1 AdaBoost [Ni, 30 pt]

1.1 Sequential Optimization [5 pts]

Solutions:

\[E = \sum_{i=1}^{N} (y_i - f_t(x_i))^2 \] \hspace{1cm} (1)

\[= \sum_{i=1}^{N} \{y_i - f_{t-1}(x_i) - \alpha_t h_t(x_i)\}^2 \] \hspace{1cm} (2)

\[= \sum_{i=1}^{N} \{r_i^2 + \alpha_t^2 h_t^2(x_i) - 2r_i \alpha_t h_t(x_i)\} \] , \hspace{1cm} (3)

where \(r_i = y_i - f_{t-1}(x_i) \).

\[\frac{\partial E}{\partial \alpha_t} = 2 \sum_{i=1}^{N} \{\alpha_t h_t^2(x_i) - r_i h_t(x_i)\} \] \hspace{1cm} (4)

Therefore, \(\alpha_t = \frac{\sum_{i=1}^{N} r_i h_t(x_i)}{\sum_{i=1}^{N} h_t^2(x_i)} = \frac{1}{N} \sum_{i=1}^{N} r_i h_t(x_i) \)

1.2 [5 pts]

Yes it will always get zero training error, and the minimum number of weak classifier is 2.

1.3 About Margin[5 pts]

see lecture slides

1.4 [5 pts]

“Margin” means non-zero penalty even when a sample is correctly classified (inside the margin).

All three learners have it. Logistic regression and Adaboost have infinitely wide margin.

1.5 Overfitting [5 pts]

The test error curve should first go down then go up.
1.6 [5 pts]

- use log loss instead of exp loss
- restrict the number of weak classifiers.
- cross validation
- etc