# Walking the way of duality (to programming corner) 

Noam Zeilberger
October IOth, 2008

# A remarkable analogy 

Proving is like programming

## A remarkable analogy

Proving is like programming


## A remarkable analogy

Proving is like programming


## A remarkable analogy

## Proving is like programming



```
'ExplodeGorilla:
' Causes gorilla explosion when a
'Parameters:
' X#, Y# - shot location
FUNCTION ExplodeGorilla (x#, y#)
    YAdj = Scl(12)
    XAdj = Scl(5)
    SclX# = ScrWidth / 320
    SclY# = ScrHeight / 200
    IF x# < ScrWidth / 2 THEN PlayerH:
    PLAY "MBOOL16EFGEFDC"
    FOR i = 1 TO 8 * SclX#
        CIRCLE (GorillaX(PlayerHit) + 3
SclY# + YAdj), i, ExplosionColor,
            LINE (GorillaX(PlayerHit) + 7 *
(GorillaX(PlayerHit), GorillaY(Play
    NEXT i
    FOR i = 1 TO 16 * SclX#
```


# A good analogy is like a diagonal frog —Kai Krause 

## The analogy is suggestive...

...to programmers/PL designers it suggests:

- new programming techniques
- new ways of understanding old languages
- ...ideas for organizing new languages
...to mathematicians/proof theorists it suggests:
- ways of mechanizing mathematics


## The analogy is suggestive...

...to programmers/PL designers it suggests:

- new programming techniques
- new ways of understanding old languages
- ...ideas for organizing new languages

...to mathematicians/proof theorists it suggests:
- ways of mechanizing mathematics


## ...and inspiring...

...to programmers:

## ...and inspiring...

...to programmers:

- I'm not just hacking, I'm proving theorems!


## ...and inspiring...

...to programmers:

- l'm not just hacking, l'm proving theorems! ...to mathematicians:


## ...and inspiring...

...to programmers:

- I'm not just hacking, I'm proving theorems!
...to mathematicians:
- I'm not just philosophizing, I'm writing programs!


## ...and more than an analogy!...

## an isomorphism(s)

## an isomorphism(s)



## an isomorphism(s)



## an isomorphism(s)



## an isomorphism(s)



## an isomorphism(s)



## an isomorphism(s)



## an isomorphism(s)



## an isomorphism(s)



## an isomorphism(s)



# The foundation of functional programming 

$N D \cong \lambda$

## The foundation of functional programming

... ML
Lisp Haskell


## A shaky foundation!

Purely applicative languages are often said to be based on a logical system called the lambda calculus, or even to be "syntactically sugared" versions of the lambda calculus.... However, as we will see, although an unsugared applicative language is syntactically equivalent to the lambda calculus, there is a subtle semantic difference. Essentially, the "real" lambda calculus implies a different "order of application"...than most applicative programming languages. -John Reynolds

Purely-applicative languages are often said to be based on a logical system called the lambda calculus, or even to be "syntactically sugared" versions of the lambda calculus.... However, as we will see, although an unsugared applicative language is syntactically equivalent to the lambda calculus, there is a subtle semantic difference. Essentially, the "real" lambda calculus implies a different "order of application"...than most applicative programming languages. -John Reynolds

## My work

Proposes an alternative foundation

- ...for real-world functional PLs
- with programs-as-proofs isomorphism
...based on duality
- duality between proofs and refutations
- duality between values and continuations


## My message

There are deep mathematical symmetries...

