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Abstract

Counterfactual Regret Minimization (CFR) is a popu-
lar iterative algorithm for approximating Nash equilibria
in imperfect-information multi-step two-player zero-sum
games. We introduce the first general, principled method for
warm starting CFR. Our approach requires only a strategy for
each player, and accomplishes the warm start at the cost of a
single traversal of the game tree. The method provably warm
starts CFR to as many iterations as it would have taken to
reach a strategy profile of the same quality as the input strate-
gies, and does not alter the convergence bounds of the algo-
rithms. Unlike prior approaches to warm starting, ours can be
applied in all cases.
Our method is agnostic to the origins of the input strategies.
For example, they can be based on human domain knowl-
edge, the observed strategy of a strong agent, the solution of a
coarser abstraction, or the output of some algorithm that con-
verges rapidly at first but slowly as it gets closer to an equilib-
rium. Experiments demonstrate that one can improve overall
convergence in a game by first running CFR on a smaller,
coarser abstraction of the game and then using the strategy in
the abstract game to warm start CFR in the full game.

Introduction
Imperfect-information games model strategic interactions
between players that have access to private information. Do-
mains such as negotiations, cybersecurity and physical secu-
rity interactions, and recreational games such as poker can
all be modeled as imperfect-information games. Typically in
such games, one wishes to find a Nash equilibrium, where
no player can do better by switching to a different strat-
egy. In this paper we focus specifically on two-player zero-
sum games. Over the last 10 years, tremendous progress has
been made in solving increasingly larger two-player zero-
sum imperfect-information games; for reviews, see (Sand-
holm 2010; 2015). Linear programs have been able to solve
games up to 107 or 108 nodes in the game tree (Gilpin and
Sandholm 2005). Larger games are solved using iterative
algorithms that converge over time to a Nash equilibrium.
The most popular iterative algorithm for this is Counterfac-
tual Regret Minimization (CFR) (Zinkevich et al. 2007). A
variant of CFR was recently used to essentially solve Limit
Texas Hold’em, which at 1015 nodes (after lossless abstrac-
tion (Gilpin and Sandholm 2007)) is the largest imperfect-
information game ever to be essentially solved (Bowling et
al. 2015).

One of the main constraints in solving such large games
is the time taken to arrive at a solution. For example, essen-
tially solving Limit Texas Hold’em required running CFR
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on 4,800 cores for 68 days (Tammelin et al. 2015). Even
though Limit Texas Hold’em is a popular human game with
many domain experts, and even though several near-Nash
equilibrium strategies had previously been computed for the
game (Johanson et al. 2011; 2012), there was no known way
to leverage that prior strategic knowledge to speed up CFR.
We introduce such a method, enabling user-provided strate-
gies to warm start convergence toward a Nash equilibrium.

The effectiveness of warm starting in large games is mag-
nified by pruning, in which some parts of the game tree need
not be traversed during an iteration of CFR. This results in
faster iterations and therefore faster convergence to a Nash
equilibrium. The frequency of pruning opportunities gen-
erally increases as equilibrium finding progresses (Lanctot
et al. 2009). This may result in later iterations being com-
pleted multiple orders of magnitude faster than early iter-
ations. This is especially true with the recently-introduced
regret-based pruning method, which drastically increases
the opportunities for pruning in a game (Brown and Sand-
holm 2015a). Our warm starting algorithm can “skip” these
early expensive iterations that might otherwise account for
the bulk of the time spent on equilibrium finding. This can
be accomplished by first solving a coarse abstraction of the
game, which is relatively cheap, and using the equilibrium
strategies computed in the abstraction to warm start CFR in
the full game. Experiments presented later in this paper show
the effectiveness of this method.

Our warm start technique also opens up the possibility
of constructing and refining abstractions during equilibrium
finding. Current abstraction techniques for large imperfect-
information games are domain specific and rely on human
expert knowledge because the abstraction must be set before
any strategic information is learned about the game (Brown,
Ganzfried, and Sandholm 2015; Ganzfried and Sandholm
2014; Johanson et al. 2013; Billings et al. 2003). There are
some exceptions to this, such as work that refines parts of
the game tree based on the computed strategy of a coarse
abstraction (Jackson 2014; Gibson 2014). However, in these
cases either equilibrium finding had to be restarted from
scratch after the modification, or the final strategy was not
guaranteed to be a Nash equilibrium. Recent work has also
considered feature-based abstractions that allow the abstrac-
tion to change during equilibrium finding (Waugh et al.
2015). However, in this case, the features must still be deter-
mined by domain experts and set before equilibrium finding
begins.

In contrast, the recently introduced simultaneous abstrac-
tion and equilibrium finding (SAEF) algorithm does not rely
on domain knowledge (Brown and Sandholm 2015b). In-
stead, it iteratively refines an abstraction based on the strate-
gic information gathered during equilibrium finding. When



an abstraction is refined, SAEF warm starts equilibrium find-
ing in the new abstraction using the strategies from the pre-
vious abstraction. However, previously-proposed warm-start
methods only applied in special cases. Specifically, it was
possible to warm start CFR in one game using the results of
CFR in another game that has identical structure but where
the payoffs differ by some known parameters (Brown and
Sandholm 2014). It was also possible to warm start CFR
when adding actions to a game that CFR had previously been
run on, though aO(1) warm start could only be achieved un-
der limited circumstances. In these prior cases, warm start-
ing required the prior strategy to be computed using CFR. In
contrast, the method presented in this paper can be applied
in all cases, is agnostic to the origin of the provided strat-
egy, and costs only a single traversal of the game tree. This
expands the scope and effectiveness of SAEF.

The rest of the paper is structured as follows. The next
section covers background and notation. After that, we intro-
duce the method for warm starting. Then, we cover practi-
cal implementation details that lead to improvements in per-
formance. Finally, we present experimental results showing
that the warm starting method is highly effective.

