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'ExplodeGorilla:
'  Causes gorilla explosion when a direct hit occurs
'Parameters:
'  X#, Y# - shot location
FUNCTION ExplodeGorilla (x#, y#)
  YAdj = Scl(12)
  XAdj = Scl(5)
  SclX# = ScrWidth / 320
  SclY# = ScrHeight / 200
  IF x# < ScrWidth / 2 THEN PlayerHit = 1 ELSE PlayerHit = 2
  PLAY "MBO0L16EFGEFDC"

  FOR i = 1 TO 8 * SclX#
    CIRCLE (GorillaX(PlayerHit) + 3.5 * SclX# + XAdj, GorillaY(PlayerHit) + 7 * 
SclY# + YAdj), i, ExplosionColor, , , -1.57
    LINE (GorillaX(PlayerHit) + 7 * SclX#, GorillaY(PlayerHit) + 9 * SclY# - i)-
(GorillaX(PlayerHit), GorillaY(PlayerHit) + 9 * SclY# - i), ExplosionColor
  NEXT i
  FOR i = 1 TO 16 * SclX#

~



A good analogy is like a diagonal frog
―Kai Krause
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The analogy is suggestive...
...to programmers/PL designers it suggests:

• new programming techniques

• new ways of understanding old languages

• ...ideas for organizing new languages

...to mathematicians/proof theorists it suggests:

• ways of mechanizing mathematics
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...to programmers:
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...and inspiring...

...to programmers:

• I’m not just hacking, I’m proving theorems!

...to mathematicians:

• I’m not just philosophizing, I’m writing programs!

5



...and more than 
an analogy!...
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λ

ML HaskellLisp... ...

ND ≅



A shaky foundation!



Purely applicative languages are often said to be 
based on a logical system called the 
lambda calculus, or even to be “syntactically  
sugared” versions of the lambda calculus.... 
However, as we will see, although an unsugared 
applicative language is syntactically equivalent to the 
lambda calculus, there is a subtle semantic 
difference.  Essentially, the “real” lambda calculus 
implies a different “order of application”...than most 
applicative programming languages. ―John Reynolds
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My work

Proposes an alternative foundation

• ...for real-world functional PLs

• with programs-as-proofs isomorphism

...based on duality

• duality between proofs and refutations

• duality between values and continuations
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My message

There are deep mathematical symmetries...

• within languages like ML and Haskell

• between languages like ML and Haskell

• revealed by examining patterns

Duality is like a diagonal frog square
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Talk outline

• The proofs-as-programs analogy

• Explain why λ is an inadequate foundation

• Explain duality of proofs and refutations

• Extract a new foundational PL

• Profit
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The trouble with λ



The foundation of 
functional programming

λ

ML HaskellLisp... ...

ND ≅



arith.sml

datatype nat = Z | S of nat
fun plus Z n = n
   | plus (S m) n = S (plus m n)
fun times Z n = Z
   | times (S m) n = plus n (times m n)
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arith.hs

data Nat = Z | S (Nat)
plus Z n = n
plus (S m) n = S (plus m n)
times Z n = Z
times (S m) n = plus n (times m n)
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Standard ML of New Jersey v110.67
- use "arith.sml";
[opening arith.sml]
- val two = S (S Z);
- val three = S two;
- times two three;
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Standard ML of New Jersey v110.67
- use "arith.sml";
[opening arith.sml]
- val two = S (S Z);
- val three = S two;
- times two three;
val it = S (S (S (S (S (S Z))))) : nat
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GHCi, version 6.8.3
Prelude> :load arith
Ok, modules loaded: Main.
*Main> let two = S (S Z)
*Main> let three = S two
*Main> times two three
S (S (S (S (S (S Z)))))

19



- fun infinity() = S(infinity())
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- fun infinity() = S(infinity())
- times Z (infinity());
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- fun infinity() = S(infinity())
- times Z (infinity());
^CInterrupt
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*Main> let infinity = S(infinity)
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*Main> let infinity = S(infinity)
*Main> times Z infinity
Z
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Evaluation order

ML

call-by-value

22

Haskell

call-by-name



Evaluation order

ML

call-by-value

22

Haskell

call-by-name

λ
undecided



Purely applicative languages are often said to be 
based on a logical system called the lambda calculus, 
or even to be “syntactically  sugared” versions of the 
lambda calculus.... However, as we will see, 
although an unsugared applicative 
language is syntactically equivalent to the 
lambda calculus, there is a subtle semantic 
difference.  Essentially, the “real” lambda calculus 
implies a different “order of application”...than most 
applicative programming languages. ―John Reynolds
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Syntax and semantics 
are not independent!

A type system syntactically guarantees 
semantic properties (“well-typed programs 
don’t go wrong”)

...as a type system gets more precise, it must 
take evaluation order into account.

