Automated Assume-Guarantee Reasoning for
Simulation Conformance

Sagar Chaki, Edmund Clarke, Nishant Sinha, Prasanna Thati

chaki @ei . cmu. edu {ent, ni shants, thati }@s. cnu. edu

Abstract. We address the issue of efficiently automating assume-giggraca-
soning for simulation conformance between finite stateesystand specifica-
tions. We focus on a non-circular assume-guarantee préef and show that
there is a weakest assumption that can be represented calhpbi/ a determin-
istic tree automata (DTA). We then present an algorittinthat learns this DTA
automatically in an incremental fashion, in time that isypoimial in the num-
ber of states in the equivalent minimal DTA. The algorithrsuases a teacher
that can answer membership and candidate queries pegamthe language of
the unknown DTA. We show how the teacher can be implemented asmodel
checker. We have implemented this framework in tt@vEORT toolkit and we
report encouraging results (over an order of magnitude érgnent in memory
consumption) on non-trivial benchmarks.

1 Introduction

Formal verification is an important tool in the hands of safitevpractitioners for ascer-
taining correctness of safety critical software systenmweéler, scaling formal tech-
niques like model checking [11] to concurrent software afustrial complexity re-
mains an open challenge. The primary hurdle is the stateespaplosion problem
whereby the number of reachable states of a concurrennsysteeases exponentially
with the number of components.

Two paradigms hold the key to alleviating state-space esx@io— abstraction [10,
9] and compositional reasoning [23, 8]. Both of these teghes have been extensively
studied by the formal verification community and there hagerbsignificant break-
throughs from time to time. One of the most important advarer@s in the domain of
compositional analysis is the concept of assume-guarg28€¢AG) reasoning. The
essential idea here is to model-check each component indepty by making an as-
sumption about its environment, and then discharge thergsson on the collection of
the rest of the components. A variety of AG proof-rules areviam, of which we will
concern ourselves with the following non-circular ruleled/AG-NC:

Mi||Max S My < My
MlHMQ#S

whereM; || M, is the concurrent system to be verifigtiis the specification, and an
appropriate notion of conformance between the system andphcificationAG-NC
is known to be sound and complete for a number of conformantens, including

trace containment and simulation. The rule essentialtgsthat if there is anssump-
tion M 4 that satisfies the two premises, then the system confornetsptecification.
However, the main drawback here from a practical point ofnigethat, in general, the
assumption\/ 4 has to be constructed manually. This requirement of marffeat bas
been a major hindrance towards wider applicability of A@esteasoning on realistic
systems.

An important development in this context is the recent usautbmata-theoretic
learning algorithms by Cobleigh et al. [12] to automate A@s@ning foitracecontain-
ment, when both the system and the specification are finite stachines. Briefly, the
idea is to automatically learn an assumptidn that can be used to dischar§&-NC.
The specific learning algorithm that is employed is Anglsifx* [2], which learns finite
state machines up to trace equivalence. Empirical evidgi®jéndeed suggests that,
often in practice, this learning based approach autombticanstructs simple (small
in size) assumptions that can be used to discha@C.

In this article, we apply the learning paradigm to automa®er&asoning fosimu-
lation conformance between finite systems and specifications. ¥fesfiow that there
is a weakest assumptially; for AG-NC such thatM; | M, < S if and only if
Ms < My . Further, My, is regular in that the set of trees it can simulate can be
accepted by a tree automata. Although one can complyjeand use it to check if
M, < My, doing so would be computationally as expensive as direttgcking if
M || Ms < S. We therefore learn the weakest assumption iftnarementafashion,
and use the successive approximations that are learntamdrgdischargdG-NC. If at
any stage an approximation is successfully used, then wecere. Otherwise, we ex-
tract a counterexample from the premised&-NC that has failed, and use it to further
improve the current approximation.

To realize the above approach, we need an algorithm thaidahe weakest as-
sumption up to simulation equivalence. As mentioned abbeenteakest assumption
corresponds to a regular tree language. We present anthlgdif that learns the min-
imal deterministic tree automata (DTA) for this assumpiiman incremental fashion.
Although a similar learning algorithm for tree languages baen proposed earlier [14],
L™ was developed by us independently and has a much better-gasstcomplexity
than the previous algorithm. The algorithid' may be of independent interest besides
the specific application we consider in this paper. It assuthat an unknown regular
tree languagé’ is presented by ainimally adequate teachdteacher for short) that
can answer membership queries abiduand that can also test conjectures alidaind
provide counterexamples to wrong conjectures. The algorit” learns the minimal
DTA for U in time polynomial in the number of states in the minimal DTA.

We will show how the teacher can be efficiently implemented model checker,
i.e., how the membership and candidate queries can be astswthout paying the
price of explicitly composing//; and M-. Further, we show how while processing the
candidate queries, the teacher can try to discha@C with the proposed candidate.
We have empirical evidence supporting our claim thatNC can often be discharged
with a coarse approximation (candidate), well before thakest assumption is learnt.
We have implemented the proposed framework in tllevEORT [7] toolkit and ex-
perimented with realistic examples. Specifically, we haxgeeimented with a set of

benchmarks constructed from theeENSSL source code and the SSL specification.
The experimental results indicate memory savings by overder of magnitude com-
pared to a non-AG based approach.