Background and Notation
In an imperfect-information extensive-form game there is a
finite set of players, P . H is the set of all possible histo-
ries (nodes) in the game tree, represented as a sequence of
actions, and includes the empty history. A(h) is the actions
available in a history and P (h) ∈ P ∪ c is the player who
acts at that history, where c denotes chance. Chance plays
an action a ∈ A(h) with a fixed probability σc(h, a) that is
known to all players. The history h′ reached after an action
is taken in h is a child of h, represented by h·a = h′, while h
is the parent of h′. If there exists a sequence of actions from
h to h′, then h is an ancestor of h′ (and h′ is a descendant
of h). Z ⊆ H are terminal histories for which no actions are
available. For each player i ∈ P , there is a payoff function
ui : Z → <. If P = {1, 2} and u1 = −u2, the game is
two-player zero-sum.

Imperfect information is represented by information sets
for each player i ∈ P by a partition Ii of h ∈ H : P (h) = i.
For any information set I ∈ Ii, all histories h, h′ ∈ I
are indistinguishable to player i, so A(h) = A(h′). I(h)
is the information set I where h ∈ I . P (I) is the player
i such that I ∈ Ii. A(I) is the set of actions such that
for all h ∈ I , A(I) = A(h). |Ai| = maxI∈Ii |A(I)| and
|A| = maxi |Ai|. We define ∆i as the range of payoffs
reachable by player i. Formally, ∆i = maxz∈Z ui(z) −
minz∈Z ui(z) and ∆ = maxi ∆i. We similarly define ∆(I)
as the range of payoffs reachable from I . Formally, ∆(I) =
maxz∈Z,h∈I:hvz uP (I)(z)−minz∈Z,h∈I:hvz uP (I)(z).

A strategy σi(I) is a probability vector over A(I) for
player i in information set I . The probability of a particu-
lar action a is denoted by σi(I, a). Since all histories in an
information set belonging to player i are indistinguishable,
the strategies in each of them must be identical. That is, for
all h ∈ I , σi(h) = σi(I) and σi(h, a) = σi(I, a). We define
σi to be a probability vector for player i over all available

strategies Σi in the game. A strategy profile σ is a tuple of
strategies, one for each player. ui(σi, σ−i) is the expected
payoff for player i if all players play according to the strat-
egy profile 〈σi, σ−i〉. If a series of strategies are played over

T iterations, then σ̄Ti =
∑
t∈T σ

t
i

T .
πσ(h) = Πh′·avhσP (h)(h

′, a) is the joint probability of
reaching h if all players play according to σ. πσi (h) is the
contribution of player i to this probability (that is, the prob-
ability of reaching h if all players other than i, and chance,
always chose actions leading to h). πσ−i(h) is the contribu-
tion of all players other than i, and chance. πσ(h, h′) is the
probability of reaching h′ given that h has been reached, and
0 if h 6@ h′. In a perfect-recall game, ∀h, h′ ∈ I ∈ Ii,
πi(h) = πi(h

′). In this paper we focus on perfect-recall
games. Therefore, for i = P (I) we define πi(I) = πi(h)
for h ∈ I . We define the average strategy σ̄Ti (I) for an in-
formation set I to be

σ̄Ti (I) =

∑T
t=1 π

σt

i (I)σti(I)∑T
t=1 π

σt
i (I)

(1)

Counterfactual Regret Minimization (CFR)
Counterfactual regret minimization (CFR) is an equilibrium
finding algorithm for extensive-form games that indepen-
dently minimizes regret in each information set (Zinkevich
et al. 2007). While any regret-minimizing algorithm can be
used in the information sets, regret matching (RM) is the
most popular option (Hart and Mas-Colell 2000).

Our analysis of CFR makes frequent use of counterfactual
value. Informally, this is the expected utility of an informa-
tion set given that player i tries to reach it. For player i at
information set I given a strategy profile σ, this is defined as

vσ(I) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h, z)ui(z)

))
(2)

and the counterfactual value of an action a is

vσ(I, a) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h · a, z)ui(z)

))
(3)

Let σt be the strategy profile used on iteration t. The instan-
taneous regret on iteration t for action a in information set I
is rt(I, a) = vσ

t

(I, a) − vσt(I). The regret for action a in
I on iteration T is

RT (I, a) =

T∑
t=1

rt(I, a) (4)

Additionally, RT+(I, a) = max{RT (I, a), 0} and RT (I) =

maxa{RT+(I, a)}. Regret for player i in the entire game is

RTi = max
σ′i∈Σi

T∑
t=1

(
ui(σ

′
i, σ

t
−i)− ui(σti , σt−i)

)
(5)

In RM, a player in an information set picks an action among
the actions with positive regret in proportion to the posi-
tive regret on that action. Formally, on each iteration T + 1,
player i selects actions a ∈ A(I) according to probabilities



σT+1
i (I, a) =


RT+(I,a)∑

a′∈A(I) R
T
+(I,a′)

, if
∑
a′∈Ai R

T
+(I, a′) > 0

1
|A(I)| , otherwise

(6)
If player i plays according to RM in information set I on

iteration T , then∑
a∈A(I)

(
RT+(I, a)

)2 ≤ ∑
a∈A(I)

((
RT−1

+ (I, a)
)2

+
(
rT (I, a)

)2)
(7)

This leads us to the following lemma.1

Lemma 1. After T iterations of regret matching are played
in an information set I ,∑

a∈A(I)

(
RT+(I, a)

)2 ≤ πσ̄T−i (I)
(
∆(I)

)2|A(I)|T (8)

In turn, this leads to a bound on regret

RT (I) ≤
√
πσ̄

T

−i (I)∆(I)
√
|A(I)|

√
T (9)

The key result of CFR is that RTi ≤
∑
I∈Ii R

T (I) ≤∑
I∈Ii

√
πσ̄

T

−i ∆(I)
√
|A(I)|

√
T . So, as T →∞, R

T
i

T → 0.
In two-player zero-sum games, regret minimization con-

verges to a Nash equilibrium, i.e., a strategy profile
σ∗ such that ∀i, ui(σ∗i , σ∗−i) = maxσ′i∈Σi ui(σ

′
i, σ
∗
−i).

