Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision

Chen Liang1, Jonathan Berant2, Quoc Le, Kenneth Forbus, Ni Lao

1Work done while the author was interning at Google
2Work done while the author was a visiting scholar at Google

Semantic Parsing

- **Natural language**
- **Logical form / Program**
- **Desired behavior / Answer**

Question Answering with Freebase (WebQuestionsSP Dataset)

- **Large-scale Knowledge Base**
 - Properties of Hundreds of millions of entities
 - Plus relations among them
- **Previous state-of-the-art**
 - Staged Query Graph Generation (STAGG)
 - Who first voiced Meg on Family Guy3?
 - \(\lambda x. \text{casted} \text{FamilyGuy}(y) \land \text{actor}(x,y) \land \text{character}(y, \text{MegGriffin}) \)

MPC Framework

- **Neural Symbolic Machines with Key-Variable Memory**
- **Key Variable**
- **Execute**
- **Entity Resolver**
- **Non-differentiable Abstract Scalable Neural Computer Interface**

Neural Computer Interface

- **Sampling v.s. Beam Search**
 - Programming is deterministic: closer to a maze than Atari game
 - Uses beam search (final beam with normalized probabilities) to generate training examples

Iterative ML Training

- **Optimize log likelihood of approximate gold programs**
- \(J^{ML}(\theta) = \sum_q \log P(a^{\text{best}}_{0:T}(q)|q,\theta) \)
- **Fast, but suboptimal**
 - Spurious programs: wrong programs that happen to produce the correct answers, e.g.,
 - answering PlaceOfBirth with PlaceOfDeath
 - Lacking negative examples: hard to differentiate related relations, e.g., ParentOf, ChildrenOf, SiblingOf.

Augmented REINFORCE

- **Optimize the expected F1 of generated programs**
- \(J^{RL}(\theta) = \sum_q R_{\theta} \left[P(a_{0:T}|q,\theta) \right] \)
- **Problem**: slow and stuck at local optima
- **Augmentation**: add approximate gold program into final beam with a reasonably large probability

Implementation

- **200 decoders, 50 KB servers, 1 trainer, 251 machines in total**
- **Since the network is small, we didn’t see much speedup from GPU**

Experiments & Analysis

- **New state-of-the-art without manual engineering**

<table>
<thead>
<tr>
<th>Model</th>
<th>Avg. Prec. @1</th>
<th>Avg. Rec. @1</th>
<th>Avg. F1. @1</th>
<th>Acc. @1</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAGG</td>
<td>67.3</td>
<td>73.1</td>
<td>66.8</td>
<td>58.8</td>
</tr>
<tr>
<td>NSM – our model</td>
<td>70.8</td>
<td>76.0</td>
<td>69.0</td>
<td>59.5</td>
</tr>
<tr>
<td>STAGG (full supervision)</td>
<td>70.9</td>
<td>80.3</td>
<td>71.7</td>
<td>63.9</td>
</tr>
</tbody>
</table>

- **Comparison of iterative ML, REINFORCE and augmented REINFORCE**

<table>
<thead>
<tr>
<th>Settings</th>
<th>Train Avg. F1@1</th>
<th>Val Avg. F1@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterative ML only</td>
<td>66.6</td>
<td>47.8</td>
</tr>
<tr>
<td>REINFORCE only</td>
<td>55.1</td>
<td>47.8</td>
</tr>
<tr>
<td>Augmented REINFORCE</td>
<td>58.0</td>
<td>47.2</td>
</tr>
</tbody>
</table>

- **Techniques to reduce overfitting**

<table>
<thead>
<tr>
<th>Settings</th>
<th>(\Delta \text{ Avg. F1@1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pretrained word embeddings</td>
<td>-5.5</td>
</tr>
<tr>
<td>- Pretrained relation embeddings</td>
<td>-2.7</td>
</tr>
<tr>
<td>- Dropout on GRU input and output</td>
<td>-2.4</td>
</tr>
<tr>
<td>- Dropout on softmax</td>
<td>-1.1</td>
</tr>
<tr>
<td>- Anonymize entity tokens</td>
<td>-2.0</td>
</tr>
</tbody>
</table>