Related Work. A number of applications of machine learning techniquesaifica-
tion problems have been proposed in the recent past. Thelsdé@automatic synthesis
of interface specifications for application programs [1itcematically learning the set
of reachable states in regular model checking [B¢ck-box-testing22] and its subse-
guent extension tadaptive model-checkiri@9] to learn an accurate finite state model
of an unknown system starting from an approximate one, aarthileg likely program
invariants based on observed values in sample executishs [1

The work we present in this paper closely parallels the agrgroposed by
Cobleigh et al. [12], where they automate assume-guaraessening for finite state
concurrent systems in a trace-containment setting. Thaw e existence of a weakest
environment assumption for an LTS aagtomaticallylearn successive approximations
to it using Angluin’s L* algorithm [2,24]. Our contribution is to apply this general
paradigm to a branching time setting. Further, Bealgorithm that we present may be
of independent interesL.” may be viewed as a branching time analogu& bfvhere
the minimally adequate teacher must be capable of answeuegdes on trees and tree
automata (as opposed to traces and finite state machihés iRinally, Rivest et al. [24]
proposed an improvement to Angluin’s' that substantially improves its complexity;
our LT has the same spirit as this improved versio.bf

Languagdadentification in the limitparadigm was introduced by Gold [17]. This
forms the basis oéctive algorithms which learn in an online fashion by querying an
oracle (teacher); both* and L™ fall in this category. Gold also proposed another
paradigm, namelidentification from given datdor learning from a fixed training sam-
ple set [18]. The training set consists of a set of positive egative samples from the
unknown language and must belaaracteristic[18] set of the language. Algorithms
have been proposed in this setting for learning word langsi§#l], tree languages [16,
4] and stochastic tree languages [5]. Unlike the algoritim{46, 4] which learn tree
languages offline from a training set,” learns actively by querying a teacher. An
anonymous reviewer pointed us to a recently proposed aaliyy@ithm for learning
tree languages [14], which is closely relatedltb. However,L” has a better worst-
case complexity of)(n?) as compared t@)(n®) of the previous algorithm. Finally,
we note that learning from derivation trees was investijatdially in the context of
context-free grammars [25] and forms the basis of sevefalénce algorithms for tree
languages [16, 4, 14] including ours.

2 Preliminaries

Definition 1 (Labeled Transition System).A labeled transition system (LTS) is a 4-
tuple (S, Init, X, T) where (i)S is a finite set of states, (ilnit C S is the set of initial
states, (iii)X is a finite alphabet, and (iv]' C S x X' x S is the transition relation. We
write s - s’ as a shorthand fofs, a, s') € T.

Definition 2 (Simulation). Let M; = (S1,Init;, X, T1) and M, =
(So, Inity, X, To) be LTSs such thaf;, = Xy = X' say. A relationR C S; x Sy is
said to be a simulation relation if:

Vs1,8) € S1.Va € X.Vsy € Spu81RsaAs1 —— 8} = Tsh € Spu 59 —— sh A 8| Rsh

We sayM; is simulated bylM/,, and denote this by/; < Mo, if there is a simulation
relation R such thatvs; € I; . 3ss € Iy . s1Rso. We sayM; and M, are simulation
equivalent ifM; < My and M, < M.

Definition 3 (Tree). Let A denote the empty tree atdbe an alphabet. The set of trees
over X' is defined by the grammarT” :=)\ | ¥ ¢ T | T + T. The set of all trees over
the alphabet” is denote byZ”', and we let range over it.

Definition 4 (Context). The set of contexts over an alphabetan be defined by the
grammar: C:=0| X e(C |C+ T | T + C. We letc range over the set of contexts.

A context is like a tree except that it has exactly one holeotlthby at one of
its nodes. When we plug in a treén a contexic, we essentially replace the single
in ¢ by ¢. The resulting tree is denoted bft]. A treet can naturally be seen as an LTS.
Specifically, the states of the LTS are the nodes thfe only initial state is the root node
of ¢, and there is a labeled transition from ndgeo ¢, labeled witha if t; = « @ t5 Or
t1=aety+t30rt; =t +vets.

Definition 5 (Tree Language of an LTS).An LTSM induces a tree language, which
is denoted by (M) and is defined as7 (M) = {t | t < M}. In other words, the tree
language of an LTS contains all the trees that can be simdlbyghe LTS.

