
Walking the way of duality
(to programming corner)

Noam Zeilberger
October 10th, 2008

1

Proving is like programming

A remarkable analogy

2

Proving is like programming

A remarkable analogy

2

Proving is like programming

A remarkable analogy

2

~

Proving is like programming

A remarkable analogy

2

'ExplodeGorilla:
' Causes gorilla explosion when a direct hit occurs
'Parameters:
' X#, Y# - shot location
FUNCTION ExplodeGorilla (x#, y#)
 YAdj = Scl(12)
 XAdj = Scl(5)
 SclX# = ScrWidth / 320
 SclY# = ScrHeight / 200
 IF x# < ScrWidth / 2 THEN PlayerHit = 1 ELSE PlayerHit = 2
 PLAY "MBO0L16EFGEFDC"

 FOR i = 1 TO 8 * SclX#
 CIRCLE (GorillaX(PlayerHit) + 3.5 * SclX# + XAdj, GorillaY(PlayerHit) + 7 *
SclY# + YAdj), i, ExplosionColor, , , -1.57
 LINE (GorillaX(PlayerHit) + 7 * SclX#, GorillaY(PlayerHit) + 9 * SclY# - i)-
(GorillaX(PlayerHit), GorillaY(PlayerHit) + 9 * SclY# - i), ExplosionColor
 NEXT i
 FOR i = 1 TO 16 * SclX#

~

A good analogy is like a diagonal frog
―Kai Krause

3

The analogy is suggestive...
...to programmers/PL designers it suggests:

• new programming techniques

• new ways of understanding old languages

• ...ideas for organizing new languages

...to mathematicians/proof theorists it suggests:

• ways of mechanizing mathematics

4

The analogy is suggestive...
...to programmers/PL designers it suggests:

• new programming techniques

• new ways of understanding old languages

• ...ideas for organizing new languages

...to mathematicians/proof theorists it suggests:

• ways of mechanizing mathematics

4

...and inspiring...

...to programmers:

5

...and inspiring...

...to programmers:

• I’m not just hacking, I’m proving theorems!

5

...and inspiring...

...to programmers:

• I’m not just hacking, I’m proving theorems!

...to mathematicians:

5

...and inspiring...

...to programmers:

• I’m not just hacking, I’m proving theorems!

...to mathematicians:

• I’m not just philosophizing, I’m writing programs!

5

...and more than
an analogy!...

6

an isomorphism(s)

7

an isomorphism(s)

7

an isomorphism(s)

7

an isomorphism(s)

7

an isomorphism(s)

7

an isomorphism(s)

7

an isomorphism(s)

7

an isomorphism(s)

7

an isomorphism(s)

7

an isomorphism(s)

7

The foundation of
functional programming

λND ≅

The foundation of
functional programming

λ

ML HaskellLisp... ...

ND ≅

A shaky foundation!

Purely applicative languages are often said to be
based on a logical system called the
lambda calculus, or even to be “syntactically
sugared” versions of the lambda calculus....
However, as we will see, although an unsugared
applicative language is syntactically equivalent to the
lambda calculus, there is a subtle semantic
difference. Essentially, the “real” lambda calculus
implies a different “order of application”...than most
applicative programming languages. ―John Reynolds

10

Purely applicative languages are often said to be
based on a logical system called the
lambda calculus, or even to be “syntactically
sugared” versions of the lambda calculus....
However, as we will see, although an unsugared
applicative language is syntactically equivalent to the
lambda calculus, there is a subtle semantic
difference. Essentially, the “real” lambda calculus
implies a different “order of application”...than most
applicative programming languages. ―John Reynolds

10

My work

Proposes an alternative foundation

• ...for real-world functional PLs

• with programs-as-proofs isomorphism

...based on duality

• duality between proofs and refutations

• duality between values and continuations

11

My message

There are deep mathematical symmetries...

• within languages like ML and Haskell

• between languages like ML and Haskell

• revealed by examining patterns

Duality is like a diagonal frog square

12

Talk outline

• The proofs-as-programs analogy

• Explain why λ is an inadequate foundation

• Explain duality of proofs and refutations

• Extract a new foundational PL

• Profit

13

The trouble with λ

The foundation of
functional programming

λ

ML HaskellLisp... ...