An ε-equilibrium is a strategy profile σ∗ such that ∀i,
ui(σ

∗
i , σ
∗
−i) + ε ≥ maxσ′i∈Σi ui(σ

′
i, σ
∗
−i). Since we will ref-

erence the details of the following known result later, we
reproduce the proof here.

Theorem 1. In a two-player zero-sum game, if R
T
i

T ≤ εi for
both players i ∈ P , then σ̄T is a (ε1 + ε2)-equilibrium.

Proof. We follow the proof approach of Waugh et al. (2009).
From (5), we have that

max
σ′i∈Σi

1

T

( T∑
t=1

ui(σ
′
i, σ

t
−i)− ui(σti , σt−i)

)
≤ εi (10)

Since σ′i is the same on every iteration, this becomes

max
σ′i∈Σi

ui(σ
′
i, σ̄

T
−i)−

1

T

T∑
t=1

ui(σ
t
i , σ

t
−i) ≤ εi (11)

Since u1(σ) = −u2(σ), if we sum (11) for both players

max
σ′1∈Σ1

u1(σ′1, σ̄
T
2 ) + max

σ′2∈Σ2

u2(σ̄T1 , σ
′
2) ≤ ε1 + ε2 (12)

max
σ′1∈Σ1

u1(σ′1, σ̄
T
2 )− min

σ′2∈Σ2

u1(σ̄T1 , σ
′
2) ≤ ε1 + ε2 (13)

Since u1(σ̄T1 , σ̄
T
2 ) ≥ minσ′2∈Σ2

u1(σ̄T1 , σ
′
2) so we have

maxσ′1∈Σ1
u1(σ′1, σ̄

T
−2) − u1(σ̄T1 , σ̄

T
2 ) ≤ ε1 + ε2. By sym-

metry, this is also true for Player 2. Therefore, 〈σ̄T1 , σ̄T2 〉 is a
(ε1 + ε2)-equilibrium.

1A tighter bound would be
∑T
t=1

(
πσ

t

−i(I)
)2(

∆(I)
)2|A(I)|.

However, for reasons that will become apparent later in this paper,
we prefer a bound that uses only the average strategy σ̄T .

Warm-Starting Algorithm
In this section we explain the theory of how to warm start
CFR and prove the method’s correctness. By warm starting,
we mean we wish to effectively “skip” the first T iterations
of CFR (defined more precisely later in this section). When
discussing intuition, we use normal-form games due to their
simplicity. Normal-form games are a special case of games
in which each player only has one information set. They can
be represented as a matrix of payoffs where Player 1 picks a
row and Player 2 simultaneously picks a column.

The key to warm starting CFR is to correctly initialize
the regrets. To demonstrate the necessity of this, we first
consider an ineffective approach in which we set only the
starting strategy, but not the regrets. Consider the two-player
zero-sum normal-form game defined by the payoff matrix
[ 1 0
0 2 ] with payoffs shown for Player 1 (the row player). The

Nash equilibrium for this game requires Player 1 to play
〈 23 ,

1
3 〉 and Player 2 to play 〈 23 ,

1
3 〉. Suppose we wish to

warm start regret matching with the strategy profile σ∗ in
which both players play 〈0.67, 0.33〉 (which is very close
to the Nash equilibrium). A naı̈ve way to do this would
be to set the strategy on the first iteration to 〈0.67, 0.33〉
for both players, rather than the default of 〈0.5, 0.5〉. This
would result in regret of 〈0.0033,−0.0067〉 for Player 1 and
〈−0.0033, 0.0067〉 for Player 2. From (6), we see that on
the second iteration Player 1 would play 〈1, 0〉 and Player 2
would play 〈0, 1〉, resulting in regret of 〈0.0033, 1.9933〉 for
Player 1. That is a huge amount of regret, and makes this
warm start no better than starting from scratch. Intuitively,
this naı̈ve approach is comparable to warm starting gradient
descent by setting the initial point close to the optimum, but
not reducing the step size. The result is that we overshoot the
optimal strategy significantly. In order to add some “inertia”
to the starting strategy so that CFR does not overshoot, we
need a method for setting the regrets as well in CFR.

Fortunately, it is possible to efficiently calculate how far
a strategy profile is from the optimum (that is, from a Nash
equilibrium). This knowledge can be leveraged to initialize
the regrets appropriately. To provide intuition for this warm
starting method, we consider warm starting CFR to T itera-
tions in a normal-form game based on an arbitrary strategy
σ. Later, we discuss how to determine T based on σ.

First, the average strategy profile is set to σ̄T = σ. We
now consider the regrets. From (4), we see regret for action
a after T iterations of CFR would normally be RTi (a) =∑T
t=1

(
ui(a, σ

t
−i)− ui(σt)

)
. Since

∑T
t=1 ui(a, σ

t
−i) is the

value of having played action a on every iteration, it is the
same as Tui(a, σ̄T−i). When warm starting, we can calcu-
late this value because we set σ̄T = σ. However, we cannot
calculate

∑T
t=1 ui(σ

t) because we did not define individual
strategies played on each iteration. Fortunately, it turns out
we can substitute another value we refer to as Tv′σ̄

T

i , cho-
sen from a range of acceptable options. To see this, we first
observe that the value of

∑T
t=1 ui(σ

t) is not relevant to the
proof of Theorem 1. Specifically, in (12), we see it cancels
out. Thus, if we choose v′σ̄

T

i such that v′σ̄
T

1 + v′σ̄
T

2 ≤ 0,
Theorem 1 still holds. This is our first constraint.