24



“ML with callcc is unsound”

Safety violation in SML/NJ, discovered in ‘91

Bad interaction polymorphism ↔ effects

Stopgap measure: a value restriction

ML needs one

Haskell does not
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Why didn’t you warn us, λ?

λ tells us nothing about typing with effects

But we need guidance in developing...

• union and intersection types

• dependent types

• module systems

• ...the languages of the future
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And now for
something different

(but actually the same)



Talk outline

• The proofs-as-programs analogy

• Explain why λ is an inadequate foundation

• Explain duality of proofs and refutations

• Extract a new foundational PL

• Profit
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a proof-biased logic



Once we have understood how to discover individual 
patterns which are alive, we may then make a 
language for ourselves, for any building task we face.

―Christopher Alexander
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proof patterns

Describe how to prove a proposition
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proof patterns

Describe how to prove a proposition

• “to prove A∧B, prove both A and B”

• “to prove A∨B, prove either A or B”

• “to prove ¬A, refute A”

• “to prove True, done!”

• “to prove False, no way.”
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the pattern is holey

A proof pattern gives us the outline of a 
proof, but leaves holes for refutations
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the pattern is holey

A proof pattern gives us the outline of a 
proof, but leaves holes for refutations
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¬A∧(¬B∨¬C) true
¬A true ¬B∨¬C true
A false ¬B true

B false



notation

A1 false, ..., An false ⊩ A true
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There is a proof pattern for A, leaving holes for 
refutations of A1 ... An

⏟
Δ



pattern axioms

• if Δ1 ⊩A true and Δ2 ⊩ B true                      
then Δ1Δ2  ⊩ A∧B true

• if Δ ⊩ A true then Δ  ⊩ A∨B true

• if Δ ⊩ B true then Δ  ⊩ A∨B true

• A false ⊩ ¬A true

• · ⊩ True true
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proofs and refutations, 
informally...

To prove A, find a proof pattern for A and fill 
in its holes.

To refutate A, consider every proof pattern 
for A and show that its holes can’t be filled.
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formal system
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a square of dualities
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• Γ ⊢ A true  iff  Δ ⊩ A true  and       Γ ⊢ Δ

• Γ ⊢ Δ       iff  A false ∊ Δ  implies  Γ ⊢ A false
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Duality, dualized



So much time and so little to do.  Wait a minute.  
Strike that.  Reverse it.

―Willy Wonka
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a refutation-biased logic



refutation patterns

Describe how to refute a proposition
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refutation patterns

Describe how to refute a proposition

• “to refute A∧B, refute either A or B”

• “to refute A∨B, refute both A and B”

• “to refute ¬A, prove A”

• “to refute True, tough luck.”

• “to refute False, just did.”
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notation

A1 true, ..., An true ⊩ A false
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There is a refutation pattern for A, leaving holes for 
proofs of A1 ... An

⏟
Δ



pattern axioms

• if Δ ⊩ A false then Δ  ⊩ A∧B false

• if Δ ⊩ B false then Δ  ⊩ A∧B false

• if Δ1 ⊩A false and Δ2 ⊩ B false                      
then Δ1Δ2  ⊩ A∨B false

• A true ⊩ ¬A false

• · ⊩ False false
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proofs and refutations, 
informally...

To refute A, find a refutation pattern for A 
and fill in its holes.

To prove A, consider every refutation pattern 
for A and show that its holes can’t be filled.
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formal system
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• Γ ⊢ A true  iff  Δ ⊩ A true  and       Γ ⊢ Δ

• Γ ⊢ Δ       iff  A false ∊ Δ  implies  Γ ⊢ A false
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strike that, reverse it...
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• Γ ⊢ A false iff  Δ ⊩ A false and       Γ ⊢ Δ

• Γ ⊢ Δ       iff  A true ∊ Δ   implies  Γ ⊢ A true

• Γ ⊢ A true  iff  Δ ⊩ A false implies  Γ, Δ ⊢ #

• Γ ⊢ #       iff  A true ∊ Γ    and       Γ ⊢ A false



Square of Opposition
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51



So what does this have
to do with programming?



Talk outline

• The proofs-as-programs analogy

• Explain why λ is an inadequate foundation

• Explain duality of proofs and refutations

• Extract a new foundational PL

• Profit
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Punchline

We’re already done!

Reading the logical rules constructively gives 
us an intrinsically typed programming language

But for simplicity, let’s go sans types...
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Translation guide

55

Logical judgment Syntactic category Name

Δ ⊩ A true value pattern VPat

Δ ⊩ A false continuation pattern KPat

 A false ∊ Δ continuation variable KVar

 A true ∊ Δ value variable VVar

Γ ⊢ A true value Val

Γ ⊢ A false continuation Kon

Γ ⊢ Δ substitution Sub

Γ ⊢ # computation Cmp



Language #1



from proof patterns...

