
Automated Assume-Guarantee Reasoning for
Simulation Conformance

Sagar Chaki, Edmund Clarke, Nishant Sinha, Prasanna Thati

chaki@sei.cmu.edu {emc,nishants,thati}@cs.cmu.edu

Abstract. We address the issue of efficiently automating assume-guarantee rea-
soning for simulation conformance between finite state systems and specifica-
tions. We focus on a non-circular assume-guarantee proof rule, and show that
there is a weakest assumption that can be represented canonically by a determin-
istic tree automata (DTA). We then present an algorithmLT that learns this DTA
automatically in an incremental fashion, in time that is polynomial in the num-
ber of states in the equivalent minimal DTA. The algorithm assumes a teacher
that can answer membership and candidate queries pertaining to the language of
the unknown DTA. We show how the teacher can be implemented using a model
checker. We have implemented this framework in the COMFORT toolkit and we
report encouraging results (over an order of magnitude improvement in memory
consumption) on non-trivial benchmarks.

1 Introduction

Formal verification is an important tool in the hands of software practitioners for ascer-
taining correctness of safety critical software systems. However, scaling formal tech-
niques like model checking [11] to concurrent software of industrial complexity re-
mains an open challenge. The primary hurdle is the state-space explosion problem
whereby the number of reachable states of a concurrent system increases exponentially
with the number of components.

Two paradigms hold the key to alleviating state-space explosion – abstraction [10,
9] and compositional reasoning [23, 8]. Both of these techniques have been extensively
studied by the formal verification community and there have been significant break-
throughs from time to time. One of the most important advancements in the domain of
compositional analysis is the concept of assume-guarantee[23] (AG) reasoning. The
essential idea here is to model-check each component independently by making an as-
sumption about its environment, and then discharge the assumption on the collection of
the rest of the components. A variety of AG proof-rules are known, of which we will
concern ourselves with the following non-circular rule calledAG-NC:

M1 ‖ MA 4 S M2 4 MA

M1 ‖ M2 4 S

whereM1 ‖ M2 is the concurrent system to be verified,S is the specification, and4 an
appropriate notion of conformance between the system and the specification.AG-NC
is known to be sound and complete for a number of conformance notions, including

trace containment and simulation. The rule essentially states that if there is anassump-
tion MA that satisfies the two premises, then the system conforms to the specification.
However, the main drawback here from a practical point of view is that, in general, the
assumptionMA has to be constructed manually. This requirement of manual effort has
been a major hindrance towards wider applicability of AG-style reasoning on realistic
systems.

An important development in this context is the recent use ofautomata-theoretic
learning algorithms by Cobleigh et al. [12] to automate AG reasoning fortracecontain-
ment, when both the system and the specification are finite state machines. Briefly, the
idea is to automatically learn an assumptionMA that can be used to dischargeAG-NC.
The specific learning algorithm that is employed is Angluin’sL∗ [2], which learns finite
state machines up to trace equivalence. Empirical evidence[12] indeed suggests that,
often in practice, this learning based approach automatically constructs simple (small
in size) assumptions that can be used to dischargeAG-NC.

In this article, we apply the learning paradigm to automate AG-reasoning forsimu-
lation conformance between finite systems and specifications. We first show that there
is a weakest assumptionMW for AG-NC such thatM1 ‖ M2 4 S if and only if
M2 4 MW . Further,MW is regular in that the set of trees it can simulate can be
accepted by a tree automata. Although one can computeMW and use it to check if
M2 4 MW , doing so would be computationally as expensive as directlychecking if
M1 ‖ M2 4 S. We therefore learn the weakest assumption in anincrementalfashion,
and use the successive approximations that are learnt to tryand dischargeAG-NC. If at
any stage an approximation is successfully used, then we aredone. Otherwise, we ex-
tract a counterexample from the premise ofAG-NC that has failed, and use it to further
improve the current approximation.

To realize the above approach, we need an algorithm that learns the weakest as-
sumption up to simulation equivalence. As mentioned above the weakest assumption
corresponds to a regular tree language. We present an algorithmLT that learns the min-
imal deterministic tree automata (DTA) for this assumptionin an incremental fashion.
Although a similar learning algorithm for tree languages has been proposed earlier [14],
LT was developed by us independently and has a much better worst-case complexity
than the previous algorithm. The algorithmLT may be of independent interest besides
the specific application we consider in this paper. It assumes that an unknown regular
tree languageU is presented by aminimally adequate teacher(teacher for short) that
can answer membership queries aboutU , and that can also test conjectures aboutU and
provide counterexamples to wrong conjectures. The algorithm LT learns the minimal
DTA for U in time polynomial in the number of states in the minimal DTA.