For example, the language df (Figure 1(a)) contains the treasae A, cve (A+ 1),
ae)+ (e), Be X+ [Fe)andsoon. The notion of tree languages of LTSs and simulation
between LTSs are fundamentally connected. Specificafiglidws from the definition
of simulation between LTSs that for any two LT&& and M, the following holds:

My X My <= T (M) C T (Ms) (1)

Definition 6 (Tree Automaton). A (bottom-up) tree automaton (TA) is a 6-tuple=
(S, Init, X, 9, ®, F') where: (i) S is a set of states, (iiynit C S is a set of initial
states, (iii) X' is an alphabet, (iv) C S x X' x S is a forward transition relation, (v)
® C S xS x S is a cross transition relation, and (viy’ C S is a set of accepting
states.

Tree automata accept trees and can be viewed as two-dimehsixtensions of
finite automata. Since trees can be extended either forweéeacti{e ¢ operator) and
across (via the- operator), a TA must have transitions defined when eithdrexd two
kinds of extensions of its input tree are encountered. Ehachieved via the forward
and cross transitions respectively. The automaton steeach leaf of the input tree at
some initial state, and then runs bottom-up in accordantte ita forward and cross
transition relations. The forward transition is appliedenta tree of the forna e T is

(®||s1]s2]ss]
@ S1||S1
a B a B Ve S2 S2
oje O SEC

(a) (b)

Fig. 1. (a-left) an LTSM with initial statess; (a-right) forward transitions of a tree automatdn
acceptingZ (M); all states are initial; (b) table showing cross transitielation ® of A. Note
that some table entries are absent since the relatimmnot total.

encountered. The cross transition is applied when a treleedform7; + 75 is found.
The tree is accepted if the run ends at the root of the treemmescepting state of.

Before we formally define the notions of runs and acceptanedntroduce a few
notational conventions. We may sometimes wsité s’ ors’ € §(s,) as a shorthand
for (s,a,s’) € 6, ands; ® s; — s as a shorthand fds;, s2, s) € ®. Similarly, for
sets of states§', Sz, we use the following shorthand notations:

5(S1,a) ={s' |35 € S1.5 — 5}
Sl®52:{8|381 651.382652.(81,82,8)669}

Definition 7 (Run/Acceptance)Let A = (S, Init, X, 0,®, F') be a TA. The run ofl
is a functionr : 7 — 25 from trees to sets of states dfthat satisfies the following
conditions: (i)r(A\) = Indt, (ii) r(«aet) = 6(r(t),), and (jii) r(t1 +t2) = r(t1) @7 (t2).
AtreeT is accepted by iff (7)) N F' # (. The set of trees accepted Hyis known as
the language ofi and is denoted by (A).

A deterministictree automaton (DTA) is one which has a single initial statd a
where the forward and cross transition relations farectionss : S x X' — S and
® : S xS — Srespectively. IfA = (S, Init, X, 6, ®, F) is a DTA thenInit refers
to the single initial state, andls, o) ands; ® s refer to the unique stat€ such that
s — s’ ands; ® so — s’ respectively. Note that ifl is deterministic then for every
treet the setr(t) is a singleton, i.e., the run of on any treg ends at a unique state of
A. Further, we recall [13] the following facts about treeeautita. The set of languages
recognized by TA (referred to asgular tree languagesenceforth) is closed under
union, intersection and complementation. For everyA#ere is a DTAA’ such that
L(A) = L(A"). Given any regular tree languadethere is always ainique (up to
isomorphismpmallestDTA A such thatC(A) = L.

The following lemma, which is easy to prove, asserts thaafor LTS M, the set
T (M) is aregular tree language. Thus, using (1), the simulatioblpm between LTSs
can also be viewed as the language containment problem &etwnee automata.

Lemma 1. For any LTSM there is a TAA such thatC(A) = 7 (M).

For example, for the LTS/ and TA A as shown in Figure 1, we hav&4) =
7 (M). We now provide the standard notion of parallel compositetween LTSs,
where components synchronize on shared actions and prasgechronously on local
actions.

Definition 8 (Parallel Composition of LTSs).Given LTSSV, = (S, Inity, X1,T1)
and My = (Ss, Inite, X9, Ts), their parallel composition\/; || M is an LTSM =
(S, Init, X, T) whereS = 51 x Sy, Init = Init; x Inity, X = X1 U X5, and the
transition relationT is defined as follows((s1, s2), «, (s}, s5)) € T iff for i € {1,2}
the following holds:

(€ X)) A (siya, 8)) € T; \/ (a & X)) A (si =s,)

Working with different alphabets for each component wowdddiessly complicate
the exposition in Section 4. For this reason, without losgerierality, we make the
simplifying assumption that'; = X5. This is justified because we can construct LTSs
M{ andM}, each with the same alphabgt= X UX), such that\/ || M} is simulation
equivalent (in fact bisimilar) td/; || M,. Specifically,M| = (S, Init,, X, T7) and
M} = (So, Inite, X, Tj) where

T =T U{(s,a,8) | s € S;anda € X3\ 21}
T; =T, U{(s,a,5) | s € Sy anda € Xy \ Ty}

Finally, the reader can check thatlif; and M, are LTSs with the same alphabet then
T(M; || My) =T (M) NT(Ms).

