
(
RT0 (I,a)+U(I,a)(T−T0)

)
∑
a′∈A(I) e

ηT

(
RT (I,a′)+

∑T
T ′=T0+1

vT ′ (I,a′)
)

<
(C − 1)

√
ln(|A(I)|)√

2|A(I)|2
√
t

(11)

Once this no longer holds, skipping ceases. If we later
find another T0 that satisfies the condition above, we do an-
other sequence of iterations where we skip traversing after
a, etc.

5 Experiments
We tested dynamic thresholding with and without RBP on a
standard benchmark game called Leduc Hold’em (Southey
et al. 2005) and an enlarged variant of Leduc Hold’em fea-
turing more actions, called Leduc-5. Leduc Hold’em is a
popular benchmark for imperfect-information game solving
due to its feasible size and strategic complexity. In Leduc
Hold’em, there is a deck consisting of six cards: two each
of Jack, Queen, and King. There are two rounds. In the first
round, each player places an ante of 1 chip in the pot and
receives a single private card. A round of betting then takes
place with a two-bet maximum, with Player 1 going first. A
public shared card is then dealt face up and another round of
betting takes place. Again, Player 1 goes first, and there is a
two-bet maximum. If one of the players has a pair with the
public card, that player wins. Otherwise, the player with the
higher card wins. In standard Leduc Hold’em, all bets in the
first round are 1 chip, while all bets in the second round are
2 chips. In Leduc-5, there are 5 bet sizes to choose from: in
the first round the betting options are 1, 2, 4, 8, or 16 chips,
while in the second round the betting options are 2, 4, 8, 16,
or 32 chips. Leduc Hold’em contains 288 information sets,
compared to 34, 224 for Leduc-5.

Hedge requires the user to set the tuning parameter ηt.
When proving worst-case regret bounds, the parameter is
usually defined as a function of ∆(I) for an information

set I (for example, ηt =

√
8 ln(|A(I)|)
∆(I)

√
t

) (Cesa-Bianchi and
Lugosi 2006). However, this is overly pessimistic in prac-
tice, and better performance can be achieved with heuris-
tics while still guaranteeing convergence, albeit at a weaker
convergence bound.1 In our experiments, we set ηt =√

ln(|A(I)|)
3
√

VAR(I)t
√
t
, where VAR(I)t is the observed variance of

v(I) up to iteration t, based on a heuristic by Chaudhuri et
al. (2009).

In addition to the regret-minimization algorithms which
are the main focus of this paper, for comparison we also

1Convergence is still guaranteed so long as ∆(I) is replaced
with a value that has a constant lower and upper bound, though the
worst-case bound may be worse.

experimented with the leading gradient-based algorithm for
finding ε-equilibrium in zero-sum games, the excessive gap
technique (EGT) (Nesterov 2005; Hoda et al. 2010), cou-
pled with the distance-generating function from Kroer et
al. (2015). It converges to an ε-equilibrium in two-player
zero-sum games in O(1

ε) iterations, that is, in significantly
fewer iterations than CFR which converges inO(1

ε2). In this
EGT variant the gradient is computed by traversing the game
tree. This enables pruning and dynamic thresholding to be
implemented in EGT as well (Kroer et al. (2015) similarly
computed the gradient through tree traversal in order to en-
able sampling schemes). In our experiments with EGT, we
stop traversing a branch in the game tree when the probabil-
ity (over nature and the opposing player) of the branch falls
below c

T for various values of c. We leave the theoretical
verification of this approach as future work.

Figure 1 shows the performance of dynamic thresholding
on Hedge and EGT against the vanilla versions of the al-
gorithm as well as against the benchmark algorithms CFR+
and CFR with RM. We present our results with the num-
ber of nodes touched on the x axis. Nodes touched is a
hardware- and implementation-independent proxy for time.
Hedge involves exponentiation when determining strategies,
which takes longer than the simple floating point operations
of RM. In our implementation, regret matching traverses
36% more nodes per second than Hedge. However, in large-
scale multi-core implementations of CFR, memory access is
the bottleneck on performance and therefore the penalty for
using Hedge should not be as significant.

