
How to be an effective profiler:
A 15-745 Project

Katrina Ligett and Noam Zeilberger∗

May 15, 2006

1 Introduction

Many compiler optimizations are prevented by the possibility of side-effects in code.
For example, dead-code elimination may only be performed if it is known that the elim-
inated code has no side-effects and does not loop, while partial redundancy elimination
is only sound if the reused value could not have depended on intervening instructions.
To deal with this problem, many compilers take a very conservative approach—for
instance, all function calls are assumed to be effectful, and therefore will not be elimi-
nated as dead-code nor their results reused. Other compilers may attempt a static effect
analysis [3] [6]. However, static effect analysis is complicated for several reasons. For
one, it depends on solving other hard problems, such as pointer aliasing and program
termination. Additionally, it is often difficult to distinguish between real effects and
“benign” effects (such as caching) which do not modify the input/output behavior of
the program (though may affect performance).

Our project began with the observation that if no effects are raised during a func-
tion call on a particular set of inputs, then that function willalwaysbe effect-free on
those inputs—by definition its behavior on that domain is deterministic. More gener-
ally as an alternative to complete static effect analysis, one can compute effect profiles
along particular program paths. This greatly simplifies the analysis, for example by
side-stepping the issue of termination. In this paper we describe a technique that com-
bines whole program paths with abstract interpretation to derive refined profiles of the
effectful behavior of a program. These profiles take the form of effects produced by
function calls on a specific execution, given general conditions met at the call sites.

2 Related Work

There is an extensive literature on static effect analysis. Most approaches are based on
flow analysis [3] [6], though there are also approaches based on effect type-systems
[8].

∗(katrina|noam)@cs . The web page for this project is http://www.cs.cmu.edu/ noam/745/

1

pure expression
e ::= x | n | e1 ⊕ e2

propositions
P ::= e1 = e2 | e1 < e2 | . . .
command
c ::= x = e assignment

| x = [e] load
| [e] = e′ store
| assert(P) condition
| call(f(e1, . . . , en), τ) function call

trace
τ ::= · | c · τ

Figure 1: Program traces

Program profiling has a long history, from simple profiling of time spent inside of
functions [5] to recording entire execution paths through a program [7]. The profiling
technique perhaps most related to ours is data breakpointing [12], which keeps track of
whenever a variable is modified. As far as we know, this technique has only been used
for debugging purposes and not for optimization.

3 Effect analysis

3.1 Program traces

The compiler instruments programs to generate traces, whose syntax is given in Figure
1. Every primitive command is logged, along with functional calls/returns and branches
taken at conditional jumps. An efficient technique for doing this is described in [7],
though our prototype compiler uses a simpler, less efficient implementation.

3.2 Interpretation of traces

Our general approach to effect analysis is an abstract interpretation of the program
traces generated by the instrumented code. This allows us to produce a refined analysis
of the effects (memory updates and system calls) produced by each function encoun-
tered in the trace, in terms of conditions on the function inputs that were met during
program execution. This analysis is sound in the sense that whenever a function is
called with inputs satisfying the conditions in a profile, it will only have the effects
specified in that profile. For example, on a given program execution, all calls to a cer-
tain functionf may be pure (i.e. have no effects); the compiler can then optimize calls
to f in the original source code using the information thatf is pure, if it can determine
that these calls satisfy the same conditions as the program trace.

2

abstract value
v ::= n constant

| πi function parameter
| v1 ⊕ v2 operation
| ld(πH , v) memory load
| P ? v1 : v2 conditional value
| > unknown

abstract proposition
P ::= v1 = v2 | v1 < v2 | . . .

abstract heap
H ::= πH heap parameter

| [v1 7→ v2]H assignment
| > unknown heap

Figure 2: Interpretation lattice

We now give a formal description of a simplified version of the abstract interpreta-
tion used in our effect analysis. In this simplified account, we ignore external system
calls, function return results, and the intricacies of L3’s fat pointers—we give some
discussion of those issues in later sections. For our purposes in this section, abstract
interpretation produces for each function call just the heap update performed on that
trace, in terms of the function parameters and input heap.

The interpretation lattice is given in Figure 2. It is mostly straightforward, but the
analysis of pointers deserves some discussion. The state of the heap at the beginning
of a function call is represented by the abstract parameterπH , and a memory load
of locationv from that heap is denoted byld(πH , v). Assignments are dealt with by
treating the heap as a function—a load of addressv in the heap[v1 7→ v2]H, evaluates
to v2 if v = v1, or else to the value determined by the load inH.

Evaluation of a traceτ on an abstract heapH produces a new heapH ′ assuming
that conditionsφ are met. This is represented by the judgmentτ,H ⇓ φ ⊃ H ′, which
is given in Figure 3. Note that on a function call, we generalize the function parameters
and input heap to beπ1, . . . , πn andπH respectively, so as to obtain the most general
profile information for the callee. Given this general profile, we perform a substitution
to obtain the effects in terms of the caller’s parameters and heap.

3.3 Simplifying effect profiles via theorem proving

The conditions generated along an abstract execution in Figure 3 are often redundant in
the sense that they are tautologous given the preceding conditions. For example, sup-
pose that executing the first iteration of a loop generates the condition2 ∗π1 < π2, and
the next iteration generatesπ1 < π2—the second condition is strictly redundant. Sim-
ilarly, symbolic heaps may be overly complicated, if they contain conditional values
P ? v1 : v2 whereP is always valid given the preconditions.