3 Learning Minimal DTA

We now present the algorithii’’ that learns the minimal DTA for an unknown regular
languagd/. It is assumed that the alphaketof U is fixed, and that the languaggéis
presented by a minimally adequate teacher that answersihde &f queries:

1. MembershipGiven a tree, ist an elementot/, i.e.,t € U?

2. CandidateGiven a DTA A doesA acceptU, i.e., L(A) = U? If L(A) = U the
teacher returnsRUE, else it returnsALSE along with a counterexample tre&e
that is in the symmetric difference @f A) andU.

We will use the following notation. Given any sets of trégs.S; and an alphabef
we denote by e S5 the setof treed’e 51 = {a et | @ € YAt € S1}, and byS; + .57
the setS; + 55 = {t1+t2 | ty € SNty € SQ}, and byS the setSuU (EOS)U(S+S)

Observation Table : The algorithmZL? maintains an observation tabte= (S, &, R)
where (i)S is a set of trees such thate S, (i) € is a set of contexts such thate &,
and (iii) R is a function fromS x £ to {0, 1} that is defined as followsk (¢, c) = 1 if
c[t] € U and 0 otherwise. Note that givéhand€ we can comput® using membership
queries. The information in the table is eventually usedaiestruct a candidate DTA
A.. Intuitively, the elements of will serve as states ofi,, and the contexts i&
will play the role ofexperimentshat distinguish the states #. Henceforth, the term
experiment will essentially mean a context. The functiband the elements i§ \ S
will be used to construct the forward and cross transitigta/ben the states.

For any tree € S, we denote byRow(t) the function from the set of experiments
£10{0,1} defined asYc € £ . Row(t)(c) = R(t, c).

:

[X [T G
T [T 1IN
KR |ES ollsol=o ollso
AL

@ (b) (©

Fig. 2. (a) A well-formed and closed observation tablg(b) forward transition relation of the
candidateAl constructed fromr; (c) cross transition relation oil.

Definition 9 (Well-formed). An observation tabléS, £, R) is said to be well-formed
if: Vt,t' € S.t #1t' = Row(t) # Row(t'). From the definition oRRow(t) above, this
boils down tovt, t' € S.t # ¢ = Jc € £.R(t,c) # R(t,).

In other words, any two different row entries of a well-fordrebservation table must be
distinguishable by at least one experimengiriThe following crucial lemma imposes
an upper-bound on the size of any well-formed observatibfeteorresponding to a
given regular tree languagé

Lemma 2. Let (S, £, R) be any well-formed observation table for a regular tree lan-
guageU. Then|S| < n, wheren is the number of states of the smallest DTA which
acceptd/. In other words, the number of rows in any well-formed obatown table for

U cannot exceed the number of states in the smallest DTA thapést/.

Proof. The proof is by contradiction. Led be the smallest DTA acceptiflg and let
(S,&,R) be a well-formed observation table such th&t > n. Then there are two
distinct treeg; andt, in S such that the runs oft on botht; and¢, end on the same
state ofA. Then for any context, the runs ofd on ¢[t1] andc[t2] both end on the same
state. But on the other hand, since the observation tablelissermed, there exists an
experiment € £ such thatR(¢1,c¢) # R(ts, ¢), which implies that the runs of on
c[t1] andc|tz] end on different states of. Contradiction. O

Definition 10 (Closed).An observation tabléS, £, R) is said to be closed if
vt e S\ 8.3t €S. Row(t') = Rowl(t)

Note that, given any well-formed observation taffe £, R), one can always con-
struct a well-formed and closed observation tglfig £, R’) such thatS C S’. Specif-
ically, we repeatedly try to find an elemenin §\ S such thatvt’ € S. Row(t') #
Row(t). If no sucht can be found then the table is already closed and we stop. Oth-
erwise, we add to S and repeat the process. Note that, the table always stays wel
formed. Then by Lemma 2, the size §fcannot exceed the number of states of the
smallest DTA that acceptg. Hence this process always terminates.

Figure 2a shows a well-formed and closed table wsth= {\}, £ = {0},
¥ = {«, (3}, and for the regular tree language defined by the TA in Figuiddte
that Row(t) = Row(\) for everyt € {a e A\, 3 e A\, X + A}, and hence the table is
closed.

Conjecture Construction: From a well-formed and closed observation table=
(S,&,R), the learner constructs a candidate DBA = (S, Init, X, §, ®, F') where
(i) S =8, (i) Init = A, (i) FF={teS|R®tDO) =1}, (iv) §(t, «) := ¢ such that
Row(t') = Row(a e t), and (V)t; @ t2 := ¢’ such thatRow (') = Row(t1 + t2). Note
that in (iv) and (v) above there is guaranteed to be a unigctet$sincer is closed and
well-formed, henced ;. is well-defined.

Consider again the closed table in Figure 2a. The learneactgta conjecturel
from it with a single state,, which is both initial and final. Figures 2b and 2c show the
forward and cross transitions d@f- .