The two figures on the left show that dynamic threshold-
ing benefits EGT and Hedge, and the relative benefit in-
creases with game size. In Leduc-5, dynamic threshold-
ing improves the performance of EGT by a factor of 2,
and dynamic thresholding combined with RBP improves the
performance of CFR with Hedge by a factor of 7. The
graphs on the right show that, when using thresholding and
RBP, Hedge outperforms RM in Leduc, but RM outperforms
Hedge in Leduc-5. RM’s better performance in Leduc-5 is
due to more widespread pruning than Hedge.

While CFR+ exhibits the best performance in Leduc-5,
there are several drawbacks to the algorithm that cause it not
to be usable in all settings. First, CFR+ is not known to
converge when combined with RBP. The noisy performance
of CFR+ with RBP in Leduc-5, and the weaker performance
of CFR+ with RBP when compared with vanilla CFR+ in
Leduc, may be consequences of this. Second, while CFR+
in practice outperforms CFR with RM or Hedge, it has a
worse theoretical bound. Moreover, in the long run EGT
appears to outperform CFR+. Finally, CFR+ is not known
to be compatible with sampling, which is commonly used in
large imperfect-information games.

Figure 2 shows the performance of EGT and Hedge with
different aggressiveness of dynamic thresholding. For EGT,
we threshold by c

T , where the number shown in the legend is

c. For Hedge, we threshold by d
√

ln(|A|)
√

2|A|2
√
T

, where d is shown
in the legend. The results show that for Hedge the perfor-
mance is not sensitive to the parameter, and threshold only
helps. For EGT, the results using c = {0.001, 0.005, 0.01}

Figure 1: Performance of EGT, CFR with Hedge, and CFR with RM on Leduc and Leduc-5. CFR with Hedge is shown without
any pruning (vanilla Hedge), with dynamic thresholding, and with RBP. EGT is shown without any pruning (vanilla EGT) and
with dynamic thresholding. CFR with RM is shown with partial pruning (vanilla RM) and with RBP. Dynamic thresholding on
RM resulted in identical performance to vanilla RM, and is therefore not shown separately.

Figure 2: Varying the aggressiveness of dynamic thresholding.

are all similar and beneficial, while using a value of 0.05 is
too aggressive, and hurts performance slightly.

6 Conclusion and Future Research
We introduced dynamic thresholding for online learning al-
gorithms, in which a threshold is set at every iteration such
that any action with probability below the threshold is set to
zero probability. This enables pruning for the first time in a
wide range of algorithms. We showed that it can be applied
to both Regret Matching and Hedge—regardless of whether
they are used in isolation for any problem or as subroutines
at each information set within Counterfactual Regret Mini-
mization, the most popular algorithm for solving imperfect-
information game trees. We proved that the regret bound

increases by only a small constant factor, and each iteration
becomes faster due to enhanced pruning. Our experiments
demonstrated substantial speed improvements in Hedge; the
relative speedup increases with problem size.

We also developed a version of the leading gradient-based
algorithm for solving imperfect-information games, the ex-
cessive gap technique coupled with the distance-generating
function from Kroer et al. (2015), where we compute the
gradient based on a traversal of the game tree and perform
dynamic thresholding during this traversal. Experiments
again showed that they lead to a significant speedup, and
that the relative speedup increases with problem size.

Our results on Hedge might also be useful for boosting
when Hedge is used therein (Freund and Schapire 1997;

Luo and Schapire 2014). The idea is that low-weight weak
learners and/or low-weight training instances (as an analogy
to low-probability actions in our paper) would then not need
to be run, which may lead to significant time savings.

Future work also includes studying whether the idea of
dynamic thresholding could be applied to other iterative al-
gorithms that place at least some small positive probability
on all actions (e.g. Pays (2014) or Daskalakis, Deckelbaum,
and Kim (2015)).

