Walking the way of duality
(to programming corner)

Noam Zeilberger
October |0th, 2008

A remarkable analogy

Proving is like programming

A remarkable analogy

Proving is like programming

A remarkable analogy

Proving is like programming

A remarkable analogy

Proving is like programming

'ExplodeGorilla:
' Causes gorilla explosion when a
'Parameters:
' X#, Y# - shot location
FUNCTION ExplodeGorilla (x#, y#)
YAdj = Scl(12)
XAdj = Scl(5)
SclX# = ScrwWidth / 320
SclY# = ScrHeight / 200
IF x# < ScrWidth / 2 THEN PlayerH
PLAY "MBOOL16EFGEFDC"

FOR i = 1 TO 8 * SclX#
CIRCLE (GorillaX(PlayerHit) + 3
Scly# + YAdj), i, ExplosionColor, ,
LINE (GorillaX(PlayerHit) + 7 *
(GorillaX(PlayerHit), GorillaY(Playe
NEXT 1
FOR i = 1 TO 16 * SclX#

A good analogy is like a diagonal frog
—Kai Krause

The analogy is suggestive...

...to programmers/PL designers it suggests:
®* new programming techniques
* new ways of understanding old languages
e _..ideas for organizing new languages

...to mathematicians/proof theorists it suggests:

* ways of mechanizing mathematics

The analogy is suggestive...

...to programmers/PL designers it suggests:

®* new programming techniques

...and inspiring...

...to programmers:

...and inspiring...

...to programmers:

* I’'m not just hacking, ’'m proving theorems!

...and inspiring...

...t0 programmers:
* I’'m not just hacking, ’'m proving theorems!

...to mathematicians:

...and inspiring...

...to programmers:
* I’'m not just hacking, ’'m proving theorems!
...to mathematicians:

* I’'m not just philosophizing, 'm writing programs!

...ahd more than

an analogy!...

an isomorphism(s)

an isomorphism(s)

an isomorphism(s)

an isomorphism(s)

an isomorphism(s)

an isomorphism(s)

an isomorphism(s)

an isomorphism(s)

isomorphism(s)

an isomorphism(s

»

\ S f
5

¥

The foundation of
functional programming

The foundation of
functional programming

Lisp Haskell

AN

ND = A\

A shaky foundation!

Purely applicative languages are often said to be
based on a logical system called the
lambda calculus, or even to be “syntactically
sugared” versions of the l|lambda calculus....

However, as we will see, although an unsugared
applicative language is syntactically equivalent to the
lambda calculus, there is a subtle semantic
difference. Essentially, the “real” lambda calculus
implies a different “order of application™...than most

applicative programming languages. —john Reynolds

felyS@pplicative languages are often said to be
d'on a logical system called the
calculus, or even to be “syntactically

. sug ' versions of the lambda calculus....

R
AR -

| -

i (e p
<v.J,¢gJ?r’“
b VYRS
i

‘However, as we will see, although an unsugared

applicative language is syntactically equivalent to the
lambda calculus, there is a subtle semantic
difference. Essentially, the “real” lambda calculus

implies a different “order of application™...than most
applicative programming languages. —john Reynolds

My work

Proposes an alternative foundation

® . .for real-world functional PLs

® with programs-as-proofs isomorphism
...based on duality

® duality between proofs and refutations

® duality between values and continuations

My message

There are deep mathematical symmetries...
® within languages like ML and Haskell
® between languages like ML and Haskell

® revealed by examining patterns

Duality is like a diagenalfreg square

Talk outline

Explain why A is an inadequate foundation
Explain duality of proofs and refutations

Extract a new foundational PL

Profit

The trouble with A

The foundation of
functional programming

Haskell

-

arith.sml

datatype nat =7 | S of nat
fun plusZ nNn=n
| plus (SmM) n=3 (plus M n)
fun timesZn =1/
| times (S m) n = plus n (times m n)

arith.hs

data Nat =7 | S (Naf)
plusZnNn=n

plus (SmMm) n=S (plus m n)
times/Zn=17

fimes (S m) n = plus n (fimes m n)