The Learning Algorithm : The algorithmL? is iterative and always maintains a well-
formed observation table = (S,&,R). Initially, S = {A\} and€ = {J}. In each
iteration, L7 proceeds as follows:

1. Maker closed as described previously.

2. Construct a conjecture DTA; from 7, and make a candidate query with. If
A, is a correct conjecture, thei’' terminates with4, as the answer. Otherwise,
let CFE be the counterexample returned by the teacher.

3. Extract a context from CE, add it to€, and proceed with the next iteration from
step 1. The newly addeds such that when we makeclosed in the next iteration,
the size ofS is guaranteed to increase.

Extracting an Experiment From CE: Letr be the run function of the failed candidate
A,. For any tree, let7(t) = r(t), i.e., 7(¢) is the state at which the run of, ont
ends. Note that since statestf are elements i, 7(¢) is itself a tree. The unknown
languagel induces a natural equivalence relatienon the set of trees as follows:
th~tiff ti e U < ty € U.

The procedur&xpGen for extracting a new experiment from the counterexample
is iterative. It maintains a contextand a tree that satisfy the following condition:
(INV) c[t] # c[r(¢)]. Initially ¢ = O andt = CE. Note that this satisfieBNV be-
causeCE € U <= CE ¢ L(A;). In each iterationExpGen either generates an
appropriate experiment or updateandt such thatNV is maintained and the size of
strictly decreases. Note thiatannot become since at that poinfNV can no longer be
maintained; this is becausetit= \ thenr(¢) = X and therefore[t] ~ ¢[r(¢)], which
would contradictNV . Hence ExpGen must terminate at some stage by generating an
appropriate experiment. Now, there are two possible cases:

Case 1: { = avet’) Letc = c[a e). We consider two sub-cases. Suppose that
c[r(t)] = [7(t')]. FromINV we know thatc[t] % c[r(¢)]. Hencec'[r(t')] # c[t] ~
c'[t']. Hence ExpGen proceeds to the next iteration with= ¢’ andt = ¢’. Note that
INV is preserved and the size to$trictly decreases.

Otherwise, suppose thatr(t)] # ¢[7(t')]. In this caseExpGen terminates by
adding the experiment to £. Note thatA, has the transition (') = 7(t), i.e.,
Row(7(t)) = Row(a e 7(t')). But now, sincec[r(t)] % [T(t')] ~ c[a o 7(¢')], the
experiment is guaranteed to distinguish betwes) anda e 7(¢'). Therefore, the size
of § is guaranteed to increase when we attempt to ctdeehe next iteration.

[OJceO |
(s0)
(s1)
(s2)

A

ae)

aeqa e

B e

Beae)
aeaexe)
Beaeae)
A+
Atae)
ae X+ ae)
Ad+aeae)
aelt+aeae)
aeeltaeae)

[o1]8] [@1[so]s1]s]
solls1]s1 S0||S0|S1|[S2
S1]|S2|82 S1(|S1[S1([S2
S2]|82|82 S2([|S2|52(82

O O O| | | || O] O O || O| K|
O|O|O|O|O| || of O] O] O|| O Of

@ (b) ©

Fig. 3. (a) observation table and (b) transitions for the second conjectdre

Case 2: ¢ = t; +t3) There are two sub-cases. Supposedhdt)] % c[r(t1) + 7(t2)].

In this caseExpGen terminates by adding the experimertb £. The experiment is
guaranteed to distinguish betweg(t) andr(¢1) + 7(¢2) and therefore strictly increase
the size ofS when we attempt to closein the next iteration.

Otherwise, suppose thalr(t)] ~ c[r(t1) + 7(t2)]. We again consider two sub-
cases. Suppose thdt(t1) + 7(t2)] % c[7(t1) + t2]. In this caseExpGen proceeds to
the next iteration witle = ¢[(¢1) + O] andt = t». Note thatNV is preserved and the
size oft strictly decreases.

Otherwise, we havelT(t1)+t2] = c[r(t1)+7(t2)] =~ ¢[7(t)], and byINV we know
thatc[r(¢)] # c[t] = c[t1 +1t2]. Hence, it must be the case thfit(t;) +ta] % c[t1 +t2].

In this caseExpGen proceeds to the next iteration with= ¢[(J + ¢5] andt = ¢;. Note
that, once agaitNV is preserved and the size oftrictly decreases. This completes
the argument for all cases.

Example 1.We show howL” learns the minimal DTA corresponding to the language
U of TA A of Figure 1.L” starts with an observation tablewith S = {\} and
& = {O}. The table is then made closed by asking membership quérgdor A and
then for its (forward and cross) extensicfise A, 3 e A\, A + A}. The resulting closed
tabler; is shown in Figure 2aL” then extracts a candidatg from 7, which is shown
in Figure 2b.