- within languages like ML and Haskell
- between languages like ML and Haskell
- revealed by examining patterns

Duality is like a diagonal frog square

## Talk outline

- The proofs-as-programs analogy
- Explain why $\lambda$ is an inadequate foundation
- Explain duality of proofs and refutations
- Extract a new foundational PL
- Profit


## The trouble with $\lambda$

# The foundation of functional programming 

... ML Lisp Haskell


## arith.sml

datatype nat = Z | S of nat
fun plus $\mathrm{Z} \mathrm{n}=\mathrm{n}$
| plus (S m) $\mathrm{n}=\mathrm{S}$ (plus m n)
fun times $Z n=Z$
| times (S m) $\mathrm{n}=$ plus n (times m n )

## arith.hs

data Nat = Z | S (Nat)
plus Z $n=n$
plus ( S m ) $\mathrm{n}=\mathrm{S}$ (plus m n )
times $\mathrm{Z} n=\mathrm{Z}$
times (S m) $\mathrm{n}=$ plus n (times m n )

Standard ML of New Jersey v1 10.67

- use "arith.sml";
[opening arith.sml]
- val two = S (S Z);
- val three = S two;
- times two three;

Standard ML of New Jersey v1 10.67

- use "arith.sml";
[opening arith.sml]
- val two = S (S Z);
- val three = S two;
- times two three;
val it = S (S (S (S (S (S Z))))) : nat

GHCi, version 6.8.3
Prelude> :load arith
Ok, modules loaded: Main.
*Main> let two = S (S Z)
*Main> let three $=S$ two
*Main> times two three
S (S (S (S (S (S Z)) ) )

- fun infinity () = S(infinity ())
- fun infinity () = S(infinity ())
- times Z (infinity());
- fun infinity () = S(infinity ())
- times Z (infinity());
$\wedge$ CInterrupt


## *Main> let infinity = S(infinity)

*Main> let infinity $=S$ (infinity)
*Main> times Z infinity
Z

## Evaluation order

## ML <br> call-by-value

Haskell
call-by-name

## Evaluation order

## ML <br> call-by-value

## Haskell

call-by-name
$\lambda$
undecided

Pupely applicative languages are often said to be based oh a logical system called the lambda calculus, or even to be "syntactically sugared" versions of the Tambda calculus.... However, as we will see, although an unsugared applicative language is syntactically equivalent to the lambda calculus, there is a subtle semantic difference. Essentially, the "real" lambda calculus implies a different "order of application"...than most applicative programming languages. -John Reynolds

# Syntax and semantics are not independent! 

A type system syntactically guarantees semantic properties ("well-typed programs don't go wrong')
...as a type system gets more precise, it must take evaluation order into account.

## "ML with callcc is unsound"

Safety violation in SML/NJ, discovered in '91
Bad interaction polymorphism $\leftrightarrow$ effects
Stopgap measure: a value restriction
ML needs one
Haskell does not

# Why didn't you warn us, $\lambda$ ? 

$\lambda$ tells us nothing about typing with effects
But we need guidance in developing...

- union and intersection types
- dependent types
- module systems
- ...the languages of the future

And now for something different (but actually the same)

## Talk outline

- The proofs-as-programs analogy
- Explain why $\lambda$ is an inadequate foundation
- Explain duality of proofs and refutations
- Extract a new foundational PL
- Profit


## a proof-biased logic

Once we have understood how to discover individual patterns which are alive, we may then make a language for ourselves, for any building task we face.

-Christopher Alexander

## proof patterns

## Describe how to prove a proposition

## proof patterns

## Describe how to prove a proposition

- "to prove $A \wedge B$, prove both $A$ and $B$ "


## proof patterns

## Describe how to prove a proposition

- "to prove $A \wedge B$, prove both $A$ and $B$ "
- "to prove $A \vee B$, prove either $A$ or $B$ "


## proof patterns

## Describe how to prove a proposition

- "to prove $A \wedge B$, prove both $A$ and $B$ "
- "to prove $A \vee B$, prove either $A$ or $B$ "
- "to prove $\neg A$, refute $A$ "


## proof patterns

## Describe how to prove a proposition

- "to prove $A \wedge B$, prove both $A$ and $B$ "
- "to prove $A \vee B$, prove either $A$ or $B$ "
- "to prove $\neg A$, refute $A$ "
- "to prove True, done!"