• if Δ1 ⊩A true and Δ2 ⊩ B true                      
then Δ1Δ2  ⊩ A∧B true

• if Δ ⊩ A true then Δ  ⊩ A∨B true

• if Δ ⊩ B true then Δ  ⊩ A∨B true

• A false ⊩ ¬A true

• · ⊩ True true
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...to value patterns

• if p1 ∊ VPat and p2 ∊ VPat                                             
then (p1, p2) ∊ VPat

• if p ∊ VPat then inl p ∊ VPat

• if p ∊ VPat then inr p ∊ VPat

• if k ∊ KVar then k ∊ VPat

• () ∊ VPat

58



e.g.,
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¬A∧(¬B∨¬C) true
¬A true ¬B∨¬C true
A false ¬B true

B false

(k1, inl k2) ↦



from logic...
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• Γ ⊢ A true  iff  Δ ⊩ A true  and       Γ ⊢ Δ

• Γ ⊢ Δ       iff  A false ∊ Δ  implies  Γ ⊢ A false

• Γ ⊢ A false iff  Δ ⊩ A true  implies  Γ, Δ ⊢ #

• Γ ⊢ #       iff  A false ∊ Γ   and       Γ ⊢ A true



...to language
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•     Val        =  VPat   ⨉    Sub

•    Sub       =  KVar  →  Kon

•    Kon      =  VPat  →  Cmp

•    Cmp     =  KVar  ⨉   Val



...to language
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Is that really a language?



Yes, trust me.

64

Like λ, it is minimalistic, but unlike λ it...

• has inherent support for products, sums, 
and pattern-matching

• inherently enforces call-by-value

(NB: can think of image of CBV CPS transform)
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Like λ, it is minimalistic, but unlike λ it...

• has inherent support for products, sums, 
and pattern-matching

• inherently enforces call-by-value

(NB: can think of image of CBV CPS transform)

...What about CBN?



Language #2



you know the drill...



from refutation patterns...
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• if Δ ⊩ A false then Δ  ⊩ A∧B false

• if Δ ⊩ B false then Δ  ⊩ A∧B false

• if Δ1 ⊩A false and Δ2 ⊩ B false                      
then Δ1Δ2  ⊩ A∨B false

• A true ⊩ ¬A false

• · ⊩ False false



...to continuation patterns

• if d ∊ KPat then fst d ∊ KPat

• if d ∊ KPat then snd d ∊ KPat

• if d1 ∊ KPat and d2 ∊ KPat                                             
then [d1, d2] ∊ KPat

• if x ∊ VVar then x ∊ KPat

• [] ∊ KPat
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okay so continuation
patterns are a little weird...



from logic...
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• Γ ⊢ A false iff  Δ ⊩ A false and       Γ ⊢ Δ

• Γ ⊢ Δ       iff  A true ∊ Δ   implies  Γ ⊢ A true

• Γ ⊢ A true  iff  Δ ⊩ A false implies  Γ, Δ ⊢ #

• Γ ⊢ #       iff  A true ∊ Γ    and       Γ ⊢ A false



...to language
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•    Kon       =  KPat   ⨉    Sub

•    Sub       =   VVar  →    Val

•    Val         =  KPat  →  Cmp

•    Cmp     =  VVar  ⨉    Kon



...to language
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•    Kon       =  KPat   ⨉    Sub

•    Sub       =   VVar  →    Val

•    Val         =  KPat  →  Cmp

•    Cmp     =  VVar  ⨉    Kon



Recap



the CBV square

Val = VPat ⨯ Sub Kon = VPat → Cmp

Sub = KVar → Kon Cmp = KVar ⨯ Val
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the CBN square

Val = KPat → Cmp Kon = KPat ⨯ Sub

Sub = VVar → Val Cmp = VVar ⨯ Kon
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CBV-CBN duality

Val⁺ = VPat ⨯ ... Kon⁺ = VPat → ...

Val⁻ = KPat → ... Kon⁻ = KPat ⨯ ...
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Talk outline

• The proofs-as-programs analogy

• Explain why λ is an inadequate foundation

• Explain duality of proofs and refutations

• Extract a new foundational PL

• Profit
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Where are we?
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• A Curry-Howard explanation of pattern-
matching and evaluation order [POPL’08]

• The ability to mix CBV and CBN [APAL]

• A better understanding of the Twelf-Coq 
(love-hate) relationship [LICS ’08, with Dan 
Licata and Bob Harper]

• A guide to developing refinement type systems 
[draft paper on website...and hopefully, thesis!]



Where are we going?

79

• A systematic method for deriving practical 
programming languages via proof theory?

• Practical uses of duality in programming?

• Topological interpretation?

• Linguistic applications?
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Thank you



ML in ML

type var = string         
datatype pat = Pair of pat*pat | Unit

  | Inl of pat | Inr of pat
  | KVar of var

datatype vlu = Vlu of pat * sub
        and  kon = Kon of pat -> cmp
        and  sub = Sub of var -> kon
        and  cmp = Cmp of var * vlu
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