When the conjecturel! is presented to the teacher, it check£{fAL) = U. In
our case, it detects otherwise and returns a counterexa@iplzom the symmetric
difference of £(AL) and U. For the purpose of illustration, let us assume CE to be
a e 3 e\ Note thatCE € L(AL)\ U. The algorithmExpGen extracts the context
ae[Jfrom CE and adds it to the set of experimefitd.” now asks membership queries
corresponding to the new experiment and checks if the nele tals closed. It finds
that Row(c e) # Row(t) forall t € S, and hence it movase A fromS\ StoSin
order to maker closed. Again, membership queries for all possible forvaard cross
extensions ofv e \ are asked. This process is repeatedrtilecomes closed. Figure 3a
shows the final closetl As an optimization, we omit rows for the trelgst-¢t, whenever
there is already a row fak + ¢1; we know that the rows for both these trees will have

the same markings. The corresponding conjeclireontains three states, s; and
s2 and its forward and cross transitions are shown in Figuren8bRigure 3csg is the
initial state and bothy, ands; are final states. The candidate query with returns
TRUE sinceL(A2) = U, andL” terminates with42 as the output.

Correctness and Complexity

Theorem 1. Algorithm L™ terminates and outputs the minimal DTA that accepts the
unknown regular languagg.

Proof. Termination is guaranteed by the facts that each iteratidif aterminates, and
in each iterationS| must strictly increase, and, by Lemma|8] cannot exceed the
number of states of the smallest DTA that accépt&urther, sincd.” terminates only
after a correct conjecture, if the DTA. is its output thenC(A,) = U. Finally, since
the number of states i, equalg.S|, by Lemma 2 it also follows thad . is the minimal
DTA for U. 0

To keep the space consumption bf within polynomial bounds, the trees and
contexts inS and¢ are kept in a DAG form, where common subtrees between diftere
elements inS and& are shared. Without this optimization, the space consumman
be exponential in the worst case. The other point to notesisttie time taken by.”
depends on the counterexamples returned by the teactseis iécause the teacher can
return counterexamples of any size in response to a failedidate query.

To analyze the complexity of.”, we make the following standard assumption:
every query to the teacher, whether a membership query ordidate query, takes unit
time and space. Further, since the alphabetf the unknown languag¥ is fixed, we
assume that the size df is a constant. Then the following theorem summarizes the
complexity of L7 .

Theorem 2. The algorithmZ” takesO(mn + n?) time and space whereis the num-
ber of states in the minimal DTA for the unknown languéligendm is the size of the
largest counterexample returned by the teacher.

Proof. By Lemma 2, we havéS| < n. Then the number of rows in the table, which
is|S| = |SU (X e8) U (S +8)],is of O(n2). Further, recall that every time a new
experiment is added t8, |S| increases by one. Hence the number of table columns
|€| < n, and the number of table entrig§) || is of O(n3).

The trees and contexts@andg are keptin a DAG form, where common subtrees
between different elementséand¢ are shared in order to keep the space consumption
within polynomial bounds. Specifically, recall that wheaea tree is moved fromS\S
to S, all trees of the formu e ¢ for eacha € ¥ andt + ¢’ for eacht’ € S (which are
O(|S]) in number) are to be added & Adding the treex o ¢ to S only needs constant
space since is already inS and hence is shared in the DAG representation. Similarly
adding a tree of form + ¢’ takes only constant space, since bo#mdt’ are already in
S. Thus, each timé is expanded, a total @(|S|) space is required to add all the new
trees toS. Since at most trees can be addesl in all, it follows that the total space
consumed by elements &is O(n?).

Now, we compute the total space consumed by the contexfs Mote that the
teacher can return counterexamples of arbitrary size jporese to a wrong conjecture.
Supposen is the size of the largest counterexample. Observe that periexent is
extracted from CE (proceduiexpGen) essentially by replacing some of the subtrees
of CE with trees inS, and exactly one subtree of CE wifih But, since in the DAG
form, common subtrees are shared between trees and comeXtand £, none of
the above replacements consume any extra space. Hencézahef the experiment
extracted from CE is utmost the size of CE. Since there areatmcontexts inf, the
total space consumed by context<iris O(mn). Putting together all observations so
far, we get that the total space consumedByis O(mn + n?).

Now, we compute the time consumed by . It takesO(n?) membership queries to
fill in the O(n?) table entries. Since each query is assumed todgke time, this takes
a total ofO(n?) time. The time taken to extract an experiment from a courgemgle
CE is linear on the size of CE. This is because procefixmGen involves making a
constant number of membership queries for each node of Ga¢hrconditions in lines
3, 6, and 8) as CE is processed in a top down fashion. Thugnteeaaken to extract an
experiment from CE is at mo§2(m). Since there can be at mastwrong conjectures,
the total time spent on processing counterexampléXisn). Putting these observa-
tions together we conclude that takesO(mn +n?) time. We thus have the following
theorem.