We will show how the teacher can be efficiently implemented ina model checker,
i.e., how the membership and candidate queries can be answered without paying the
price of explicitly composingM1 andM2. Further, we show how while processing the
candidate queries, the teacher can try to dischargeAG-NC with the proposed candidate.
We have empirical evidence supporting our claim thatAG-NC can often be discharged
with a coarse approximation (candidate), well before the weakest assumption is learnt.
We have implemented the proposed framework in the COMFORT [7] toolkit and ex-
perimented with realistic examples. Specifically, we have experimented with a set of

benchmarks constructed from the OPENSSL source code and the SSL specification.
The experimental results indicate memory savings by over anorder of magnitude com-
pared to a non-AG based approach.

Related Work. A number of applications of machine learning techniques to verifica-
tion problems have been proposed in the recent past. These include automatic synthesis
of interface specifications for application programs [1], automatically learning the set
of reachable states in regular model checking [20],black-box-testing[22] and its subse-
quent extension toadaptive model-checking[19] to learn an accurate finite state model
of an unknown system starting from an approximate one, and learning likely program
invariants based on observed values in sample executions [15].

The work we present in this paper closely parallels the approach proposed by
Cobleigh et al. [12], where they automate assume-guaranteereasoning for finite state
concurrent systems in a trace-containment setting. They show the existence of a weakest
environment assumption for an LTS andautomaticallylearn successive approximations
to it using Angluin’sL∗ algorithm [2, 24]. Our contribution is to apply this general
paradigm to a branching time setting. Further, theLT algorithm that we present may be
of independent interest.LT may be viewed as a branching time analogue ofL∗ where
the minimally adequate teacher must be capable of answeringqueries on trees and tree
automata (as opposed to traces and finite state machines inL∗). Finally, Rivest et al. [24]
proposed an improvement to Angluin’sL∗ that substantially improves its complexity;
ourLT has the same spirit as this improved version ofL∗.

Languageidentification in the limitparadigm was introduced by Gold [17]. This
forms the basis ofactivealgorithms which learn in an online fashion by querying an
oracle (teacher); bothL∗ and LT fall in this category. Gold also proposed another
paradigm, namelyidentification from given data, for learning from a fixed training sam-
ple set [18]. The training set consists of a set of positive and negative samples from the
unknown language and must be acharacteristic[18] set of the language. Algorithms
have been proposed in this setting for learning word languages [21], tree languages [16,
4] and stochastic tree languages [5]. Unlike the algorithmsin [16, 4] which learn tree
languages offline from a training set,LT learns actively by querying a teacher. An
anonymous reviewer pointed us to a recently proposed activealgorithm for learning
tree languages [14], which is closely related toLT . However,LT has a better worst-
case complexity ofO(n3) as compared toO(n5) of the previous algorithm. Finally,
we note that learning from derivation trees was investigated initially in the context of
context-free grammars [25] and forms the basis of several inference algorithms for tree
languages [16, 4, 14] including ours.

2 Preliminaries

Definition 1 (Labeled Transition System).A labeled transition system (LTS) is a 4-
tuple(S, Init, Σ, T) where (i)S is a finite set of states, (ii)Init ⊆ S is the set of initial
states, (iii)Σ is a finite alphabet, and (iv)T ⊆ S ×Σ ×S is the transition relation. We
write s

α
−→ s′ as a shorthand for(s, α, s′) ∈ T .

Definition 2 (Simulation). Let M1 = (S1, Init1, Σ1, T1) and M2 =
(S2, Init2, Σ2, T2) be LTSs such thatΣ1 = Σ2 = Σ say. A relationR ⊆ S1 × S2 is
said to be a simulation relation if:

∀s1, s
′

1 ∈ S1 � ∀a ∈ Σ �∀s2 ∈ S2 �s1Rs2∧s1

a
−→ s′1 ⇒ ∃s′2 ∈ S2 � s2

a
−→ s′2∧s′1Rs′2

We sayM1 is simulated byM2, and denote this byM1 4 M2, if there is a simulation
relationR such that∀s1 ∈ I1 � ∃s2 ∈ I2 � s1Rs2. We sayM1 andM2 are simulation
equivalent ifM1 4 M2 andM2 4 M1.

Definition 3 (Tree).Letλ denote the empty tree andΣ be an alphabet. The set of trees
overΣ is defined by the grammar:T := λ | Σ • T | T + T . The set of all trees over
the alphabetΣ is denote byΣT , and we lett range over it.