ND ≅

arith.sml

datatype nat = Z | S of nat
fun plus Z n = n
 | plus (S m) n = S (plus m n)
fun times Z n = Z
 | times (S m) n = plus n (times m n)

16

arith.hs

data Nat = Z | S (Nat)
plus Z n = n
plus (S m) n = S (plus m n)
times Z n = Z
times (S m) n = plus n (times m n)

17

Standard ML of New Jersey v110.67
- use "arith.sml";
[opening arith.sml]
- val two = S (S Z);
- val three = S two;
- times two three;

18

Standard ML of New Jersey v110.67
- use "arith.sml";
[opening arith.sml]
- val two = S (S Z);
- val three = S two;
- times two three;
val it = S (S (S (S (S (S Z))))) : nat

18

GHCi, version 6.8.3
Prelude> :load arith
Ok, modules loaded: Main.
*Main> let two = S (S Z)
*Main> let three = S two
*Main> times two three
S (S (S (S (S (S Z)))))

19

- fun infinity() = S(infinity())

20

- fun infinity() = S(infinity())
- times Z (infinity());

20

- fun infinity() = S(infinity())
- times Z (infinity());
^CInterrupt

20

*Main> let infinity = S(infinity)

21

*Main> let infinity = S(infinity)
*Main> times Z infinity
Z

21

Evaluation order

ML

call-by-value

22

Haskell

call-by-name

Evaluation order

ML

call-by-value

22

Haskell

call-by-name

λ
undecided

Purely applicative languages are often said to be
based on a logical system called the lambda calculus,
or even to be “syntactically sugared” versions of the
lambda calculus.... However, as we will see,
although an unsugared applicative
language is syntactically equivalent to the
lambda calculus, there is a subtle semantic
difference. Essentially, the “real” lambda calculus
implies a different “order of application”...than most
applicative programming languages. ―John Reynolds

23

Syntax and semantics
are not independent!

A type system syntactically guarantees
semantic properties (“well-typed programs
don’t go wrong”)

...as a type system gets more precise, it must
take evaluation order into account.

24

“ML with callcc is unsound”

Safety violation in SML/NJ, discovered in ‘91

Bad interaction polymorphism ↔ effects

Stopgap measure: a value restriction

ML needs one

Haskell does not

25

Why didn’t you warn us, λ?

λ tells us nothing about typing with effects

But we need guidance in developing...

• union and intersection types

• dependent types

• module systems

• ...the languages of the future

26

And now for
something different

(but actually the same)

Talk outline

• The proofs-as-programs analogy

• Explain why λ is an inadequate foundation

• Explain duality of proofs and refutations

• Extract a new foundational PL

• Profit

28

a proof-biased logic

Once we have understood how to discover individual
patterns which are alive, we may then make a
language for ourselves, for any building task we face.

―Christopher Alexander

30

proof patterns

Describe how to prove a proposition

31

proof patterns

Describe how to prove a proposition

• “to prove A∧B, prove both A and B”

31

proof patterns

Describe how to prove a proposition

• “to prove A∧B, prove both A and B”

• “to prove A∨B, prove either A or B”

31

proof patterns

Describe how to prove a proposition

• “to prove A∧B, prove both A and B”

• “to prove A∨B, prove either A or B”

• “to prove ¬A, refute A”

31

proof patterns

Describe how to prove a proposition

• “to prove A∧B, prove both A and B”

• “to prove A∨B, prove either A or B”

• “to prove ¬A, refute A”

• “to prove True, done!”

31

proof patterns

Describe how to prove a proposition

• “to prove A∧B, prove both A and B”

• “to prove A∨B, prove either A or B”

• “to prove ¬A, refute A”

• “to prove True, done!”

• “to prove False, no way.”

31

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

32

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

32

¬A∧(¬B∨¬C) true

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

32

¬A∧(¬B∨¬C) true
¬A true ¬B∨¬C true

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

32

¬A∧(¬B∨¬C) true
¬A true ¬B∨¬C true
A false

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

32

¬A∧(¬B∨¬C) true
¬A true ¬B∨¬C true
A false ¬B true

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

32

¬A∧(¬B∨¬C) true
¬A true ¬B∨¬C true
A false ¬B true

B false

notation

A1 false, ..., An false ⊩ A true

33

There is a proof pattern for A, leaving holes for
refutations of A1 ... An

notation

A1 false, ..., An false ⊩ A true

33

There is a proof pattern for A, leaving holes for
refutations of A1 ... An

⏟
Δ

pattern axioms

• if Δ1 ⊩A true and Δ2 ⊩ B true
then Δ1Δ2 ⊩ A∧B true

• if Δ ⊩ A true then Δ ⊩ A∨B true

• if Δ ⊩ B true then Δ ⊩ A∨B true

• A false ⊩ ¬A true

• · ⊩ True true

34

proofs and refutations,
informally...