## proof patterns

## Describe how to prove a proposition

- "to prove $A \wedge B$, prove both $A$ and $B$ "
- "to prove $A \vee B$, prove either $A$ or $B$ "
- "to prove $\neg A$, refute $A$ "
- "to prove True, done!"
- "to prove False, no way."


## the pattern is holey

A proof pattern gives us the outline of a proof, but leaves holes for refutations

## the pattern is holey

A proof pattern gives us the outline of a proof, but leaves holes for refutations
$\neg A \wedge(\neg B \vee \neg C)$ true

## the pattern is holey

A proof pattern gives us the outline of a proof, but leaves holes for refutations


## the pattern is holey

A proof pattern gives us the outline of a proof, but leaves holes for refutations


## the pattern is holey

A proof pattern gives us the outline of a proof, but leaves holes for refutations
$\frac{\frac{A \text { false }}{\neg A \text { true }} \frac{\neg B \text { true }}{\neg B \vee \neg C \text { true }}}{\neg A \wedge(\neg B \vee \neg C) \text { true }}$

## the pattern is holey

A proof pattern gives us the outline of a proof, but leaves holes for refutations

$$
\begin{array}{cc}
\frac{A \text { false }}{\neg A \text { true }} & \frac{B \text { false }}{\neg B \text { true }} \\
\neg A \wedge(\neg B \vee \neg C) \text { true }
\end{array}
$$

## notation

## A, false, ..., $A_{n}$ false $\Vdash$ A true

There is a proof pattern for $A$, leaving holes for refutations of $A_{1} . . . A_{n}$

## notation



There is a proof pattern for $A$, leaving holes for refutations of $A_{1} . . . A_{n}$

## pattern axioms

- if $\Delta_{1} \Vdash A$ true and $\Delta_{2} \Vdash B$ true then $\Delta_{1} \Delta_{2} \Vdash A \wedge B$ true
- if $\Delta \Vdash A$ true then $\Delta \Vdash A \vee B$ true
- if $\Delta \Vdash B$ true then $\Delta \Vdash A \vee B$ true
- A false $\Vdash \neg$ A true
- • $\Vdash$ True true


# proofs and refutations, informally... 

To prove $A$, find a proof pattern for $A$ and fill in its holes.

To refutate $A$, consider every proof pattern for $A$ and show that its holes can't be filled.

## formal system

- 「トA true iff $\Delta \Vdash A$ true and
$\Gamma \vdash \Delta$


## formal system

- 「トA true iff $\Delta \Vdash A$ true and $\quad \Gamma \vdash \Delta$
- $\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false


## formal system

－「 $\vdash A$ true iff $\Delta \Vdash A$ true and $\Gamma \vdash \Delta$
－$\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
－「トA false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$

## formal system

－「 $\vdash A$ true iff $\Delta \Vdash A$ true and $\Gamma \vdash \Delta$
－$\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
－「トA false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$
－$\Gamma \vdash \#$ iff $A$ false $\in \Gamma$ and $\Gamma \vdash A$ true

## a square of dualities

- $\Gamma \vdash A$ true iff $\Delta \Vdash A$ true and $\Gamma \vdash \Delta$
- $\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
- ГトA false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$
- $\Gamma \vdash \#$ iff $A$ false $\in \Gamma$ and $\Gamma \vdash A$ true


## a square of dualities

- $\Gamma \vdash A$ true iff $\Delta \Vdash A$ true and $\quad \Gamma \vdash \Delta$
- $\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
- ГトA false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$
- $\Gamma \vdash \# \quad$ iff $A$ false $\in \Gamma$ and $\Gamma \vdash A$ true


## a square of dualities

- $\Gamma \vdash A$ true iff $\Delta \Vdash A$ true and $\Gamma \vdash \Delta$
- $\Gamma \vdash \Delta$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
- $\Gamma \vdash A$ false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$
- $\Gamma \vdash \#$ iff $A$ false $\in \Gamma$ and $\Gamma \vdash A$ true