Definition 4 (Context). The set of contexts over an alphabetΣ can be defined by the
grammar: C := � | Σ • C | C + T | T + C. We letc range over the set of contexts.

A context is like a tree except that it has exactly one hole denoted by� at one of
its nodes. When we plug in a treet in a contextc, we essentially replace the single�

in c by t. The resulting tree is denoted byc[t]. A treet can naturally be seen as an LTS.
Specifically, the states of the LTS are the nodes oft, the only initial state is the root node
of t, and there is a labeled transition from nodet1 to t2 labeled withα if t1 = α • t2 or
t1 = α • t2 + t3 or t1 = t2 + α • t3.

Definition 5 (Tree Language of an LTS).An LTSM induces a tree language, which
is denoted byT (M) and is defined as:T (M) = {t | t 4 M}. In other words, the tree
language of an LTS contains all the trees that can be simulated by the LTS.

For example, the language ofM (Figure 1(a)) contains the treesλ, α•λ, α•(λ+λ),
α•λ+β•λ, β•λ+β•λ and so on. The notion of tree languages of LTSs and simulation
between LTSs are fundamentally connected. Specifically, itfollows from the definition
of simulation between LTSs that for any two LTSsM1 andM2, the following holds:

M1 4 M2 ⇐⇒ T (M1) ⊆ T (M2) (1)

Definition 6 (Tree Automaton). A (bottom-up) tree automaton (TA) is a 6-tupleA =
(S, Init , Σ, δ,⊗, F) where: (i) S is a set of states, (ii)Init ⊆ S is a set of initial
states, (iii)Σ is an alphabet, (iv)δ ⊆ S × Σ × S is a forward transition relation, (v)
⊗ ⊆ S × S × S is a cross transition relation, and (vi)F ⊆ S is a set of accepting
states.

Tree automata accept trees and can be viewed as two-dimensional extensions of
finite automata. Since trees can be extended either forward (via the • operator) and
across (via the+ operator), a TA must have transitions defined when either of these two
kinds of extensions of its input tree are encountered. This is achieved via the forward
and cross transitions respectively. The automaton starts at each leaf of the input tree at
some initial state, and then runs bottom-up in accordance with its forward and cross
transition relations. The forward transition is applied when a tree of the formα • T is

α β α β

s2

s3

s1s1 s2

s3
⊗ s1 s2 s3

s1 s1

s2 s2

s3 s3

(a) (b)

Fig. 1. (a-left) an LTSM with initial states3; (a-right) forward transitions of a tree automatonA
acceptingT (M); all states are initial; (b) table showing cross transitionrelation⊗ of A. Note
that some table entries are absent since the relation⊗ is not total.

encountered. The cross transition is applied when a tree of the formT1 + T2 is found.
The tree is accepted if the run ends at the root of the tree in some accepting state ofA.

Before we formally define the notions of runs and acceptance,we introduce a few
notational conventions. We may sometimes writes

α
−→ s′ ors′ ∈ δ(s, α) as a shorthand

for (s, α, s′) ∈ δ, ands1 ⊗ s2 −→ s as a shorthand for(s1, s2, s) ∈ ⊗. Similarly, for
sets of statesS1, S2, we use the following shorthand notations:

δ(S1, α) = {s′ | ∃s ∈ S1 � s
α

−→ s′}

S1 ⊗ S2 = {s | ∃s1 ∈ S1 � ∃s2 ∈ S2 � (s1, s2, s) ∈ ⊗}

Definition 7 (Run/Acceptance).Let A = (S, Init , Σ, δ,⊗, F) be a TA. The run ofA
is a functionr : ΣT → 2S from trees to sets of states ofA that satisfies the following
conditions: (i)r(λ) = Init , (ii) r(α•t) = δ(r(t), α), and (iii) r(t1+t2) = r(t1)⊗r(t2).
A treeT is accepted byA iff r(T) ∩ F 6= ∅. The set of trees accepted byA is known as
the language ofA and is denoted byL(A).

A deterministictree automaton (DTA) is one which has a single initial state and
where the forward and cross transition relations arefunctionsδ : S × Σ → S and
⊗ : S × S → S respectively. IfA = (S, Init , Σ, δ,⊗, F) is a DTA thenInit refers
to the single initial state, andδ(s, α) ands1 ⊗ s2 refer to the unique states′ such that
s

α
−→ s′ ands1 ⊗ s2 −→ s′ respectively. Note that ifA is deterministic then for every

treet the setr(t) is a singleton, i.e., the run ofA on any treet ends at a unique state of
A. Further, we recall [13] the following facts about tree-automata. The set of languages
recognized by TA (referred to asregular tree languageshenceforth) is closed under
union, intersection and complementation. For every TAA there is a DTAA′ such that
L(A) = L(A′). Given any regular tree languageL there is always aunique(up to
isomorphism)smallestDTA A such thatL(A) = L.