There is an additional constraint on our warm start. We
must ensure that no information set violates the bound on
regret guaranteed in (8). If regret exceeds this bound, then
convergence to a Nash equilibrium may be slower than CFR
guarantees. Thus, our second constraint is that when warm
starting to T iterations, the initialized regret in every infor-
mation set must satisfy (8). If these conditions hold and CFR
is played after the warm start, then the bound on regret will
be the same as if we had played T iterations from scratch in-
stead of warm starting. When using our warm start method
in extensive-form games, we do not directly choose v′σ̄

T

i

but instead choose a value u′σ̄
T

(I) for every information set
(and we will soon see that these choices determine v′σ̄

T

i ).
We now proceed to formally presenting our warm-start

method and proving its effectiveness. Theorem 2 shows that
we can warm start based on an arbitrary strategy σ by re-
placing

∑T
t=1 v

σt(I) for each I with some value Tv′σ(I)
(where v′σ(I) satisfies the constraints mentioned above).
Then, Corollary 1 shows that this method of warm starting
is lossless: if T iterations of CFR were played and we then
warm start using σ̄T , we can warm start to T iterations.

We now define some terms that will be used in the theo-
rem. When warm starting, a substitute information set value
u′σ(I) is chosen for every information set I (we will soon
describe how). Define v′σ(I) = πσ−P (I)(I)u′σ(I) and define
v′σi (h) for h ∈ I as πσ−i(h)u′σ(I). Define v′σi (z) for z ∈ Z
as πσ−iui(z).

As explained earlier in this section, in normal-form
games

∑T
t=1 ui(a, σ

t
−i) = Tui(a, σ̄

T
−i). This is still true in

extensive-form games for information sets where a leads to
a terminal payoff. However, it is not necessarily true when
a leads to another information set, because then the value of
action a depends on how the player plays in the next infor-
mation set. Following this intuition, we will define substitute
counterfactual value for an action. First, define Succσi (h) as
the set consisting of histories h′ that are the earliest reach-
able histories from h such that P (h′) = i or h′ ∈ Z. By
“earliest reachable” we mean h v h′ and there is no h′′ in
Succσ(h) such that h′′ @ h′. Then the substitute counterfac-
tual value of action a, where i = P (I), is

v′σ(I, a) =
∑
h∈I

( ∑
h′∈Succσi (h·a)

v′σi (h′)
)

(14)

and substitute value for player i is defined as

v′σi =
∑

h′∈Succσi (∅)

v′σi (h′) (15)

We define substitute regret as
R′T (I, a) = T

(
v′σ(I, a)− v′σ(I)

)
and

R′T,T
′
(I, a) = R′T (I, a) +

T ′∑
t′=1

(
vσ

t′

(I, a)− vσ
t′

(I)
)

Also, R′T,T
′
(I) = maxa∈A(I)R

′T,T ′(I, a). We also define
the combined strategy profile

σ′T,T
′

=
Tσ + T ′σ̄T

′

T + T ′

Using these definitions, we wish to choose u′σ(I) such that

∑
a∈A(I)

(
v′σ(I, a)− v′σ(I)

)2
+
≤
πσ−i(I)

(
∆(I)

)2|A(I)|
T

(16)We now proceed to the main result of this paper.

Theorem 2. Let σ be an arbitrary strategy profile for a two-
player zero-sum game. Choose any T and choose u′σ(I) in
every information set I such that v′σ1 + v′σ2 ≤ 0 and (16)
is satisfied for every information set I . If we play T ′ itera-
tions according to CFR, where on iteration T ∗, ∀I ∀awe use
substitute regretR′T,T

∗
(I, a), then σ′T,T

′
forms a (ε1 + ε2)-

equilibrium where εi =
∑
I∈Ii

√
πσ
′T,T ′
−i (I)∆(I)

√
|A(I)|

√
T+T ′

.

Theorem 2 allows us to choose from a range of valid
values for T and u′σ(I). Although it may seem optimal to
choose the values that result in the largest T allowed, this
is typically not the case in practice. This is because in prac-
tice CFR converges significantly faster than the theoretical
bound. In the next two sections we cover how to choose
u′σ(I) and T within the theoretically sound range so as to
converge even faster in practice.

The following corollary shows that warm starting using
(16) is lossless: if we play CFR from scratch for T iterations
and then warm start using σ̄T by setting u′σ̄

T

(I) to even the
lowest value allowed by (16), we can warm start to T .

Corollary 1. Assume T iterations of CFR were played
and let σ = σ̄T be the average strategy profile. If
we choose u′σ(I) for every information set I such that∑
a∈A(I)

(
v′σ(I, a)− v′σ(I)

)2
+

=
πσ−i(I)

(
∆(I)

)2
|A(I)|

T , and
then play T ′ additional iterations of CFR where on itera-
tion T ∗, ∀I ∀a we use R′T,T

∗

i (I, a), then the average strat-
egy profile over the T + T ′ iterations forms a (ε1 + ε2)-

equilibrium where εi =
∑
I∈Ii

√
πσ
′T,T ′
−i (I)∆(I)

√
|A(I)|

√
T+T ′

.

Choosing Number of Warm-Start Iterations
In this section we explain how to determine the number of
iterations T to warm start to, given only a strategy profile
σ. We give a method for determining a theoretically accept-
able range for T . We then present a heuristic for choosing T
within that range that delivers strong practical performance.

In order to apply Theorem 1, we must ensure v′σ1 + v′σ2 ≤
0. Thus, a theoretically acceptable upper bound for T would
satisfy v′σ1 + v′σ2 = 0 when u′σ(I) in every information set
I is set as low as possible while still satisfying (16).