## a square of dualities

- $\Gamma \vdash A$ true iff $\Delta \Vdash A$ true and $\Gamma \vdash \Delta$
- $\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
- ГトA false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$
- $\Gamma \vdash \# \quad$ iff $A$ false $\in \Gamma$ and $\Gamma \vdash A$ true


## a square of dualities

- $\Gamma \vdash A$ true iff $\Delta \Vdash A$ true and $\quad \Gamma \vdash \Delta$
- $\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
- ГトA false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$
- $\Gamma \vdash \#$ iff $A$ false $\in \Gamma$ and $\Gamma \vdash A$ true


## Duality, dualized

So much time and so little to do. Wait a minute. Strike that. Reverse it.

—Willy Wonka

## a refutation-biased logic

## refutation patterns

## Describe how to refute a proposition

## refutation patterns

## Describe how to refute a proposition

 - "to refute $A \wedge B$, refute either $A$ or $B$ "
## refutation patterns

## Describe how to refute a proposition

- "to refute $A \wedge B$, refute either $A$ or $B$ "
- "to refute $A \vee B$, refute both $A$ and $B$ "


## refutation patterns

## Describe how to refute a proposition

- "to refute $A \wedge B$, refute either $A$ or $B$ "
- "to refute $A \vee B$, refute both $A$ and $B$ "
- "to refute $\neg A$, prove $A$ "


## refutation patterns

## Describe how to refute a proposition

- "to refute $A \wedge B$, refute either $A$ or $B$ "
- "to refute $A \vee B$, refute both $A$ and $B$ "
- "to refute $\neg A$, prove $A$ "
- "to refute True, tough luck."


## refutation patterns

## Describe how to refute a proposition

- "to refute $A \wedge B$, refute either $A$ or $B$ "
- "to refute $A \vee B$, refute both $A$ and $B$ "
- "to refute $\neg A$, prove $A$ "
- "to refute True, tough luck."
- "to refute False, just did."


## notation



There is a refutation pattern for $A$, leaving holes for proofs of $A_{1} \ldots A_{n}$

## pattern axioms

- if $\Delta \Vdash A$ false then $\Delta \Vdash A \wedge B$ false
- if $\Delta \Vdash B$ false then $\Delta \Vdash A \wedge B$ false
- if $\Delta_{1} \Vdash A$ false and $\Delta_{2} \Vdash B$ false then $\Delta_{1} \Delta_{2} \Vdash A \vee B$ false
- A true $\Vdash \neg$ A false
- . $\Vdash$ False false


# proofs and refutations, informally... 

To refute $A$, find a refutation pattern for $A$ and fill in its holes.

To prove $A$, consider every refutation pattern for $A$ and show that its holes can't be filled.

## formal system

－「 $\vdash A$ true iff $\Delta \Vdash A$ true and $\Gamma \vdash \Delta$
－$\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
－「トA false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$
－$\Gamma \vdash \#$ iff $A$ false $\in \Gamma$ and $\Gamma \vdash A$ true

## strike that，reverse it．．．

－「トA false iff $\Delta \Vdash A$ false and $\quad \Gamma \vdash \Delta$
－$\Gamma \vdash \Delta \quad$ iff $A$ true $\in \Delta$ implies $\Gamma \vdash A$ true
－「トA true iff $\Delta \Vdash A$ false implies $\Gamma, \Delta \vdash \#$
－$\Gamma \vdash \#$ iff $A$ true $\in \Gamma$ and $\Gamma \vdash A$ false

## Square of Opposition



## Square of Opposition



So what does this have to do with programming?

## Talk outline

- The proofs-as-programs analogy
- Explain why $\lambda$ is an inadequate foundation
- Explain duality of proofs and refutations
- Extract a new foundational PL
- Profit


## Punchline

We're already done!
Reading the logical rules constructively gives us an intrinsically typed programming language But for simplicity, let's go sans types...