4 Automating Assume-Guarantee for Simulation

For M;, M and Mg, suppose we are to check My, || My < Mg. Recall from
Section 2 thatM; | Ms < Mg if and only if 7(M; || M) C 7(Mg), and
T(My || M2) = T(My) N T(Ms). Therefore, the verification problem is equivalent

to checking if7 (M) N T (Ms) C 7 (Ms). Now, defineZ,,.. = 7 (My) NT (Ms).
Then

T(]\/[l)ﬂT(MQ) g T(J\/[S) — T(MQ) nga;ﬂ

Thus,7,,.... represents the maximal environment under whi¢hsatisfiesM ¢, and
Ml H J\/IQ < MS ~ T(]\/IQ) - Tmaw

CheckingZ (M2) C 7,4 IS as expensive as directly checkinfy | M2 < Mg since
it involves bothAZ; and M. In the following, we show how th&™ algorithm can be
used for a more efficient solution.

Since regular tree languages are closed under intersemtiorcomplementation,
Tmae IS @ regular tree language. We therefore uselthalgorithm to learn the canon-
ical DTA for 7,,,... in an incremental fashion. The key idea is that when a catalida
query is made by.7, the teacher checks if th&G-NC proof rule can be discharged
by using the proposed candidate as the assumption. Emvickence (see Section 5)
suggests that this often succeeds well befftg, is learnt, leading to substantial sav-
ings in time and memory consumption.

We now elaborate on how the teacher assumefidis implemented. Specifically,
the membership and candidate queries bfare processed as follows.

Membership Query. For a given tre¢ we are to check if € 7,,,.. This is equivalent
to checking ift ¢ T(M;) ort € T(Mg). In our implementation, bot (M;) and
T (Mg) are maintained as tree automata, and the above check antoumsnbership
queries on these automata.

Candidate Query. Given a DTAD we are to check i£(D) = 7,,4.. We proceed in
three steps as follows.

1. Check if(C1l) L(D) C Tnae = T(M;)NL(Mg). This is implemented us-
ing the complementation, intersection and emptyness ahgdperations on tree
automata. IfC1 holds, then we proceed to step 2. Otherwise, we return some
t € Trmaz \ L(D) as a counterexample to the candidate query

2. Check if(C2) 7 (Ms) C L(D). If this is true, then(C1) and(C2) together imply
that7 (M2) C T,.4., and thus our overall verification procedure terminates con
cluding thatM; || My < Mg. Note that even though the procedure terminates
L(D) may not be equal t@,,.,. On the other hand, ifC2) does not hold, we
proceed to step 3 with somec T (M3) \ L(D).

3. Check ift € 7,,4., Which is handled as in the membership query above. If this is
true, then it follows that € 7,,.. \ £(D), and hence we returnas a counterex-
ample to the candidate queBy. Otherwise, ift € 7,4 then7 (Ms) € Tpnaz, and
therefore we conclude thaf; || My £ Ms.

Thus, the procedure for processing the candidate queryittear answer the query
or terminate the entire verification procedure with a pesitr negative outcome. Fur-
ther, the reader may note th&f; and M- are never considered together in any of the
above steps. For instance, the candidatis used instead aof/; in step 1, and instead
of M, in step 2. SinceD is typically very small in size, we achieve significant sggn
in time and memory consumption, as reported in Section 5.

5 Experimental Results

Our primary target has been the analysis of concurrent mgegsassing C pro-
grams. Specifically, we have experimented with a set of backs derived from the
OPENSSL-0.9.6c source code. We analyzed the source code thianmapts the critical

handshake that occurs when an SSL server and client ebtabdiscure communica-
tion channel between them. The server and client source@mutained roughly 2500
LOC each. Since these programs have an infinite state spaamngtructed finite con-
servative labeled transition system (LTS) models from thusing various abstraction
techniques [6] The abstraction process was carried out component-wise.

We designed a set of eight LTS specifications on the basiseo$8L documenta-
tion. We verified these specifications on a system composedes$erver/,) and one
client (M-) using both the brute-force compositial(|| Mx), and our proposed auto-
mated AG approach. All experiments were carried out on a $8@ AMD machine

! Spurious counterexamples arising due to abstraction ar@léx by iterative counterexample
guided abstraction refinement.

Name Direct AG Gain
ResuItT1 My | Ts |Ms Ml/Mz |A| MQ
SSL-1jInvalid| * |2146 325|207 10.4 | 8 | 265
SSL-2 Valid | * |2080 309|163 12.8 | 8 | 279
SSL-3 Valid | * {2077 309|163 12.7 | 8 | 279
SSL-4 Valid | * |2076 976|167 12.4 16| 770
SSL-§ Valid | * |2075 969|167 12.4 |16| 767

Q
ol o g B A w] w] S

SSL-GInvalid| * |20743009234 8.9 |24(1514
SSL-7Invalid| * |20753059234 8.9 |24|1514
SSL-8Invalid| * 20723048234 8.9 |24|1514

Fig. 4. Experimental results. Result = specification valid/in¥ali, andT> are times in seconds;
M, and M, are memory in mega bytegd| is the assumption size that sufficed to prove/disprove
specification;M @ is the number of membership queriésy is the number of candidate queries.
A * indicates out of memory (2 GB limit). Best figures are in thol

with 3 GB of RAM running RedHat 9.0. Our results are summatigeTable 4. The
learning based approach shows superior performance iagdlscn terms ainemory
consumption (up to gactor of 12.8). An important reason behind such improvementis
that the sizes of the (automatically learnt) assumptioasghffice to prove or disprove
the specification (shown in column labelgd]) are much smaller than the size of the
second (client) component (3136 states).

