• Part I Some Linear Algebra
 – Might be useful to HW2 and later courses
Basics

- We will use lower case letters for vectors, and upper case letters from matrixes. There elements are referred by $x_i, A_{i,j}$. Refer A’s column vectors as A_j
- AB
 - still remember what is matrix multiplication?
- $A=A^T$
 - transpose and symmetric matrix
- $a \cdot b = a^Tb, \ a \cdot b = |a|_2$
 - inner product, vectors are also matrixes
- $AA^{-1}=I$
 - Inverse and the identity matrix
- $tr(A)=\text{diag}(A)^T1$
 - trace, and the diagonal of a matrix
Basis and Space

- $\text{span}(x_1, x_2, x_3) = \{a_1x_1 + a_2x_2 + a_3x_3 \mid a_i \in \mathbb{R}\}$
 - the span of a set of vectors is a subspace in the \mathbb{R}^d space, assuming x_i are vectors in \mathbb{R}^d space

- $\text{col}(A) = \{x \mid x = Ab\}$
 - A’s column space is the span of A’s column vectors

- $\text{row}(A) = \{x \mid x = A^T b\}$
 - A’s rows space is the span of A’s rows vectors

- Basis
 - A basis B of a space V is a linearly independent subset of V that spans (or generates) V

- $e_i = (0, 0, \ldots, 1, \ldots, 0)$
 - the standard basis
Unitary Matrix

- If $a \cdot b = 0$, $|a|_2 \neq 0$, $|b|_2 \neq 0$,
 - then a and b are orthogonal

- If n-by-n matrix A, $A^T A = I$
 - then A is an unitary matrix
 - $|A_i|_2 = 1$ for any i
 - and $A_i \cdot A_j = 0$, for $i \neq j$

- If A is unitary, then A^T is also unitary
Rank of a Matrix

• rank(A) (the rank of a m-by-n matrix A) is
 – The maximal number of linearly independent columns
 – The maximal number of linearly independent rows
 – The dimension of col(A)
 – The dimension of row(A)

• If A is n by m, then
 – rank(A) <= \text{min}(m,n)
 – If n=\text{rank}(A), then A has full row rank
 – If m=\text{rank}(A), then A has full column rank
Singular Value Decomposition (SVD)

• Any matrix A can be decomposed as $A = UDV^T$, where
 – where D is diagonal, with $d = \text{rank}(A)$ non-zero elements
 – U and V are unitary matrices
 – The first d rows of U are orthogonal basis for $\text{col}(A)$
 – The first d rows of V are orthogonal basis for $\text{row}(A)$

• Re-interpreting Ab
 – Decompose b by V basis
 – Scale it by $\text{diag}(D)$
 – Then map it to the space spanned by U basis
Eigen Value Decomposition

• Any symmetric matrix A can be decompose as $A=UDU^T$, where
 – where D is diagonal, with $d=\text{rank}(A)$ non-zero elements
 – The first d rows of U are orthogonal basis for $\text{col}(A)=\text{row}(A)$

• Re-interpreting Ab
 – first stretch b along the direction of u_1 by d_1 times
 – Then further stretch it along the direction of u_2 by d_2 times

[Diagram showing vector b transforming through u_1 and u_2]
Inversing a Low Rank Covariance Matrix

- In many applications (e.g. linear regression, Gaussian model) we need to calculate the inverse of covariance matrix $X^TX + \lambda I$
 - where each row of X is a data sample
 - I is an identity matrix for regularization

- If the number of feature is huge (e.g. each sample is an image, #sample $n << \#feature d$)
 - then X is an very wide and short matrix
 - inversing $X^TX + \lambda I$ becomes an problem
 - the complexity of matrix inversion is generally $O(n^3)$
 - Matlab can comfortably solve matrix with $d=$thousand, but not much more than that
Inversing a Low Rank Covariance Matrix

• With the help of SVD, we actually don’t need to explicitly inverse $X^TX + \lambda I$
 – Decompose $X = UDV^T$
 – Then $X^TX + \lambda I = VD U^T U D V^T + \lambda I = V(D^2 + \lambda I) V^T$

 – Since $V(D^2 + \lambda I) V^T V(D^2 + \lambda I)^{-1} V^T = I$
 – We know that $(X^TX + \lambda I)^{-1} = V(D^2 + \lambda I)^{-1} V^T$
 • Inversing a diagonal matrix $D^2 + \lambda I$ is trivial
• Part II Matlab
 – Might be useful to HW2
Matlab

• Very easy to do matrix manipulation in Matlab

• Available for installs by contacting help+@cs.cmu.edu

• If this is your first time using Matlab
 – Strongly suggest you go through the “Getting Started” part of Matlab help
 – Many useful basic syntax
Making Matrix

- \(A=[1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9] \)
- \(A=\text{ones}(m,n) \)
- \(A=\text{zeros}(m,n) \)
- \(A=\text{eye}(n) \)
- \(A=\text{diag}([1 \ 2 \ 3]) \)
Referencing Matrix

- $A(i,j)$
 - reference a single element
- $A(i,:), A(:,j)$
 - reference a whole row/column
- $b=1:3:100; \ A(b,:)$
 - using vector as index
- $b=\text{diag}(A)$
 - reference the diagonal vector
Matrix Manipulation

• $C = A'$;
 – transpose

• $C = A + B; \ D = A \times B;$

• $D = A^3$
 – Equal to $A \times A \times A$

• $x = A \backslash b; \ x = b / A$
 – multiply the inverse of a matrix

• $D = A \times B; \ D = A \div B; \ D = A \backslash B; \ D = A \times \times 3;$
 – Point wise multiplication/division/power
Matrix Decomposition

- $[U, S, V] = \text{svd}(X)$
- $[V, D] = \text{eig}(A)$
• The End
• Thanks