Standard ML of New Jersey v110.67
- use "arith.sml’;

[opening arith.sml]
-valtwo =3 (S Z);
- val three = S two;
- fimes two three;

Standard ML of New Jersey v110.67
- use "arith.sml’;

[opening arith.sml]

-valtwo =3 (S Z);

- val three = § two;

- fimes two three;

valit =S (S (S (S (S (S Z))))) : nat

GHCI, version 6.8.3
Prelude> :load arith

Ok, modules loaded: Main.

*Mal

*Mail
*Mal

N> let two =3 (S 7)
N> let three = S two

N> times two three

SIS SIS)N

- fun infinity() = S(infinity())

- fun infinity() = S(infinity())
- tfimes Z (infinity());

- fun infinity() = S(infinity())
- tfimes Z (infinity());
AClInterrupt

*Main> let infinity = S(infinity)

et infinity = S(infinity)
mes Z infinity

Evaluation order

ML Haskell

call-by-value call-by-name

Evaluation order

ML Haskell

call-by-value call-by-name

A

undecided

lyS@pplicative languages are often said to be
@ oh a logical system called the lambda calculus,
to be “syntactically sugared” versions of the
alculus.... However, as we will see,

a tﬁough an unsugared applicative
language is syntactically equivalent to the
lambda calculus, there is a subtle semantic
difference. Essentially, the “real” lambda calculus
implies a different “order of application™...than most
applicative programming languages.

—John Reynolds

Syntax and semantics
are not independent!

A type system syntactically guarantees

semantic properties (“‘well-typed programs
don’t go wrong”)

...aS a type system gets more precise, it must
take evaluation order into account.

“ML with callcc is unsound”

Safety violation in SML/NJ, discovered in ‘91
Bad interaction polymorphism < effects
Stopgap measure: a value restriction

ML needs one

Haskell does not

Why didn’t you warn us, \?

A tells us nothing about typing with effects
But we need guidance in developing...

* union and intersection types

* dependent types

* module systems

e ...the languages of the future

26

And now for

something different
(but actually the same)

Talk outline

® Explain duality of proofs and refutations

a proof-biased logic

Once we have understood how to discover individual
patterns which are alive, we may then make a

language for ourselves, for any building task we face.

—Christopher Alexander

proof patterns

Describe how to prove a proposition

proof patterns

Describe how to prove a proposition

® “to prove AAB, prove both A and B”

proof patterns

Describe how to prove a proposition

® “to prove AAB, prove both A and B”

® “to prove AvB, prove either A or B”

proof patterns

Describe how to prove a proposition

“to prove AAB, prove both A and B”
“to prove AVB, prove either A or B”

“to prove A, refute A”

proof patterns

Describe how to prove a proposition

“to prove AAB, prove both A and B”
“to prove AVB, prove either A or B”

“to prove A, refute A”

“to prove True, done!”

proof patterns

Describe how to prove a proposition

“to prove AAB, prove both A and B”
“to prove AVB, prove either A or B”

“to prove A, refute A”
“to prove True, done!”

“to prove False, no way.”

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

“AA(1Bv-C) true

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

-A true -Bv-C true
“AA(1Bv-C) true

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

A false

-A true -Bv-C true
“AA(1Bv-C) true

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

A false -B true

-A true -Bv-C true
“AA(1Bv-C) true

the pattern is holey

A proof pattern gives us the outline of a
proof, but leaves holes for refutations

B false
A false -B true

-A true -Bv-C true
“AA(1Bv-C) true

notation

Ai false, ..., A. false I+ A true

There is a proof pattern for A, leaving holes for
refutations of A ... A

notation

Ai false, ..., A. false I+ A true

sl
A

There is a proof pattern for A, leaving holes for
refutations of A ... A

pattern axioms

if A/ IFA true and A I+ B true
then A/A\; I AAB true

if A I-A true then A I AvB true

if A I+ B true then A I- AvB true

A false I+ —A true

- |+ True true

proofs and refutations,
informally...