Acknowledgments
This material is based on work supported by the NSF un-
der grants IIS-1617590, IIS-1320620, and IIS-1546752, the
ARO under award W911NF-16-1-0061, as well as XSEDE
computing resources provided by the Pittsburgh Supercom-
puting Center.

References
Blackwell, D. 1956. An analog of the minmax theorem for
vector payoffs. Pacific Journal of Mathematics 6:1–8.
Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit hold’em poker is solved. Science
347(6218):145–149.
Brown, N., and Sandholm, T. 2014. Regret transfer and
parameter optimization. In AAAI Conference on Artificial
Intelligence (AAAI).
Brown, N., and Sandholm, T. 2015. Regret-based pruning in
extensive-form games. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems (NIPS).
Brown, N.; Ganzfried, S.; and Sandholm, T. 2015. Hi-
erarchical abstraction, distributed equilibrium computation,
and post-processing, with application to a champion no-limit
Texas Hold’em agent. In International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS).
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, learn-
ing, and games. Cambridge University Press.
Cesa-Bianchi, N.; Mansour, Y.; and Stoltz, G. 2007. Im-
proved second-order bounds for prediction with expert ad-
vice. Machine Learning 66(2-3):321–352.
Chaudhuri, K.; Freund, Y.; and Hsu, D. J. 2009. A
parameter-free hedging algorithm. In Advances in neural
information processing systems, 297–305.
Daskalakis, C.; Deckelbaum, A.; and Kim, A. 2015. Near-
optimal no-regret algorithms for zero-sum games. Games
and Economic Behavior 92:327–348.
Freund, Y., and Schapire, R. 1997. A decision-theoretic gen-
eralization of on-line learning and an application to boost-
ing. Journal of Computer and System Sciences 55(1):119–
139.
Gibson, R.; Lanctot, M.; Burch, N.; Szafron, D.; and Bowl-
ing, M. 2012. Generalized sampling and variance in coun-
terfactual regret minimization. In AAAI Conference on Arti-
ficial Intelligence (AAAI).
Gibson, R. 2014. Regret Minimization in Games and the
Development of Champion Multiplayer Computer Poker-
Playing Agents. Ph.D. Dissertation, University of Alberta.

Gilpin, A., and Sandholm, T. 2007. Lossless abstraction of
imperfect information games. Journal of the ACM 54(5).
Gilpin, A.; Peña, J.; and Sandholm, T. 2012. First-order
algorithm withO(ln(1/ε)) convergence for ε-equilibrium in
two-person zero-sum games. Mathematical Programming
133(1–2):279–298. Conference version appeared in AAAI-
08.
Hart, S., and Mas-Colell, A. 2000. A simple adaptive
procedure leading to correlated equilibrium. Econometrica
68:1127–1150.
Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010.
Smoothing techniques for computing Nash equilibria of
sequential games. Mathematics of Operations Research
35(2):494–512. Conference version appeared in WINE-07.
Kroer, C.; Waugh, K.; Kılınç-Karzan, F.; and Sandholm, T.
2015. Faster first-order methods for extensive-form game
solving. In Proceedings of the ACM Conference on Eco-
nomics and Computation (EC).
Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo sampling for regret minimization in ex-
tensive games. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), 1078–1086.
Littlestone, N., and Warmuth, M. K. 1994. The
weighted majority algorithm. Information and Computation
108(2):212–261.
Luo, H., and Schapire, R. E. 2014. A drifting-games anal-
ysis for online learning and applications to boosting. In
Advances in Neural Information Processing Systems, 1368–
1376.
Nesterov, Y. 2005. Excessive gap technique in nons-
mooth convex minimization. SIAM Journal of Optimization
16(1):235–249.
Pays, F. 2014. An interior point approach to large games
of incomplete information. In AAAI Computer Poker Work-
shop.
Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2005. Bayes’ bluff: Oppo-
nent modelling in poker. In Proceedings of the 21st Annual
Conference on Uncertainty in Artificial Intelligence (UAI),
550–558.
Tammelin, O.; Burch, N.; Johanson, M.; and Bowling, M.
2015. Solving heads-up limit Texas hold’em. In Proceed-
ings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI).
Waugh, K.; Schnizlein, D.; Bowling, M.; and Szafron, D.
2009. Abstraction pathologies in extensive games. In In-
ternational Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS).
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).