To prove A, find a proof pattern for A and fill
in its holes.

To refutate A, consider every proof pattern
for A and show that its holes can’t be filled.

35

formal system

36

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

formal system

36

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

formal system

36

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

formal system

36

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

• Γ ⊢ # iff A false ∊ Γ and Γ ⊢ A true

a square of dualities

37

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

• Γ ⊢ # iff A false ∊ Γ and Γ ⊢ A true

a square of dualities

38

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

• Γ ⊢ # iff A false ∊ Γ and Γ ⊢ A true

a square of dualities

39

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

• Γ ⊢ # iff A false ∊ Γ and Γ ⊢ A true

a square of dualities

40

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

• Γ ⊢ # iff A false ∊ Γ and Γ ⊢ A true

a square of dualities

41

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

• Γ ⊢ # iff A false ∊ Γ and Γ ⊢ A true

Duality, dualized

So much time and so little to do. Wait a minute.
Strike that. Reverse it.

―Willy Wonka

43

a refutation-biased logic

refutation patterns

Describe how to refute a proposition

45

refutation patterns

Describe how to refute a proposition

• “to refute A∧B, refute either A or B”

45

refutation patterns

Describe how to refute a proposition

• “to refute A∧B, refute either A or B”

• “to refute A∨B, refute both A and B”

45

refutation patterns

Describe how to refute a proposition

• “to refute A∧B, refute either A or B”

• “to refute A∨B, refute both A and B”

• “to refute ¬A, prove A”

45

refutation patterns

Describe how to refute a proposition

• “to refute A∧B, refute either A or B”

• “to refute A∨B, refute both A and B”

• “to refute ¬A, prove A”

• “to refute True, tough luck.”

45

refutation patterns

Describe how to refute a proposition

• “to refute A∧B, refute either A or B”

• “to refute A∨B, refute both A and B”

• “to refute ¬A, prove A”

• “to refute True, tough luck.”

• “to refute False, just did.”

45

notation

A1 true, ..., An true ⊩ A false

46

There is a refutation pattern for A, leaving holes for
proofs of A1 ... An

⏟
Δ

pattern axioms

• if Δ ⊩ A false then Δ ⊩ A∧B false

• if Δ ⊩ B false then Δ ⊩ A∧B false

• if Δ1 ⊩A false and Δ2 ⊩ B false
then Δ1Δ2 ⊩ A∨B false

• A true ⊩ ¬A false

• · ⊩ False false

47

proofs and refutations,
informally...

To refute A, find a refutation pattern for A
and fill in its holes.

To prove A, consider every refutation pattern
for A and show that its holes can’t be filled.

48

formal system

49

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

• Γ ⊢ # iff A false ∊ Γ and Γ ⊢ A true

strike that, reverse it...

50

• Γ ⊢ A false iff Δ ⊩ A false and Γ ⊢ Δ

• Γ ⊢ Δ iff A true ∊ Δ implies Γ ⊢ A true

• Γ ⊢ A true iff Δ ⊩ A false implies Γ, Δ ⊢ #

• Γ ⊢ # iff A true ∊ Γ and Γ ⊢ A false

Square of Opposition

51

Square of Opposition

51

So what does this have
to do with programming?

Talk outline

• The proofs-as-programs analogy

• Explain why λ is an inadequate foundation

• Explain duality of proofs and refutations

• Extract a new foundational PL

• Profit

53

Punchline

We’re already done!

Reading the logical rules constructively gives
us an intrinsically typed programming language

But for simplicity, let’s go sans types...

54

Translation guide

55

Logical judgment Syntactic category Name

Δ ⊩ A true value pattern VPat

Δ ⊩ A false continuation pattern KPat

 A false ∊ Δ continuation variable KVar

 A true ∊ Δ value variable VVar

Γ ⊢ A true value Val

Γ ⊢ A false continuation Kon

Γ ⊢ Δ substitution Sub

Γ ⊢ # computation Cmp

Language #1

from proof patterns...

• if Δ1 ⊩A true and Δ2 ⊩ B true
then Δ1Δ2 ⊩ A∧B true

• if Δ ⊩ A true then Δ ⊩ A∨B true

• if Δ ⊩ B true then Δ ⊩ A∨B true

• A false ⊩ ¬A true

• · ⊩ True true

57

...to value patterns

• if p1 ∊ VPat and p2 ∊ VPat
then (p1, p2) ∊ VPat

• if p ∊ VPat then inl p ∊ VPat

• if p ∊ VPat then inr p ∊ VPat

• if k ∊ KVar then k ∊ VPat

• () ∊ VPat

58

e.g.,

59

¬A∧(¬B∨¬C) true
¬A true ¬B∨¬C true
A false ¬B true

B false

(k1, inl k2) ↦

from logic...