In practice, setting T to this theoretical upper bound
would perform very poorly because CFR tends to converge
much faster than its theoretical bound. Fortunately, CFR also
tends to converge at a fairly consistent rate within a game.
Rather than choose a T that is as large as the theory allows,
we can instead choose T based on how CFR performs over
a short run in the particular game we are warm starting.

Specifically, we generate a function f(T ) that maps an it-
eration T to an estimate of how close σ̄T would be to a Nash
equilibrium after T iterations of CFR starting from scratch.



This function can be generated by fitting a curve to the first
few iterations of CFR in a game. f(T ) defines another func-
tion, g(σ), which estimates how many iterations of CFR it
would take to reach a strategy profile as close to a Nash equi-
librium as σ. Thus, in practice, given a strategy profile σ we
warm start to T = g(σ) iterations. In those experiments that
required guessing an appropriate T (namely Figures 2 and 3)
we based g(σ) on a short extra run (10 iterations of CFR)
starting from scratch. The experiments show that this simple
method is sufficient to obtain near-perfect performance.

Choosing Substitute Counterfactual Values
Theorem 2 allows for a range of possible values for u′σ(I).
In this section we discuss how to choose a particular value
for u′σ(I), assuming we wish to warm start to T iterations.

From (14), we see that v′σ(I, a) depends on the choice
of u′σ(I ′) for information sets I ′ that follow I . Therefore,
we set u′σ(I) in a bottom-up manner, setting it for informa-
tion sets at the bottom of the game tree first. This method
resembles a best-response calculation. When calculating a
best response for a player, we fix the opponent’s strategy
and traverse the game tree in a depth-first manner until a
terminal node is reached. This payoff is then passed up the
game tree. When all actions in an information set have been
explored, we pass up the value of the highest-utility action.

Using a best response would likely violate the constraint
v′σ1 + v′σ2 ≤ 0. Therefore, we compute the following re-
sponse instead. After every action in information set I has
been explored, we set u′σ(I) so that (16) is satisfied. We
then pass v′σ(I) up the game tree.

From (16) we see there are a range of possible options
for u′σ(I). In general, lower regret (that is, playing closer
to a best response) is preferable, so long as v′σ1 + v′σ2 ≤
0 still holds. In this paper we choose an information set-
independent parameter 0 ≤ λi ≤ 1 for each player and set
u′σ(I) such that∑
a∈A(I)

(
v′σ(I, a)− v′σ(I)

)2
+

=
λiπ

σ
−i(I)

(
∆(I)

)2|A(I)|
T

Finding λi such that v′σ1 +v′σ2 = 0 is difficult. Fortunately,
performance is not very sensitive to the choice of λi . There-
fore, when we warm start, we do a binary search for λi so
that v′σ1 + v′σ2 is close to zero (and not positive).

Using λi is one valid method for choosing u′σ(I) from
the range of options that (16) allows. However, there may
be heuristics that perform even better in practice. In particu-
lar, πσ−i

(
∆(I)

)2
in (16) acts as a bound on

(
rt(I, a)

)2
. If a

better bound, or estimation, for
(
rt(I, a)

)2
exists, then sub-

stituting that in (16) may lead to even better performance.

Experiments
We now present experimental results for our warm-starting
algorithm. We begin by demonstrating an interesting conse-
quence of Corollary 1. It turns out that in two-player zero-
sum games, we need not store regrets at all. Instead, we can
keep track of only the average strategy played. On every it-
eration, we can “warm start” using the average strategy to

directly determine the probabilities for the next iteration.
We tested this algorithm on random 100x100 normal-form
games, where the entries of the payoff matrix are chosen
uniformly at random from [−1, 1]. On every iteration T > 0,
we set v′σ̄

T

1 = v′σ̄
T

2 such that

|∆1|2|A1|∑
a1

(
u1(a1, σ̄T2 )− v′σ̄T1

)2
+

=
|∆2|2|A2|∑

a2

(
u2(a2, σ̄T1 )− v′σ̄T2

)2
+

Figure 1 shows that warm starting every iteration in this way
results in performance that is virtually identical to CFR.

Figure 1: Comparison of CFR vs warm starting every iter-
ation. The results shown are the average over 64 different
100x100 normal-form games.

The remainder of our experiments are conducted on a
game we call Flop Texas Hold’em (FTH). FTH is a ver-
sion of poker similar to Limit Texas Hold’em except there
are only two rounds, called the pre-flop and flop. At the be-
ginning of the game, each player receives two private cards
from a 52-card deck. Player 1 puts in the “big blind” of two
chips, and Player 2 puts in the “small blind” of one chip.
A round of betting then proceeds, starting with Player 2, in
which up to three bets or raises are allowed. All bets and
raises are two chips. Either player may fold on their turn, in
which case the game immediately ends and the other player
wins the pot. After the first betting round is completed, three
community cards are dealt out, and another round of betting
is conducted (starting with Player 1), in which up to four
bets or raises are allowed. At the end of this round, both
players form the best five-card poker hand they can using
their two private cards and the three community cards. The
player with the better hand wins the pot.

The second experiment compares our warm starting to
CFR in FTH. We run CFR for some number of iterations
before resetting the regrets according to our warm start al-
gorithm, and then continuing CFR. We compare this to just
running CFR without resetting. When resetting, we deter-
mine the number of iterations to warm start to based on an
estimated function of the convergence rate of CFR in FTH,
which is determined by the first 10 iterations of CFR. Our
projection method estimated that after T iterations of CFR,
σ̄T is a 10.82

T -equilibrium. Thus, when warm starting based
on a strategy profile with exploitability x, we warm start to
T = 10.82

x . Figure 2 shows performance when warm start-
ing at 100, 500, and 2500 iterations. These are three sepa-
rate runs, where we warm start once on each run. We com-
pare them to a run of CFR with no warm starting. Based



on the average strategies when warm starting occurred, the
runs were warm started to 97, 490, and 2310 iterations, re-
spectively. The figure shows there is almost no performance
difference between warm starting and not warm starting.2

Figure 2: Comparison of CFR vs warm starting after 100,
500, or 2500 iterations. We warm started to 97, 490, and
2310 iterations, respectively. We used λ = 0.08, 0.05, 0.02
respectively (using the same λ for both players).