The following lemma, which is easy to prove, asserts that forany LTSM , the set
T (M) is a regular tree language. Thus, using (1), the simulation problem between LTSs
can also be viewed as the language containment problem between tree automata.

Lemma 1. For any LTSM there is a TAA such thatL(A) = T (M).

For example, for the LTSM and TA A as shown in Figure 1, we haveL(A) =
T (M). We now provide the standard notion of parallel compositionbetween LTSs,
where components synchronize on shared actions and proceedasynchronously on local
actions.

Definition 8 (Parallel Composition of LTSs).Given LTSsM1 = (S1, Init1, Σ1, T1)
andM2 = (S2, Init2, Σ2, T2), their parallel compositionM1 ‖ M2 is an LTSM =
(S, Init, Σ, T) whereS = S1 × S2, Init = Init1 × Init2, Σ = Σ1 ∪ Σ2, and the
transition relationT is defined as follows:((s1, s2), α, (s′1, s

′
2)) ∈ T iff for i ∈ {1, 2}

the following holds:

(α ∈ Σi) ∧ (si, α, s′i) ∈ Ti

∨
(α 6∈ Σi) ∧ (si = s′i)

Working with different alphabets for each component would needlessly complicate
the exposition in Section 4. For this reason, without loss ofgenerality, we make the
simplifying assumption thatΣ1 = Σ2. This is justified because we can construct LTSs
M ′

1 andM ′
2, each with the same alphabetΣ = Σ1∪Σ2 such thatM ′

1 ‖ M ′
2 is simulation

equivalent (in fact bisimilar) toM1 ‖ M2. Specifically,M ′
1 = (S1, Init1, Σ, T ′

1) and
M ′

2 = (S2, Init2, Σ, T ′
2) where

T ′
1 = T1 ∪ {(s, α, s) | s ∈ S1 andα ∈ Σ2 \ Σ1}

T ′
2 = T2 ∪ {(s, α, s) | s ∈ S2 andα ∈ Σ1 \ Σ2}

Finally, the reader can check that ifM1 andM2 are LTSs with the same alphabet then
T (M1 ‖ M2) = T (M1) ∩ T (M2).

3 Learning Minimal DTA

We now present the algorithmLT that learns the minimal DTA for an unknown regular
languageU . It is assumed that the alphabetΣ of U is fixed, and that the languageU is
presented by a minimally adequate teacher that answers two kinds of queries:

1. Membership.Given a treet, is t an element ofU , i.e.,t ∈ U?
2. Candidate.Given a DTAA doesA acceptU , i.e.,L(A) = U? If L(A) = U the

teacher returnsTRUE, else it returnsFALSE along with a counterexample treeCE

that is in the symmetric difference ofL(A) andU .

We will use the following notation. Given any sets of treesS1, S2 and an alphabetΣ
we denote byΣ •S1 the set of treesΣ •S1 = {α• t | α ∈ Σ∧ t ∈ S1}, and byS1 +S2

the setS1 +S2 = {t1 + t2 | t1 ∈ S1∧ t2 ∈ S2}, and byŜ the setS∪(Σ •S)∪(S+S).

Observation Table : The algorithmLT maintains an observation tableτ = (S, E ,R)
where (i)S is a set of trees such thatλ ∈ S, (ii) E is a set of contexts such that� ∈ E ,
and (iii) R is a function fromŜ × E to {0, 1} that is defined as follows:R(t, c) = 1 if
c[t] ∈ U and 0 otherwise. Note that givenS andE we can computeR using membership
queries. The information in the table is eventually used to construct a candidate DTA
Aτ . Intuitively, the elements ofS will serve as states ofAτ , and the contexts inE
will play the role ofexperimentsthat distinguish the states inS. Henceforth, the term
experiment will essentially mean a context. The functionR and the elements in̂S \ S
will be used to construct the forward and cross transitions between the states.

For any treet ∈ Ŝ, we denote byRow(t) the function from the set of experiments
E to {0, 1} defined as:∀c ∈ E � Row(t)(c) = R(t, c).

�

λ 1 (s0)

α • λ 1
β • λ 1

λ + λ 1

δ α β

s0 s0 s0

⊗ s0

s0 s0

(a) (b) (c)

Fig. 2. (a) A well-formed and closed observation tableτ ; (b) forward transition relation of the
candidateA1

τ constructed fromτ ; (c) cross transition relation ofA1

τ .