To prove A, find a proof pattern for A and fill
in its holes.

To refutate A, consider every proof pattern
for A and show that its holes can’t be filled.

formal system

® [—Atrue iff A I-A true and [- A

formal system

® [- Atrue iff AI-A true and [- A
o [A iff A false € A implies [- A false

formal system

® [—Atrue iff AI-A true and [- A
o [A iff A false € A implies [- A false
® [A false iff AI-Atrue implies A+ #

formal system

[= Atrue iff AI-A true and [- A

[- A iff A false € A implies [- A false
[A false iff A I-A true implies [,A - #
[- # iff Afalse e[and [A true

a square of dualities

[= Atrue iff AI-A true and [- A

[- A iff A false € A implies [- A false
[A false iff A I-A true implies [,A - #
[- # iff Afalse e[and [A true

a square of dualities

[—Atrue iff AI-A true and [- A

[- A iff A false € A implies [- A false
[A false iff A I-A true implies [,A - #
[- # iff Afalse e[and [A true

a square of dualities

[= Atrue iff AI-A true and [- A

[- A iff A false ¢ A implies [- A false
[A false iff A I-A true implies [,A - #
[- # iff Afalse <[and [— A true

a square of dualities

[- A true iff AI-A true and [- A

[- A iff A false < A implies I - A false
[A false iff A - A true implies [,A - #
[- # iff Afalse e[and [A true

a square of dualities

[—Atrue iff A A true and [- A

[- A iff A false € A implies [- A false
[A false iff A I-A true implies [,A - #
[- # iff Afalse <[and [— A true

Duality, dualized

So much time and so little to do. Wait a minute.
Strike that. Reverse it.

—Willy Wonka

a refutation-biased logic

refutation patterns

Describe how to refute a proposition

refutation patterns

Describe how to refute a proposition

® “to refute AAB, refute either A or B”

refutation patterns

Describe how to refute a proposition

® “to refute AAB, refute either A or B”

® “to refute AvB, refute both A and B”

refutation patterns

Describe how to refute a proposition

“to refute AAB, refute either A or B”
“to refute AvB, refute both A and B”

“to refute -A, prove A”

refutation patterns

Describe how to refute a proposition

“to refute AAB, refute either A or B”
“to refute AvB, refute both A and B”

“to refute -A, prove A”

“to refute True, tough luck.”

refutation patterns

Describe how to refute a proposition

“to refute AAB, refute either A or B”
“to refute AvB, refute both A and B”

“to refute -A, prove A”
“to refute True, tough luck.”

“to refute False, just did.”

notation

Al true, .., A. true |- A false

sl
A

There is a refutation pattern for A, leaving holes for
broofs of Ai ... A

pattern axioms

if A I A false then A I+ AAB false
if A |- B false then A I AAB false

if A/ IFA false and A: I+ B false
then A/A: I AvB false

A true I+ —A false

- |+ False false

proofs and refutations,
informally...

To refute A, find a refutation pattern for A
and fill in its holes.

To prove A, consider every refutation pattern
for A and show that its holes can’t be filled.

formal system

[= Atrue iff AI-A true and [- A

[- A iff A false € A implies [- A false
[A false iff A I-A true implies [,A - #
[- # iff Afalse e[and [A true

strike that, reverse it...

[— A false iff A I A false and [= A

[- A iff Atrue e A implies [A true
[A true iff A I-A false implies [,A - #

[- # iff Atruee | and [— A false

Square of Opposition

Particular
affirmative
SomeSisaP

Universal
affirmative
EverySisaP

Contradictories

Particular
negative
Some Sisnot P

Universal
negative
NoSisaP

Square of Opposition

So what does this have

to do with programming!?