3

·,H ⇓ > ⊃ H

[v/x]τ,H ⇓ φ ⊃ H ′

x = v · τ,H ⇓ φ ⊃ H ′
τ,H ⇓ φ ⊃ H ′

assert(P) · τ,H ⇓ (P ∧ φ) ⊃ H ′

[v′/x]τ,H ⇓ φ ⊃ H ′ v′ = load v H

x = [v] · τ,H ⇓ φ ⊃ H ′
τ, [v1 7→ v2]H ⇓ φ ⊃ H ′

[v1] = v2 · τ,H ⇓ φ ⊃ H ′

σ = [v1/π1] . . . [vn/πn][H/πH]
τf , πH ⇓ φf ⊃ Hf τ, σ(Hf) ⇓ φ ⊃ H ′

call(f(v1, . . . , vn), τf)τ,H ⇓ σ(φf) ∧ φ ⊃ H ′

load v πH = ld(πH , v)
load v ([v1 7→ v2]H) = (v = v1) ? v2 : load v H

Figure 3: Abstract execution

Now, via a relatively straightforward translation we can convert the symbolic propo-
sitions generated by abstract execution into propositions of first-order arithmetic. (The
only trickiness involves converting equations containing conditional values.) We can
then send the resulting first-order propositions to the Coq proof assistant’sOmegatac-
tic to determine whether they are always valid [9] [1]. In our experiments this approach
resulted in significantly simplified effect profiles.

3.4 Fat pointers

In order to provide safe memory operations, L3 uses a special representation for point-
ers called “fat pointers.” A fat pointer consists of a three-word header containing the
base address of a memory block, its size, and an indexing offset. The effective address
of a fat pointer is computed asbase + 4 ∗ offset; the L3 compiler produces code that
checks if the effective address is within bounds of the memory block before performing
a load/store, and produces a run-time error if it is out of bounds. A naive implementa-
tion of the preceding analysis without taking fat pointers into account would result in
many constraints that could not be removed, though they are semantically redundant.
In particular, one can make use of the fact that after the fields of a fat pointer are initial-
ized, they cannot be overwritten. We therefore extend the grammar of symbolic values
with values of the formbase(v), sz(v), andofs(v), denoting loads of these three fields.
These load are not affected by memory updates (though we must take some care to deal
with initialization).

4

3.5 More details

Besides memory updates, L3 programs can also be effectful by invoking system calls.
Our effect profiler simply records all system calls made on an execution. Arbitrary sys-
tem calls can have an arbitrary effect on the heap, so we can only represent the returned
heap as>. However for particular system calls (e.g.alloc), we can encode a more
refined behavior. We can also refine our effect profiles by giving effect/condition pairs
for prefixes along an execution path, rather than only for entire function calls. Finally
our effect analysis takes into account the fact that L3 functions can return results (the
results of external functional calls are> by default).

4 Future work

Several directions for future research are immediate. First we would like to develop
a more practical implementation of the instrumentation phase using techniques from
[7]. This is important because it would allow effect profiling to be studied on real-
world applications. There is also an interesting question of whether effect profiles can
be used as debugging tools by programmers, though in order to realize this we would
have to convert effect profiles to a more human-readable format. On the other hand, we
would also like to explore the use of effect profiles for enabling compiler optimizations
(as other path profiling techniques have been used [2]). Many optimizations could be
enabled with the knowledge that a function is pure on a particular program path—for
example, partial redundancy elimination, dead-code removal, aggressive inlining—but
the practical impact of this is unclear.

The actual effect analysis could be refined, particularly for pointer programs. Since
our analysis treats the heap globally whereas real programs tend to manipulate only
portions of the heap, it could benefit from ideas from separation logic [10] or region
analysis [11]. The approach to separation reasoning in [4] might be immediately useful
since it is also based on a functional representation of the heap. A more speculative
question is whether our analysis could be extended to higher-order programs, where
functions could themselves return effectful functions.

Finally, effect profiling is an interesting combination of a dynamic analysis tech-
nique (whole program path profiling) with a static one (abstract interpretation). Could
this hybrid approach yield useful solutions to other problems?

References

[1] The Coq proof assistant. http://coq.inria.fr/.

[2] Glenn Ammons and James R. Larus. Improving data-flow analysis with path
profiles.SIGPLAN Not., 39(4):568–582, 2004.

[3] John P. Banning. An efficient way to find the side effects of procedure calls and
the aliases of variables. InPOPL ’79: Proceedings of the 6th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 29–41,
New York, NY, USA, 1979. ACM Press.

5

[4] Richard Bornat. Proving pointer programs in hoare logic. InMathematics of
Program Construction, pages 102–126, 2000.

[5] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call
graph execution profiler. InSIGPLAN ’82: Proceedings of the 1982 SIGPLAN
symposium on Compiler construction, pages 120–126, New York, NY, USA,
1982. ACM Press.

[6] William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural modification
side effect analysis with pointer aliasing. InPLDI ’93: Proceedings of the ACM
SIGPLAN 1993 conference on Programming language design and implementa-
tion, pages 56–67, New York, NY, USA, 1993. ACM Press.

[7] James R. Larus. Whole program paths. InProceedings of the SIGPLAN ’99
Conference on Programming Languages Design and Implementation, Atlanta,
GA, May 1999.

[8] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. InPOPL ’88:
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 47–57, New York, NY, USA, 1988. ACM Press.

[9] William Pugh. The omega test: a fast and practical integer programming algo-
rithm for dependence analysis. InSupercomputing ’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing, pages 4–13, New York, NY, USA,
1991. ACM Press.

[10] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Com-
puter Science, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Soci-
ety.

[11] Mads Tofte and Jean-Pierre Talpin. Region-based memory management.Inf.
Comput., 132(2):109–176, 1997.

[12] Robert Wahbe, Steven Lucco, and Susan L. Graham. Practical data breakpoints:
design and implementation.SIGPLAN Not., 28(6):1–12, 1993.

6