Appendix
In this appendix we use exp(x) in place of ex to improve

readability.

A Proof of Theorem 1
Proof. Without loss of generality, assume L(I) = 0. We

use η =

√
2 ln(|A(I)|)
∆(I)

√
T

and define Φ(Rt(I)) as

Φ(Rt(I)) =
1

η
ln
(∑
a∈A(I)

exp(ηRt(I, a))
)

(12)

Since for all a ∈ A(I) we know exp(ηRt(I, a)) > 0, so

max
a∈A(I)

RT (I, a) ≤ Φ(RT (I)) (13)

We prove inductively on t that

Φ(Rt(I)) ≤ ln(|A(I)|)
η

+ C(∆(I))2ηt (14)

If (14) holds for all t, then from (13) the lemma is satisfied.
For t = 1, dynamic thresholding produces the same strat-

egy as vanilla Hedge, so (14) is trivially true. We now
assume that (14) is true for t − 1 and consider iteration
t > 1. Vanilla Hedge calls for a probability vector σt(I)
that, if played on every iteration t, would result in (14)
holding for T . Dynamic thresholding creates a new strat-
egy vector σ̂t(I). Let δt(a) = σ̂t(I, a) − σt(I, a) and
δt = maxa∈A(I) δ

t(a).
In the worst case, all but one action is reduced to zero and

the probability mass is added to the single remaining action.

Thus, |δt(a)| ≤ (C−1)
√

ln(|A(I)|)√
2|A(I)|

√
t

. After playing σ̂t(I, a) on
iteration t, we have

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

exp
(
η
(
Rt−1 + rt(I, a)

)))
Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

exp
(
η
(
Rt−1+vt(I, a)−vt(I)

)))

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

exp
(
η
(
Rt−1 + vt(I, a)

−
∑

a′∈A(I)

(
σ̂t(I, a′)vt(I, a′)

))))
Since σ̂t(I, a′) = σt(I, a) + δt(a), we get

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

exp
(
η
(
Rt−1 + vt(I, a)

−
∑

a′∈A(I)

(
σt(I, a′)vt(I, a′) + δ(a′)vt(I, a′)

))))
Since vt(I, a′) ≤ ∆(I) and δt(a′) ≤ δt, this becomes

Φ(Rt(I)) ≤ 1

η
ln
(

exp
(
ηδt∆(I)|A(I)|

) ∑
a∈A(I)

exp
(

η
(
Rt−1 + vt(I, a)−

∑
a′∈A(I)

(
σt(I, a′)vt(I, a′)

))))

Φ(Rt(I)) ≤ δt∆(I)|A(I)|+ 1

η
ln
(∑
a∈A(I)

exp
(

η
(
Rt−1 + vt(I, a)−

∑
a′∈A(I)

(
σt(I, a′)vt(I, a′)

))))
Since vt(I, a)−

∑
a′∈A(I)

(
σt(I, a′)vt(I, a′) is the original

update Hedge intended, we apply Theorem 2.1 from Cesa-
Bianchi and Lugosi (2006) and Lemma 1 from Brown and
Sandholm (2014) to get

Φ(Rt(I)) ≤ δt∆(I)|A(I)|+ Φ(Rt−1(I)) +
(∆(I))2η

2

Since δt < (C−1)∆(I)η
2|A(I)| , we get

Φ(Rt(I)) ≤ Φ(Rt−1(I)) + C(∆(I))2η

Substituting the bound on Φ(Rt−1(I)) we arrive at

Φ(Rt(I)) ≤ ln(|A(I)|)
η

+ C(∆(I))2ηt

This satisfies the inductive step.