Definition 9 (Well-formed). An observation table(S, E ,R) is said to be well-formed
if: ∀t, t′ ∈ S � t 6= t′ ⇒ Row(t) 6= Row(t′). From the definition ofRow(t) above, this
boils down to:∀t, t′ ∈ S � t 6= t′ ⇒ ∃c ∈ E � R(t, c) 6= R(t′, c).

In other words, any two different row entries of a well-formed observation table must be
distinguishable by at least one experiment inE . The following crucial lemma imposes
an upper-bound on the size of any well-formed observation table corresponding to a
given regular tree languageU .

Lemma 2. Let (S, E ,R) be any well-formed observation table for a regular tree lan-
guageU . Then|S| ≤ n, wheren is the number of states of the smallest DTA which
acceptsU . In other words, the number of rows in any well-formed observation table for
U cannot exceed the number of states in the smallest DTA that acceptsU .

Proof. The proof is by contradiction. LetA be the smallest DTA acceptingU and let
(S, E ,R) be a well-formed observation table such that|S| > n. Then there are two
distinct treest1 andt2 in S such that the runs ofA on botht1 andt2 end on the same
state ofA. Then for any contextc, the runs ofA onc[t1] andc[t2] both end on the same
state. But on the other hand, since the observation table is well-formed, there exists an
experimentc ∈ E such thatR(t1, c) 6= R(t2, c), which implies that the runs ofA on
c[t1] andc[t2] end on different states ofA. Contradiction. ut

Definition 10 (Closed).An observation table(S, E ,R) is said to be closed if

∀t ∈ Ŝ \ S � ∃t′ ∈ S � Row(t′) = Row(t)

Note that, given any well-formed observation table(S, E ,R), one can always con-
struct a well-formed and closed observation table(S′, E ,R′) such thatS ⊆ S′. Specif-
ically, we repeatedly try to find an elementt in Ŝ \ S such that∀t′ ∈ S � Row(t′) 6=
Row(t). If no sucht can be found then the table is already closed and we stop. Oth-
erwise, we addt to S and repeat the process. Note that, the table always stays well-
formed. Then by Lemma 2, the size ofS cannot exceed the number of states of the
smallest DTA that acceptsU . Hence this process always terminates.

Figure 2a shows a well-formed and closed table withS = {λ}, E = {�},
Σ = {α, β}, and for the regular tree language defined by the TA in Figure 1. Note
that Row(t) = Row(λ) for everyt ∈ {α • λ, β • λ, λ + λ}, and hence the table is
closed.

Conjecture Construction: From a well-formed and closed observation tableτ =
(S, E ,R), the learner constructs a candidate DTAAτ = (S, Init , Σ, δ,⊗, F) where
(i) S = S, (ii) Init = λ, (iii) F = {t ∈ S | R(t, �) = 1}, (iv) δ(t, α) := t′ such that
Row(t′) = Row(α • t), and (v)t1 ⊗ t2 := t′ such thatRow(t′) = Row(t1 + t2). Note
that in (iv) and (v) above there is guaranteed to be a unique such t′ sinceτ is closed and
well-formed, henceAτ is well-defined.

Consider again the closed table in Figure 2a. The learner extracts a conjectureAτ

from it with a single states0, which is both initial and final. Figures 2b and 2c show the
forward and cross transitions ofAτ .
The Learning Algorithm : The algorithmLT is iterative and always maintains a well-
formed observation tableτ = (S, E ,R). Initially, S = {λ} andE = {�}. In each
iteration,LT proceeds as follows:

1. Makeτ closed as described previously.
2. Construct a conjecture DTAAτ from τ , and make a candidate query withAτ . If

Aτ is a correct conjecture, thenLT terminates withAτ as the answer. Otherwise,
let CE be the counterexample returned by the teacher.

3. Extract a contextc from CE , add it toE , and proceed with the next iteration from
step 1. The newly addedc is such that when we makeτ closed in the next iteration,
the size ofS is guaranteed to increase.

Extracting an Experiment From CE : Let r be the run function of the failed candidate
Aτ . For any treet, let τ(t) = r(t), i.e., τ(t) is the state at which the run ofAτ on t

ends. Note that since states ofAτ are elements inS, τ(t) is itself a tree. The unknown
languageU induces a natural equivalence relation≈ on the set of trees as follows:
t1 ≈ t2 iff t1 ∈ U ⇐⇒ t2 ∈ U .