The third experiment demonstrates one of the main bene-
fits of warm starting: being able to use a small coarse ab-
straction and/or quick-but-rough equilibrium-finding tech-
nique first, and starting CFR from that solution, thereby ob-
taining convergence faster. In all of our experiments, we
leverage a number of implementation tricks that allow us to
complete a full iteration of CFR in FTH in about three core
minutes (Johanson et al. 2011). This is about four orders
of magnitude faster than vanilla CFR. Nevertheless, there
are ways to obtain good strategies even faster. To do so,
we use two approaches. The first is a variant of CFR called
External-Sampling Monte Carlo CFR (MCCFR) (Lanctot et
al. 2009), in which chance nodes and opponent actions are
sampled, resulting in much faster (though less accurate) it-
erations. The second is abstraction, in which several simi-
lar information sets are bucketed together into a single in-
formation set (where “similar” is defined by some heuris-
tic). This constrains the final strategy, potentially leading to
worse long-term performance. However, it can lead to faster
convergence early on due to all information sets in a bucket
sharing their acquired regrets and due to the abstracted game
tree being smaller. Abstraction is particularly useful when
paired with MCCFR, since MCCFR can update the strategy
of an entire bucket by sampling only one information set.

In our experiment, we compare three runs: CFR, MC-
CFR in which the 1,286,792 flop poker hands have been
abstracted into just 5,000 buckets, and CFR that was warm
started with six core minutes of the MCCFR run. As seen
in Figure 3, the MCCFR run improves quickly but then lev-
els off, while CFR takes a relatively long time to converge,
but eventually overtakes the MCCFR run. The warm start
run combines the benefit of both, quickly reaching a good
strategy while converging as fast as CFR in the long run.

2Although performance between the runs is very similar, it is
not identical, and in general there may be differences in the con-
vergence rate of CFR due to seemingly inconsequential differences
that may change to which equilibrium CFR converges, or from
which direction it converges.

Figure 3: Performance of full-game CFR when warm
started. The MCCFR run uses an abstraction with 5,000
buckets on the flop. After six core minutes of the MCCFR
run, its average strategy was used to warm start CFR in the
full to T = 70 using λ = 0.08.

In many extensive-form games, later iterations are
cheaper than earlier iterations due to the increasing preva-
lence of pruning, in which sections of the game tree need
not be traversed. In this experiment, the first 10 iterations
took 50% longer than the last 10, which is a relatively mod-
est difference due to the particular implementation of CFR
we used and the relatively small number of player actions in
FTH. In other games and implementations, later iterations
can be orders of magnitude cheaper than early ones, result-
ing in a much larger advantage to warm starting.

Conclusions and Future Research
We introduced a general method for warm starting RM and
CFR in zero-sum games. We proved that after warm start-
ing to T iterations, CFR converges just as quickly as if it
had played T iterations of CFR from scratch. Moreover, we
proved that this warm start method is “lossless.” That is,
when warm starting with the average strategy of T iterations
of CFR, we can warm start to T iterations.

While other warm start methods exist, they can only be
applied in special cases. A benefit of ours is that it is agnostic
to the origins of the input strategies. We demonstrated that
this can be leveraged by first solving a coarse abstraction and
then using its solution to warm start CFR in the full game.

Our warm start method expands the scope and effective-
ness of SAEF, in which an abstraction is progressively re-
fined during equilibrium finding. SAEF could previously
only refine public actions, due to limitations in warm start-
ing. The method presented in this paper allows SAEF to po-
tentially make arbitrary changes to the abstraction.

Recent research that finds close connections between CFR
and other iterative equilibrium-finding algorithms (Waugh
and Bagnell 2015) suggests that our techniques may
extend beyond CFR as well. There are a number of
equilibrium-finding algorithms with better long-term con-
vergence bounds than CFR, but which are not used in prac-
tice due to their slow initial convergence (Kroer et al. 2015;
Hoda et al. 2010; Nesterov 2005; Daskalakis, Deckelbaum,
and Kim 2015). Our work suggests that a similar method of
warm starting in these algorithms could allow their faster
asymptotic convergence to be leveraged later in the run
while CFR is used earlier on.
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Appendix

Projection Experiment
In this experiment, we demonstrate the accuracy of our pro-
jection method for determining the number of iterations to
warm start to. We plot the convergence rate of CFR in FTH,
and also plot what the convergence rate is projected to be
based on data from the first 10 iterations of CFR in FTH.
Specifically, it predicts the rate of convergence as 10.82

T ,
where T is the number of iterations. Although it bases this
projection on just 10 iterations, the results show it to be very
accurate even up to 10,000 iterations.

Figure 4: Actual convergence of CFR compared to a projec-
tion of convergence based on the first 10 iterations of CFR.

Choice of λ
This experiment demonstrates that performance is not par-
ticularly sensitive to the choice of λ. Figure 5 shows the
results of warm starting after 500 iterations of CFR (warm
starting to T = 500) when using various choices of λ (same
λ for both players). Performance is virtually identical for
λ = 0, 0.05, and 0.1, though λ = 0.05 performs the best by
a small margin.3 Nevertheless, performance degrades drasti-
cally when choosing a value such as λ = 0.5.

Figure 5: Comparison of different choices for λ when warm
starting (using the same λi for both players).