## Translation guide

| Logical judgment | Syntactic category | Name |
| :---: | :---: | :---: |
| $\Delta \Vdash A$ true | value pattern | VPat |
| $\Delta \Vdash A$ false | continuation pattern | KPat |
| A false $\in \Delta$ | continuation variable | KVar |
| A true $\in \Delta$ | value variable | VVar |
| $\Gamma \vdash A$ true | value | Val |
| Г $\vdash$ A false | continuation | Kon |
| $\Gamma \vdash \Delta$ | substitution | Sub |
| $\Gamma \vdash \#$ | computation | Cmp |

## Language \#I

## from proof patterns...

- if $\Delta_{1} \Vdash A$ true and $\Delta_{2} \Vdash B$ true then $\Delta_{1} \Delta_{2} \Vdash A \wedge B$ true
- if $\Delta \Vdash A$ true then $\Delta \Vdash A \vee B$ true
- if $\Delta \Vdash B$ true then $\Delta \Vdash A \vee B$ true
- A false $\Vdash \neg$ A true
- • $\Vdash$ True true


## ...to value patterns

- if $p_{1} \in$ VPat and $p_{2} \in$ VPat then $\left(p_{1}, p_{2}\right) \in$ VPat
- if $p \in$ VPat then inl $p \in$ VPat
- if $p \in$ VPat then inr $p \in$ VPat
- if $k \in K$ Var then $k \in$ VPat
- () $\in$ VPat
e.g.,

$$
\frac{\frac{A \text { false }}{\neg A \text { true }} \quad \frac{\frac{B \text { false }}{\neg B \text { true }}}{\neg B \vee \neg C \text { true }}}{\neg A \wedge(\neg B \vee \neg C) \text { true }} \quad \mapsto \quad\left(k_{1}\right. \text {, inl kr) }
$$

## from logic...

- $\Gamma \vdash A$ true iff $\Delta \Vdash A$ true and $\Gamma \vdash \Delta$
- $\Gamma \vdash \Delta \quad$ iff $A$ false $\in \Delta$ implies $\Gamma \vdash A$ false
- $\Gamma \vdash A$ false iff $\Delta \Vdash A$ true implies $\Gamma, \Delta \vdash \#$
- $\Gamma \vdash \#$ iff $A$ false $\in \Gamma$ and $\Gamma \vdash A$ true


## ...to language

- Val $=$ VPat $\times$ Sub
- Sub $=$ KVar $\rightarrow$ Kon
- Kon $=$ VPat $\rightarrow \mathrm{Cmp}$
$\mathrm{Cmp}=\mathrm{KVar} \times \mathrm{Val}$


## ...to language

- Val $=$ VPat $\times$ Sub
- Sub $=$ KVar $\rightarrow$ Kon
- Kon $=$ VPat $\rightarrow \mathrm{Cmp}$
$\mathrm{Cmp}=\mathrm{KVar} \times \mathrm{Val}$


## Is that really a language?

## Yes, trust me.

Like $\lambda$, it is minimalistic, but unlike $\lambda i t$...

- has inherent support for products, sums, and pattern-matching
- inherently enforces call-by-value
(NB: can think of image of CBV CPS transform)


## Yes, trust me.

Like $\lambda$, it is minimalistic, but unlike $\lambda i t$...

- has inherent support for products, sums, and pattern-matching
- inherently enforces call-by-value
(NB: can think of image of CBV CPS transform)
...What about CBN?


## Language \#2

you know the drill...