The procedureExpGen for extracting a new experiment from the counterexample
is iterative. It maintains a contextc and a treet that satisfy the following condition:
(INV) c[t] 6≈ c[τ(t)]. Initially c = � and t = CE . Note that this satisfiesINV be-
causeCE ∈ U ⇐⇒ CE 6∈ L(Aτ). In each iteration,ExpGen either generates an
appropriate experiment or updatesc andt such thatINV is maintained and the size oft

strictly decreases. Note thatt cannot becomeλ since at that pointINV can no longer be
maintained; this is because ift = λ thenτ(t) = λ and thereforec[t] ≈ c[τ(t)], which
would contradictINV . Hence,ExpGenmust terminate at some stage by generating an
appropriate experiment. Now, there are two possible cases:

Case 1: (t = α • t′) Let c′ = c[α • �]. We consider two sub-cases. Suppose that
c[τ(t)] ≈ c′[τ(t′)]. From INV we know thatc[t] 6≈ c[τ(t)]. Hencec′[τ(t′)] 6≈ c[t] ≈
c′[t′]. Hence,ExpGen proceeds to the next iteration withc = c′ andt = t′. Note that
INV is preserved and the size oft strictly decreases.

Otherwise, suppose thatc[τ(t)] 6≈ c′[τ(t′)]. In this case,ExpGen terminates by
adding the experimentc to E . Note thatAτ has the transitionτ(t′)

α
−→ τ(t), i.e.,

Row(τ(t)) = Row(α • τ(t′)). But now, sincec[τ(t)] 6≈ c′[τ(t′)] ≈ c[α • τ(t′)], the
experimentc is guaranteed to distinguish betweenτ(t) andα•τ(t′). Therefore, the size
of S is guaranteed to increase when we attempt to closeτ in the next iteration.

� α • �

λ 1 1 (s0)
α • λ 1 0 (s1)

α • α • λ 0 0 (s2)

β • λ 1 0
β • α • λ 0 0

α • α • α • λ 0 0
β • α • α • λ 0 0

λ + λ 1 1
λ + α • λ 1 0

α • λ + α • λ 1 0
λ + α • α • λ 0 0

α • λ + α • α • λ 0 0
α • α • λ + α • α • λ 0 0

δ α β

s0 s1 s1

s1 s2 s2

s2 s2 s2

⊗ s0 s1 s2

s0 s0 s1 s2

s1 s1 s1 s2

s2 s2 s2 s2

(a) (b) (c)

Fig. 3. (a) observation tableτ and (b) transitions for the second conjectureA2

τ .

Case 2: (t = t1 + t2) There are two sub-cases. Suppose thatc[τ(t)] 6≈ c[τ(t1)+τ(t2)].
In this case,ExpGen terminates by adding the experimentc to E . The experimentc is
guaranteed to distinguish betweenτ(t) andτ(t1)+ τ(t2) and therefore strictly increase
the size ofS when we attempt to closeτ in the next iteration.

Otherwise, suppose thatc[τ(t)] ≈ c[τ(t1) + τ(t2)]. We again consider two sub-
cases. Suppose thatc[τ(t1) + τ(t2)] 6≈ c[τ(t1) + t2]. In this case,ExpGenproceeds to
the next iteration withc = c[τ(t1) + �] andt = t2. Note thatINV is preserved and the
size oft strictly decreases.

Otherwise, we havec[τ(t1)+t2] ≈ c[τ(t1)+τ(t2)] ≈ c[τ(t)], and byINV we know
thatc[τ(t)] 6≈ c[t] ≈ c[t1+t2]. Hence, it must be the case thatc[τ(t1)+t2] 6≈ c[t1+t2].
In this case,ExpGenproceeds to the next iteration withc = c[�+ t2] andt = t1. Note
that, once againINV is preserved and the size oft strictly decreases. This completes
the argument for all cases.

Example 1.We show howLT learns the minimal DTA corresponding to the language
U of TA A of Figure 1.LT starts with an observation tableτ with S = {λ} and
E = {�}. The table is then made closed by asking membership queries,first for λ and
then for its (forward and cross) extensions{α • λ, β • λ, λ + λ}. The resulting closed
tableτ1 is shown in Figure 2a.LT then extracts a candidateA1

τ from τ1, which is shown
in Figure 2b.