B Proof of Theorem 2
Proof. We find it useful to define

Φ(RT (I)) =
∑

a∈A(I)

(
RT (I, a)2

+

)
(15)

We prove inductively on T that

Φ(RT (I)) ≤ C2
(
∆(I)

)2
A(I)T (16)

If (16) holds, then R(I) ≤ C∆(I)
√
|A(I)|

√
T . On it-

eration 1, regret matching calls for probability 1
|A(I)| on

each action, which is above the threshold. Thus, dynamic
thresholding produces identical strategies as vanilla regret
matching, so from Theorem 2.1 in Cesa-Bianchi and Lu-
gosi (2006), (16) holds.

We now assume (16) holds for iteration T−1 and consider
iteration T > 1. Vanilla regret matching calls for a probabil-
ity vector σT (I) that, if played, would result in (16) holding
for T . Dynamic thresholding creates a new strategy vector
σ̂T (I) in which σ̂T (I, a) = 0 if σT (I, a) ≤ C2−1

2C|A(I)|2
√
T

.
After reducing actions to zero probability, the strategy vec-
tor is renormalized. Let δ(a) = σ̂T (I, a) − σT (I, a) and
δ = maxa∈A(I) δ(a). In the worst case, all but one action
is reduced to zero and the probability mass is added to the
single remaining action. Thus, |δ(a)| ≤ C2−1

2C|A(I)|
√
T

.

After playing σ̂T (I, a) on iteration T , we have

Φ(RT (I)) ≤
∑

a∈A(I)

(
RT−1(I, a) + rT (I, a)

)2
+

From Lemma 7 in Lanctot et al. (2009), we get

Φ(RT (I)) ≤
(

Φ(RT−1(I))

+ 2
∑
a

(RT−1
+ (I, a)rT (I, a)) + rT (I, a)2

)

Φ(RT (I)) ≤
(

Φ(RT−1(I))

+ 2
∑
a

(RT−1
+ (I, a)rT (I, a)) + (∆(I))2

)
From (4) and (7),

rT (I, a) = vT (I, a)−
∑

a′∈A(I)

(
σ̂T (I, a′)vT (I, a′)

)
Since σ̂T (I, a) = σ(I, a)T + δ(a), we get

rT (I, a) = vT (I, a)−
∑

a′∈A(I)

((
σT (I, a′)+δ(a)

)
vT (I, a′)

)
Regret matching satisfies the Blackwell condition (Black-
well 1956) which, as shown in Lemma 2.1 in Cesa-Bianchi
and Lugosi (2006), means∑

a∈A(I)

(
(RT−1

+ (I, a)
(
vT (I, a)

−
∑

a′∈A(I)

(
σT (I, a′)vT (I, a′)

)))
≤ 0

Thus, we are left with∑
a∈A(I)

(RT−1
+ (I, a)rT (I, a))

≤ |δ|
∑

a∈A(I)

(
RT−1

+ (I, a)
∑

a′∈A(I)

(
vT (I, a′)

))
Since vT (I, a′) ≤ ∆(I), this leads to

Φ(RT (I)) ≤
(

Φ(RT−1(I))

+2|δ|
∑

a∈A(I)

(
RT−1

+ (I, a)∆(I)|A(I)|
)
+(∆(I))2|A(I)|

)
By the induction assumption,∑

a∈A(I)

(
RT−1

+ (I, a))2 ≤ C2(∆(I))2|A(I)|(T − 1)

so by Lemma 5 in Lanctot et al. (2009)∑
a∈A(I)

RT−1
+ (I, a) ≤ C∆(I)|A(I)|

√
T − 1

This gives us

Φ(RT (I)) ≤
(

Φ(RT−1(I))

+ (∆(I))2|A(I)|
(
2C|δ||A(I)|

√
T − 1 + 1

))
Since |δ| < C2−1

2C|A(I)|
√
T

this becomes

Φ(RT (I)) ≤
(

Φ(RT−1(I)) + C2(∆(I))2|A(I)|
)

Substituting the bound of Φ(RT (I)) we get

Φ(RT (I)) ≤ C2(∆(I))2|A(I)|T
This satisfies the inductive step.