6 Conclusion

We have presented an automated AG-style framework for ¢hgdaimulation con-
formance between LTSs. Our approach uses a learning dgofif to incrementally
construct the weakest assumption that can discharge thaga® of a non-circular AG
proof rule. The learning algorithm requires a minimally qdate teacher that is imple-
mented in our framework via a model checker. We have impléetethis framework
in the COMFORT [7] toolkit and experimented with a set of benchmarks Hase
the OPENSSL source code and the SSL specification. Our experimeditsaile that
in practice, extremely small assumptions often suffice szhiirge the AG premises.
This can lead to orders of magnitude improvement in the mgiauod time required for
verification. Extending learning-based AG proof frameveotdx other kinds of confor-
mances, such as LTL model checking and deadlock detectmhtcaother AG-proof
rules [3] remains an important direction for future invgation.

Acknowledgement. We thank the CAV 2005 referees for their invaluable comments

and suggestions. The first author is also grateful to Corasafeanu and Dimitra Gi-
annakopoulou for informative discussions on assume-gteeand learning.

References

1. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesigefface specifications for java
classes. IlPOPL, pages 98-109, 2005.

[ee]

10.

11.
12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.
23.

24.

25.

D. Angluin. Learning regular sets from queries and caexiEmples. Information and
Computation 75(2):87-106, 1987.

. H. Barringer, D. Giannakopoulou, and C.S Pasareanu.f Putes for automated composi-

tional verification. InProc. of the 2nd Workshop on SAVCRS03.

. M. Bernard and C. de la Higuera. Gift: Grammatical infeeefor terms. Ininternational

Conference on Inductive Logic Programm,ri§99.

. R. C. Carrasco, J. Oncina, and J. Calera-Rubio. Stocha&irence of regular tree lan-

guages. IrProc. of ICG| pages 187-198. Springer-Verlag, 1998.

. S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichmad K Yorav. Efficient verification

of sequential and concurrent C prograrR$1SD, 25(2-3), 2004.

. S. Chaki, J. Ivers, N. Sharygina, and K. Wallnau. The CoriFReasoning Framework. In

Proc. of CAV 2005. to appear.

. E. Clarke, D. Long, and K. McMillan. Compositional modékcking. InLICS, 1989.
. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Cetetample-guided abstraction

refinement. IrProc. of CAV 2000.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking abstractionACM Trans-
actions on Programming Languages and System (TOPL&SH)):1512-1542, 1994.

E. M. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 2000.

J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasardagarning assumptions for compo-
sitional verification. InProceedings of TACAS '03

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. émgB. Tison, and M. Tom-
masi. Tree Automata Techniques and Applicatiombapter 1. 2002. available at
http://www.grappa.univ-lille3.fr/tata.

F. Drewes and J. Hogberg. Learning a regular tree lamguiad_NCS 2710, pp. 279-291,
Proc. Developments in Language Theory (DLT).’03

M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. famically discovering likely
program invariants to support program evolutionPhoc. of ICSE 1999.

P. Garca and J. Oncina. Inference of recognizable ttse Jechnical Report 11/47/1993,
Dept. de Sistemas Informticos y Computacin, Universiddiddica de Valencia, 1993.

E. M. Gold. Language identification in the limibformation and Contrgl10(5), 1967.

E. M. Gold. Complexity of automaton identification froriven data. Information and
Control, 37(3):302—-320, June 1978.

A. Groce, D. Peled, and M. Yannakakis. Adaptive modetkimg. InTools and Algorithms
for Construction and Analysis of Systemages 357-370, 2002.

P. Habermehl and T. Vojnar. Regular model checking usifegence of regular languages.
In Proc. of INFINITY’04 2004.

P. Oncina, J.; Garca. lIdentifying regular languagesolgrpmial time. World Scientific
Publishing, 1992. Advances in Structural and SyntactitePaRecognition,.

D. Peled, M.Y. Vardi, and M. Yannakakis. Black box chegkilnFORTE/PSTY1999.

A. Pnueli. In transition from global to modular tempamsoning about programkogics
and models of concurrent systermpages 123-144, 1985.

R. L. Rivest and R. E. Schapire. Inference of finite autanuging homing sequences. In
Information and Computatigrvolume 103(2), pages 299-347, 1993.

Y. Sakakibara. Learning context-free grammars fromcstiral data in polynomial time.
Theoretical Computer Science (TC3%(2-3):223-242, 1990.

