Learning Relational Features with Backward Random Walks

Ni Lao. Google Inc., nlao@google.com
Einat Minkov. University of Haifa, einatm@is.haifa.ac.il
William W. Cohen. Carnegie Mellon University, wcohen@cs.cmu.edu

Knowledge Base Inference
Coordinate Term Extraction

Example Inference rules

Knowledge Base Inference
Coordinate Term Extraction

Path Ranking Algorithm

Path-Constrained Random Walks

Distant Supervision

Combine Forward & Backward Random Walks

Algorithms

Algorithm 1: Cor-PRA Feature Induction

Input training queries \{(x_n, G_n)\}_{n=1}^m
for each query (x_n, G_n) do
1. Path exploration
(i.) Apply path finding to generate paths \(P_n\) up to length \(l\) that originate at \(x_n\).
(ii.) Apply path finding to generate paths \(P_n\) up to length \(l\) that terminate at \(x_n\).
2. Calculate random walk probabilities:
 for each \(x_n, \pi \in P_n\) do
 compute \(P(\pi \rightarrow \pi, x_n)\) and \(P(\pi \leftarrow \pi, x_n)\)
 end for
 for each \(x_n, \pi \in P_n\) do
 compute \(P(\pi \rightarrow \pi, x_n)\) and \(P(\pi \leftarrow \pi, x_n)\)
 end for
3. Generate constant path candidates:
 for each \(x_n, \pi \in P_n\) with \(P(\pi \rightarrow \pi, x_n) > 0\) do
 propose path feature \(P(\pi \rightarrow \pi, x_n)\)
 end for
 for each \(x_n, \pi \in P_n\) with \(P(\pi \rightarrow \pi, x_n) > 0\) do
 propose path feature \(P(\pi \rightarrow \pi, x_n)\)
 end for
4. Generate long (concatenated) path candidates:
 for each \(x_n, \pi \in P_n\) with \(P(\pi \rightarrow \pi, x_n) > 0\) do
 propose long path feature \(P(\pi \rightarrow \pi, x_n)\)
 end for
 for each \(x_n, \pi \in P_n\) with \(P(\pi \rightarrow \pi, x_n) > 0\) do
 propose long path feature \(P(\pi \rightarrow \pi, x_n)\)
 end for

Main Results

KB inference
NE extraction

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>MAP</th>
<th></th>
<th>Time</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWR</td>
<td>25.6</td>
<td>0.439</td>
<td>7.375, 0.417</td>
<td>17.9</td>
<td>0.530</td>
</tr>
<tr>
<td>FOIL</td>
<td>1891.8</td>
<td>0.358</td>
<td>366,558, 0.167</td>
<td>369.0</td>
<td>0.556, 0.186</td>
</tr>
<tr>
<td>PRA</td>
<td>10.2</td>
<td>0.477</td>
<td>277, 1.07</td>
<td>589.8</td>
<td>0.550, 0.316</td>
</tr>
<tr>
<td>Cor-PRA-no-const</td>
<td>16.7</td>
<td>0.479</td>
<td>449, 0.167</td>
<td>589.8</td>
<td>0.550, 0.316</td>
</tr>
<tr>
<td>Cor-PRA-consty</td>
<td>23.3</td>
<td>0.524</td>
<td>556, 0.186</td>
<td>589.8</td>
<td>0.550, 0.316</td>
</tr>
<tr>
<td>Cor-PRA-consty</td>
<td>27.1</td>
<td>0.530</td>
<td>643, 0.316</td>
<td>589.8</td>
<td>0.550, 0.316</td>
</tr>
</tbody>
</table>