When the conjectureA1
τ is presented to the teacher, it checks ifL(A1

τ) = U . In
our case, it detects otherwise and returns a counterexampleCE from the symmetric
difference ofL(A1

τ) andU . For the purpose of illustration, let us assume CE to be
α • β • λ. Note thatCE ∈ L(A1

τ) \ U . The algorithmExpGen extracts the context
α•� from CE and adds it to the set of experimentsE . LT now asks membership queries
corresponding to the new experiment and checks if the new table τ is closed. It finds
thatRow(α • λ) 6= Row(t) for all t ∈ S, and hence it movesα • λ from Ŝ \ S to S in
order to makeτ closed. Again, membership queries for all possible forwardand cross
extensions ofα • λ are asked. This process is repeated tillτ becomes closed. Figure 3a
shows the final closedτ . As an optimization, we omit rows for the treest1+t2 whenever
there is already a row fort2 + t1; we know that the rows for both these trees will have

the same markings. The corresponding conjectureA2
τ contains three statess0, s1 and

s2 and its forward and cross transitions are shown in Figure 3b and Figure 3c.s0 is the
initial state and boths0 ands1 are final states. The candidate query withA2

τ returns
TRUE sinceL(A2

τ) = U , andLT terminates withA2
τ as the output.

Correctness and Complexity:

Theorem 1. AlgorithmLT terminates and outputs the minimal DTA that accepts the
unknown regular languageU .

Proof. Termination is guaranteed by the facts that each iteration of LT terminates, and
in each iteration|S| must strictly increase, and, by Lemma 2,|S| cannot exceed the
number of states of the smallest DTA that acceptsU . Further, sinceLT terminates only
after a correct conjecture, if the DTAAτ is its output thenL(Aτ) = U . Finally, since
the number of states inAτ equals|S|, by Lemma 2 it also follows thatAτ is the minimal
DTA for U . ut

To keep the space consumption ofLT within polynomial bounds, the trees and
contexts inŜ andE are kept in a DAG form, where common subtrees between different
elements inŜ andE are shared. Without this optimization, the space consumption can
be exponential in the worst case. The other point to note is that the time taken byLT

depends on the counterexamples returned by the teacher; this is because the teacher can
return counterexamples of any size in response to a failed candidate query.

To analyze the complexity ofLT , we make the following standard assumption:
every query to the teacher, whether a membership query or a candidate query, takes unit
time and space. Further, since the alphabetΣ of the unknown languageU is fixed, we
assume that the size ofΣ is a constant. Then the following theorem summarizes the
complexity ofLT .

Theorem 2. The algorithmLT takesO(mn + n3) time and space wheren is the num-
ber of states in the minimal DTA for the unknown languageU andm is the size of the
largest counterexample returned by the teacher.

Proof. By Lemma 2, we have|S| ≤ n. Then the number of rows in the table, which
is |Ŝ| = |S ∪ (Σ • S) ∪ (S + S)|, is of O(n2). Further, recall that every time a new
experiment is added toE , |S| increases by one. Hence the number of table columns
|E| ≤ n, and the number of table entries|Ŝ||E| is of O(n3).

The trees and contexts in̂S andE are kept in a DAG form, where common subtrees
between different elements in̂S andE are shared in order to keep the space consumption
within polynomial bounds. Specifically, recall that whenever a treet is moved fromŜ\S
to S, all trees of the formα • t for eachα ∈ Σ andt + t′ for eacht′ ∈ S (which are
O(|S|) in number) are to be added tôS. Adding the treeα • t to Ŝ only needs constant
space sincet is already inŜ and hence is shared in the DAG representation. Similarly
adding a tree of formt + t′ takes only constant space, since botht andt′ are already in
Ŝ. Thus, each timeS is expanded, a total ofO(|S|) space is required to add all the new
trees toŜ. Since at mostn trees can be addedS in all, it follows that the total space
consumed by elements in̂S is O(n2).

Now, we compute the total space consumed by the contexts inE . Note that the
teacher can return counterexamples of arbitrary size in response to a wrong conjecture.
Supposem is the size of the largest counterexample. Observe that an experiment is
extracted from CE (procedureExpGen) essentially by replacing some of the subtrees
of CE with trees inS, and exactly one subtree of CE with�. But, since in the DAG
form, common subtrees are shared between trees and contextsin S andE , none of
the above replacements consume any extra space. Hence, the size of the experiment
extracted from CE is utmost the size of CE. Since there are at mostn contexts inE , the
total space consumed by contexts inE is O(mn). Putting together all observations so
far, we get that the total space consumed byLT is O(mn + n3).

Now, we compute the time consumed byLT . It takesO(n3) membership queries to
fill in the O(n3) table entries. Since each query is assumed to takeO(1) time, this takes
a total ofO(n3) time. The time taken to extract an experiment from a counterexample
CE is linear on the size of CE. This is because procedureExpGen involves making a
constant number of membership queries for each node of CE (branch conditions in lines
3, 6, and 8) as CE is processed in a top down fashion. Thus, the time taken to extract an
experiment from CE is at mostO(m). Since there can be at mostn wrong conjectures,
the total time spent on processing counterexamples isO(mn). Putting these observa-
tions together we conclude thatLT takesO(mn+n3) time. We thus have the following
theorem.