60

• Γ ⊢ A true iff Δ ⊩ A true and Γ ⊢ Δ

• Γ ⊢ Δ iff A false ∊ Δ implies Γ ⊢ A false

• Γ ⊢ A false iff Δ ⊩ A true implies Γ, Δ ⊢ #

• Γ ⊢ # iff A false ∊ Γ and Γ ⊢ A true

...to language

61

• Val = VPat ⨉ Sub

• Sub = KVar → Kon

• Kon = VPat → Cmp

• Cmp = KVar ⨉ Val

...to language

62

• Val = VPat ⨉ Sub

• Sub = KVar → Kon

• Kon = VPat → Cmp

• Cmp = KVar ⨉ Val

Is that really a language?

Yes, trust me.

64

Like λ, it is minimalistic, but unlike λ it...

• has inherent support for products, sums,
and pattern-matching

• inherently enforces call-by-value

(NB: can think of image of CBV CPS transform)

Yes, trust me.

64

Like λ, it is minimalistic, but unlike λ it...

• has inherent support for products, sums,
and pattern-matching

• inherently enforces call-by-value

(NB: can think of image of CBV CPS transform)

...What about CBN?

Language #2

you know the drill...

from refutation patterns...

67

• if Δ ⊩ A false then Δ ⊩ A∧B false

• if Δ ⊩ B false then Δ ⊩ A∧B false

• if Δ1 ⊩A false and Δ2 ⊩ B false
then Δ1Δ2 ⊩ A∨B false

• A true ⊩ ¬A false

• · ⊩ False false

...to continuation patterns

• if d ∊ KPat then fst d ∊ KPat

• if d ∊ KPat then snd d ∊ KPat

• if d1 ∊ KPat and d2 ∊ KPat
then [d1, d2] ∊ KPat

• if x ∊ VVar then x ∊ KPat

• [] ∊ KPat

68

okay so continuation
patterns are a little weird...

from logic...

70

• Γ ⊢ A false iff Δ ⊩ A false and Γ ⊢ Δ

• Γ ⊢ Δ iff A true ∊ Δ implies Γ ⊢ A true

• Γ ⊢ A true iff Δ ⊩ A false implies Γ, Δ ⊢ #

• Γ ⊢ # iff A true ∊ Γ and Γ ⊢ A false

...to language

71

• Kon = KPat ⨉ Sub

• Sub = VVar → Val

• Val = KPat → Cmp

• Cmp = VVar ⨉ Kon

...to language

72

• Kon = KPat ⨉ Sub

• Sub = VVar → Val

• Val = KPat → Cmp

• Cmp = VVar ⨉ Kon

Recap

the CBV square

Val = VPat ⨯ Sub Kon = VPat → Cmp

Sub = KVar → Kon Cmp = KVar ⨯ Val

74

the CBN square

Val = KPat → Cmp Kon = KPat ⨯ Sub

Sub = VVar → Val Cmp = VVar ⨯ Kon

75

CBV-CBN duality

Val⁺ = VPat ⨯ ... Kon⁺ = VPat → ...

Val⁻ = KPat → ... Kon⁻ = KPat ⨯ ...

76

Talk outline

• The proofs-as-programs analogy

• Explain why λ is an inadequate foundation

• Explain duality of proofs and refutations

• Extract a new foundational PL

• Profit

77

Where are we?

78

• A Curry-Howard explanation of pattern-
matching and evaluation order [POPL’08]

• The ability to mix CBV and CBN [APAL]

• A better understanding of the Twelf-Coq
(love-hate) relationship [LICS ’08, with Dan
Licata and Bob Harper]

• A guide to developing refinement type systems
[draft paper on website...and hopefully, thesis!]

Where are we going?

79

• A systematic method for deriving practical
programming languages via proof theory?

• Practical uses of duality in programming?

• Topological interpretation?

• Linguistic applications?

80

Thank you

ML in ML

type var = string
datatype pat = Pair of pat*pat | Unit

 | Inl of pat | Inr of pat
 | KVar of var

datatype vlu = Vlu of pat * sub
 and kon = Kon of pat -> cmp
 and sub = Sub of var -> kon
 and cmp = Cmp of var * vlu

81