3When using λ = 0, no action is assigned positive regret.
In this case, we modify the definition of regret matching so that
σT+1
i (I, a) = 1 if a is the only action with non-negative regret.

Proof of Lemma 1
Proof. From (7) we see that∑

a∈A(I)

(
RT+(I, a)

)2 ≤ ∑
a∈A(I)

T∑
t=1

(
rt(I, a)

)2
From (2) and (3), we see that rt(I, a) ≤ πσt−i(I)∆(I), so∑

a∈A(I)

(
RT+(I, a)

)2 ≤ |A(I)|
(
∆(I)

)2 T∑
t=1

(
πσ

t

−i(I)
)2

We know 0 ≤ πσ
t

−i(I) ≤ 1. Therefore,
∑T
t=1

(
πσ

t

−i(I)
)2 ≤∑T

t=1 π
σt

−i(I) ≤ Tπσ̄T−i (I). Thus, we have∑
a∈A(I)

(
RT+(I, a)

)2 ≤ πσ̄T−i (I)
(
∆(I)

)2|A(I)|T

Lemma 2
Lemma 2 proves that the growth of substitute regret has the
same bound as the growth rate of normal regret. This lemma
is used in the proof of Theorem 2.
Lemma 2. If∑

a∈A

(
R′T (I, a)

)2
+
≤
(
πσ−i(I)

)(
∆(I)

)2|A(I)|T

and strategies are chosen in I according to CFR us-
ing R′T,T

∗
(I, a) for all a on every iteration T ∗, then

R′T,T
′
(I) ≤

√
πσ
′T,T ′

−i (I)∆(I)
√
|A(I)|

√
T + T ′.

Proof. In order to simplify notation, we first define
Φ(RT (I)) =

∑
a∈A(I)

(
RT (I, a)

)2
+

. After T ′ iterations of
CFR, we are guaranteed that

Φ
(
R′T,T

′
(I)
)
≤

∑
a∈A(I)

((
R′T (I, a))2

+ +

T ′∑
t′=1

(
rt
′
(I, a)

)2)
On iteration t′ ≤ T ′, from (2) and (3), we know that(
rt
′
(I, a)

)2 ≤ (πσt′−i (I)∆(I)
)2

. Thus,

Φ
(
R′T,T

′
(I)
)
≤

∑
a∈A(I)

((
R′T (I, a))2

++

T ′∑
t′=1

(
πσ

t′

−i (I)∆(I)
)2)

Φ
(
R′T,T

′
(I)
)
≤ |A(I)|

(
Tπσ−i(I)+

T ′∑
t′=1

(
πσ

t′

−i (I)
)2)(

∆(I)
)2

Since 0 ≤ πσ
t′

−i (I) ≤ 1, we know that
∑T ′

t′=1

(
πσ

t′

−i (I)
)2 ≤∑T ′

t′=1 π
σt
′

−i (I). Also,
∑T ′

t′=1 π
σt
′

−i (I) = T ′πσ̄
T ′

−i (I). So

Φ
(
R′T,T

′
(I)
)
≤ |A(I)|

(
Tπσ−i(I) + T ′πσ̄
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−i (I)
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Φ
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≤ |A(I)|

(
πσ
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)(
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(T + T ′)

Since R′T,T
′
(I) ≤

√
Φ
(
R′T,T ′(I)

)
so we get

R′T,T
′
(I) ≤

√
πσ
′T,T ′

−i (I)∆(I)
√
|A(I)|

√
T + T ′



Lemma 3
Lemma 3 proves that we can use substitute regret to prove
convergence to a Nash equilibrium just as we could use nor-
mal regret. Specifically, it proves that if average substitute
regret is bounded for both players in the whole game, then
the strategy profile is as close to a Nash equilibrium as if av-
erage normal regret were similarly bounded. This lemma is
used in the proof of Theorem 2.

Lemma 3. Define R′T,T
′

i as

max
σ∗i ∈Σi

(
T
(
ui(σ

∗
i , σ−i)−v′σi

)
+

T ′∑
t′=1

(
ui(σ

∗
i , σ

t′)−ui(σt
′
)
))

(17)
In a two-player zero-sum game, if v′σ1 + v′σ2 ≤ 0 and
R′T,T

′

T+T ′ ≤ εi, then σ′T,T
′

is a (ε1 + ε2)-equilibrium.

Proof. Since σ∗i is the same on every iteration,

R′T,T
′

i = (T+T ′) max
σ∗i ∈Σi

ui(σ
∗
i , σ
′T,T ′
−i )−Tv′σi −

T ′∑
t′=1

ui(σ
t′)

Since v′σ1 + v′σ2 ≤ 0 and u1(σt
′
) = −u2(σt

′
), so

max
σ∗1∈Σ1

u1(σ∗1 , σ
′T,T ′
2 ) + max

σ∗2∈Σ2

u2(σ′T,T
′

1 , σ∗2) ≤ ε1 + ε2

max
σ∗1∈Σ1

u1(σ∗1 , σ
′T,T ′
2 )− min

σ∗2∈Σ2

u1(σ′T,T
′

1 , σ∗2) ≤ ε1 + ε2

Since u1(σ′T,T
′

1 , σ′T,T
′

2 ) ≥ minσ′2∈Σ2
u1(σ′T,T

′

1 , σ∗2) so we

have maxσ∗1∈Σ1
u1(σ∗1 , σ

′T,T ′
2 )− u1(σ′T,T

′

1 , σ′T,T
′

2 ) ≤ ε1 +
ε2. By symmetry, this is also true for Player 2. Therefore,
σ′T,T

′
is a (ε1 + ε2)-equilibrium.

Proof of Theorem 2
Proof. After setting T and v′σ(I) for every information
set I , assume T ′ iterations were played according to CFR,
where on iteration T ∗, ∀I ∀a we used substitute regret
R′T,T

∗
(I, a).