Talk outline

® FExtract a new foundational PL

Punchline

We're already done!

Reading the logical rules constructively gives
us an intrinsically typbed programming language

But for simplicity, let’s go sans types...

Translation guide

Logical judgment | Syntactic category

A I- A true value pattern

A I+ A false continuation pattern
A false € A continuation variable

value variable

continuation

substitution

computation

Language #|

from proof patterns...

if A/ IFA true and A I+ B true
then A/A\; I AAB true

if A I-A true then A I AvB true

if A I+ B true then A I- AvB true

A false I+ —A true

- |+ True true

...to value patterns

if b € VPat and p: € VPat
then (p, p2) € VPat

if p € VPat then inl p < VPat
if p € VPat then inr p € VPat
if k ¢ KVar then k € VPat

() € VPat

e.g.,

B false
A false -B true

=-A true -Bv~C true
“AA(1Bv-C) true

from logic...

[= Atrue iff AI-A true and [- A

[- A iff A false € A implies [- A false
[A false iff A I-A true implies [,A - #
[- # iff Afalse e[and [A true

...to language

VPat x Sub

KVar & Kon
VPat =& Cmp
KVar x Val

...to language

VPat x Sub

KVar & Kon
VPat = Cmp
KVar x Val

s that really a language!

Yes, trust me.

Like A, it is minimalistic, but unlike A it...

* has inherent support for products, sums,
and pattern-matching

* inherently enforces call-by-value

(NB: can think of image of CBV CPS transform)

Yes, trust me.

Like A, it is minimalistic, but unlike A it...

* has inherent support for products, sums,
and pattern-matching

* inherently enforces call-by-value

(NB: can think of image of CBV CPS transform)
...YWhat about CBN!?

Language #2

you know the drill...

from refutation patterns...

if A I A false then A I+ AAB false
if A |- B false then A I AAB false

if A/ IFA false and A: I+ B false
then A/A: I AvB false

A true I+ A false

- |+ False false

...to continuation patterns

® if d e KPat then fst d € KPat
if d e KPat then snd d € KPat

if d € KPat and d: € KPat
then [d/, dz] e KPat

if x e VVar then x € KPat
[] € KPat

okay so continuation

patterns are a little weird...

from logic...

[— A false iff A I A false and [= A

[- A iff Atrue e A implies [A true
[A true iff A I-A false implies [,A - #

[- # iff Atruee | and [— A false

...to language

KPat x Sub

VVar — Val
KPat =& Cmp
VVar x Kon

...to language

X Sub
VVar — Val
— Cmp
VVar x Kon

Recap

the CBYV square

Val = VPat x Sub

Kon = VPat = Cmp

Sub = KVar = Kon

Cmp = KVar x Val

the CBN square

Val = — Cmp

Sub = VVar — Val

Cmp = VVar x Kon

CBV-CBN duality

Val™ = VPat x ...

Kon® = VPat — ...

Val =

Talk outline

® Profit

Where are we!

® A Curry-Howard explanation of pattern-
matching and evaluation order [POPL08]

® The ability to mix CBV and CBN [APAL]

® A better understanding of the Twelf-Coqg
(love-hate) relationship [LICS '08, with Dan
Licata and Bob Harper]

® A guide to developing refinement type systems
[draft paper on website...and hopefully, thesis!]

78

Where are we going?

A systematic method for deriving practical
programming languages via proof theory!?

Practical uses of duality in programming!?
Topological interpretation!?

Linguistic applications?

Thank you

ML in ML

type var = string
datatype pat = Pair of pat*pat | Unit

Inl of pat | Inr of pat
KVar of var

datatype vilu = Vlu of pat * sub

a
a

a

nd kon = Kon of pat -> cmp
nd sub = Sub of var -> kon

nd cmp = Cmp of var * viu