## from refutation patterns...

- if $\Delta \Vdash A$ false then $\Delta \Vdash A \wedge B$ false
- if $\Delta \Vdash B$ false then $\Delta \Vdash A \wedge B$ false
- if $\Delta_{1} \Vdash A$ false and $\Delta_{2} \Vdash B$ false then $\Delta_{1} \Delta_{2} \Vdash A \vee B$ false
- A true $\Vdash \neg$ A false
- . $\Vdash$ False false


## ...to continuation patterns

- if $d \in$ KPat then fst $d \in$ KPat
- if $d \in$ KPat then snd $d \in$ KPat
- if $d_{1} \in$ KPat and $d_{2} \in$ KPat then $\left[d_{1}, d_{2}\right] \in K P a t$
- if $x \in V$ Var then $x \in$ KPat
- [] $\in$ KPat


## okay so continuation

 patterns are a little weird...
## from logic...

- 「トA false iff $\Delta \Vdash A$ false and $\quad \Gamma \vdash \Delta$
- $\Gamma \vdash \Delta \quad$ iff $A$ true $\in \Delta$ implies $\Gamma \vdash A$ true
- $\Gamma \vdash A$ true iff $\Delta \Vdash A$ false implies $\Gamma, \Delta \vdash \#$
- $\Gamma \vdash \#$ iff $A$ true $\in \Gamma$ and $\Gamma \vdash A$ false


## ...to language

Kon $=$ KPat $\times$ Sub

- Sub $=$ VVar $\rightarrow$ Val
- Val $=$ KPat $\rightarrow \mathrm{Cmp}$

Cmp $=$ VVar $\times$ Kon

## ...to language

- Kon $=$ KPat $\times$ Sub
- Sub $=$ VVar $\rightarrow$ Val
- Val $=$ KPat $\rightarrow \mathrm{Cmp}$
$\mathrm{Cmp}=\operatorname{VVar} \times$ Kon

Recap

## the $C B V$ square

| Val $=V$ Vat $\times$ Sub | Kon $=V P a t \rightarrow \mathrm{Cmp}$ |
| :---: | :--- |
| Sub $=\mathrm{KVar} \rightarrow \mathrm{Kon}$ | $\mathrm{Cmp}=\mathrm{KVar} \times \mathrm{Val}$ |

## the CBN square

| Val $=\mathrm{KPat} \rightarrow \mathrm{Cmp}$ | $\mathrm{Kon}=\mathrm{KPat} \times \mathrm{Sub}$ |
| :--- | :--- |
| Sub $=\mathrm{VVar} \rightarrow \mathrm{Val}$ | $\mathrm{Cmp}=\mathrm{VVar} \times \mathrm{Kon}$ |

## CBV-CBN duality

| $\mathrm{Val}^{+}=\mathrm{VPat} \times \ldots$ | $\mathrm{Kon}^{+}=\mathrm{VPat} \rightarrow \ldots$ |
| :---: | :---: |
| $\mathrm{Val}^{-}=\mathrm{KPat} \rightarrow \ldots$ | $\mathrm{Kon}^{-}=\mathrm{KPat} \times \ldots$ |

## Talk outline

- The proofs-as-programs analogy
- Explain why $\lambda$ is an inadequate foundation
- Explain duality of proofs and refutations
- Extract a new foundational PL
- Profit


## Where are we?

- A Curry-Howard explanation of patternmatching and evaluation order [POPL'08]
- The ability to mix CBV and CBN [APAL]
- A better understanding of the Twelf-Coq (love-hate) relationship [LICS '08, with Dan Licata and Bob Harper]
- A guide to developing refinement type systems [draft paper on website...and hopefully, thesis!]


## Where are we going?

- A systematic method for deriving practical programming languages via proof theory?
- Practical uses of duality in programming?
- Topological interpretation?
- Linguistic applications?


## Thank you



## ML in ML

type var = string
datatype pat = Pair of pat*pat | Unit
| Inl of pat | Inr of pat
| KVar of var
datatype vlu $=$ Vlu of pat * sub
and $k o n=$ Kon of pat -> cmp
and sub = Sub of var -> kon
and cmp = Cmp of var * vlu