We begin with some definitions. Define vσi (h) =
πσ−i(h)

∑
z∈Z

(
πσ(h, z)ui(z)

)
. Define D(I) to be the in-

formation sets of player i reachable from I (including I).
Define σ|D(I)→σ′ to be a strategy profile equal to σ except
in the information sets in D(I) where it is equal to σ′. De-
fine succσi (I ′|I, a) to be the probability that I ′ is the next
information set of player i visited given that the action a
was just selected in information set I , and σ is the cur-
rent strategy. Define Succ(I, a) to be the set of all possible
next information sets of player P (I) visited given that ac-
tion a ∈ A(I) was just selected in information set I . Define
Succ(I) = ∪a∈A(I)Succ(I, a). The substitute full counter-
factual regret when warm starting from strategy σ and where
i = P (I) is

R′T,T
′

full (I) = max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσ
t′

(I)
))

(18)

We now prove recursively that

R′T,T
′

full (I) ≤
∑

I′∈D(I)

√
πσ
′T,T ′

−i (I ′)∆(I ′)
√
|A(I ′)|

√
T + T ′

(19)
We define the level of an information set as follows. Any

information set I such that Succ(I) = ∅ is level 1. Let ` be
the maximum level of any I ′ ∈ Succ(I). The level of I is
`+ 1.

First, consider an information set I of level 1. Then there
are no Player i information sets following I , so

R′T,T
′

i,full (I) = max
a∈A(I)

(
T
(
vσ(I, a)− v′σ(I)

)
+
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t′=1

(
vσ

t′

(I, a)− vσ
t′

(I)
))

Since there are no further player i actions in this case, so
vσ(I, a) = v′σ(I, a). Therefore, R′T,T

′

full (I) = R′T,T
′
(I).

By Lemma 2, (19) holds.
Now assume that (19) holds for all I ′ where the level of

I ′ is at most `. We prove (19) holds for all I with level `+ 1
where i = P (I).

From Lemma 2, we know that

Tv′σ(I)+
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t′=1

vσ
t

(I) ≥ max
a∈A(I)

(
Tv′σ(I, a)+

T ′∑
t′=1

vσ
t

(I, a)

−
√
πσ
′T,T ′

−i (I)∆(I)
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T + T ′

)
(20)
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h′∈Succi(h·a)
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)
(21)

We also know that for any σ,

max
σ′∈Σi

vσ|D(I)→σ′ (I) =

max
a∈A(I)

max
σ′i∈Σi

∑
h∈I

( ∑
z∈Z:z∈Succi(h·a)
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∑
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)

(22)

Since for any z ∈ Z, vσi (z) = v′σi (z), so combining (21)



and (22) we get
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Since we sum over only h′ ∈ Succi(h · a) where h′ 6∈ Z,
this becomes

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσ
t′

(I)
))
≤

max
σ′i∈Σi

(
T

∑
I′∈Succ(I,a)

(
vσ|D(I′)→σ′ (I ′)− v′σi (I ′)

)
+

T ′∑
t′=1

∑
I′∈Succ(I,a)

(
vσ

t′ |D(I′)→σ′ (I ′)− vσ
t′

i (I ′)
)
+

√
πσ
′T,T ′

−i (I)∆(I)
√
|A(I)|

√
T + T ′ (24)

From the recursion assumption, for any I ′ ∈ Succ(I, a),

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I ′)− v′σi (I ′)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I′)→σ′ (I ′)− vσ
t′

(I ′)
))
≤

∑
I′′∈D(I′)

√
πσ
′T,T ′

−i (I ′′)∆(I ′′)
√
|A(I ′′)|

√
T + T ′ (25)

Therefore,

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσ
t′

(I)
))
≤

∑
I′∈Succ(I,a)

∑
I′′∈D(I′)

√
πσ
′T,T ′

−i (I ′′)∆(I ′′)
√
|A(I ′′)|

√
T + T ′

+

√
πσ
′T,T ′

−i (I)∆(I)
√
|A(I)|

√
T + T ′ (26)

Since Succ(I, a) ⊆ Succ(I) and since D(I) =

∪I′∈Succ(I)D(I ′) ∪ {I}, so

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσ
t′

(I)
))
≤

∑
I′∈D(I)

√
πσ
′T,T ′

−i (I ′)∆(I ′)
√
|A(I ′)|

√
T + T ′ (27)

Therefore, (19) holds by recursion.
Define R′T,T

′

i according to (17). If P (∅) = i, then (19)
implies

R′T,T
′

i ≤
∑
I∈Ii

√
πσ
′T,T ′

−i (I)∆(I)
√
|A(I)|

√
T + T ′ (28)

If P (∅) 6= i, then we could simply add a Player i informa-
tion set at the beginning of the game with a single action.
Therefore, (28) holds for every player i. Since v′σ1 +v′σ2 ≤ 0
by construction, so we can applying Lemma 3 using (28),
and thereby see that Theorem 2 holds.

Proof of Corollary 1
Proof. After T iterations of CFR, for every information
set I we could clearly assign v′σ̄

T

(I) = 1
T

∑T
t=1 v

σt(I)
in order to satisfy Theorem 2, since this would set re-
grets to exactly what they were before. From (8) we see
this choice of v′σ̄

T

(I) satisfies (16). We instead choose
v′σ̄

T

(I) ≤ 1
T

∑T
t=1 v

σt(I), where v′σ̄
T

(I) still satisfies
(16). Since v′σ̄

T

(I) ≤ 1
T

∑T
t=1 v

σt(I) for every informa-
tion set I , so from (15) we know v′σ̄

T

i ≤ 1
T

∑T
t=1 ui(σ

t).
Therefore, v′σ̄

T

1 + v′σ̄
T

2 ≤ 0 and we can apply Theorem 2 to
warm start to T iterations.