4 Automating Assume-Guarantee for Simulation

For M1, M2 and MS, suppose we are to check ifM1 ‖ M2 4 MS . Recall from
Section 2 thatM1 ‖ M2 4 MS if and only if T (M1 ‖ M2) ⊆ T (MS), and
T (M1 ‖ M2) = T (M1) ∩ T (M2). Therefore, the verification problem is equivalent

to checking ifT (M1) ∩ T (M2) ⊆ T (MS). Now, defineTmax = T (M1) ∩ T (MS).
Then

T (M1) ∩ T (M2) ⊆ T (MS) ⇐⇒ T (M2) ⊆ Tmax

Thus,Tmax represents the maximal environment under whichM1 satisfiesMS , and

M1 ‖ M2 4 MS ⇔ T (M2) ⊆ Tmax

CheckingT (M2) ⊆ Tmax is as expensive as directly checkingM1 ‖ M2 4 MS since
it involves bothM1 andM2. In the following, we show how theLT algorithm can be
used for a more efficient solution.

Since regular tree languages are closed under intersectionand complementation,
Tmax is a regular tree language. We therefore use theLT algorithm to learn the canon-
ical DTA for Tmax in an incremental fashion. The key idea is that when a candidate
query is made byLT , the teacher checks if theAG-NC proof rule can be discharged
by using the proposed candidate as the assumption. Empirical evidence (see Section 5)
suggests that this often succeeds well beforeTmax is learnt, leading to substantial sav-
ings in time and memory consumption.

We now elaborate on how the teacher assumed byLT is implemented. Specifically,
the membership and candidate queries ofLT are processed as follows.

Membership Query. For a given treet we are to check ift ∈ Tmax. This is equivalent
to checking ift 6∈ T (M1) or t ∈ T (MS). In our implementation, bothT (M1) and
T (MS) are maintained as tree automata, and the above check amountsto membership
queries on these automata.

Candidate Query. Given a DTAD we are to check ifL(D) = Tmax. We proceed in
three steps as follows.

1. Check if (C1) L(D) ⊆ Tmax = T (M1) ∩ L(MS). This is implemented us-
ing the complementation, intersection and emptyness checking operations on tree
automata. IfC1 holds, then we proceed to step 2. Otherwise, we return some
t ∈ Tmax \ L(D) as a counterexample to the candidate queryD.

2. Check if(C2) T (M2) ⊆ L(D). If this is true, then(C1) and(C2) together imply
thatT (M2) ⊆ Tmax, and thus our overall verification procedure terminates con-
cluding thatM1 ‖ M2 4 MS . Note that even though the procedure terminates
L(D) may not be equal toTmax. On the other hand, if(C2) does not hold, we
proceed to step 3 with somet ∈ T (M2) \ L(D).

3. Check ift ∈ Tmax, which is handled as in the membership query above. If this is
true, then it follows thatt ∈ Tmax \ L(D), and hence we returnt as a counterex-
ample to the candidate queryD. Otherwise, ift 6∈ Tmax thenT (M2) 6⊆ Tmax, and
therefore we conclude thatM1 ‖ M2 64 MS.

Thus, the procedure for processing the candidate query can either answer the query
or terminate the entire verification procedure with a positive or negative outcome. Fur-
ther, the reader may note thatM1 andM2 are never considered together in any of the
above steps. For instance, the candidateD is used instead ofM1 in step 1, and instead
of M2 in step 2. SinceD is typically very small in size, we achieve significant savings
in time and memory consumption, as reported in Section 5.

5 Experimental Results

Our primary target has been the analysis of concurrent message-passing C pro-
grams. Specifically, we have experimented with a set of benchmarks derived from the
OPENSSL-0.9.6c source code. We analyzed the source code that implements the critical
handshake that occurs when an SSL server and client establish a secure communica-
tion channel between them. The server and client source codecontained roughly 2500
LOC each. Since these programs have an infinite state space, we constructed finite con-
servative labeled transition system (LTS) models from themusing various abstraction
techniques [6]1. The abstraction process was carried out component-wise.

We designed a set of eight LTS specifications on the basis of the SSL documenta-
tion. We verified these specifications on a system composed ofone server (M1) and one
client (M2) using both the brute-force composition (M1 ‖ M2), and our proposed auto-
mated AG approach. All experiments were carried out on a 1800+ XP AMD machine

1 Spurious counterexamples arising due to abstraction are handled by iterative counterexample
guided abstraction refinement.

Name Direct AG Gain
Result T1 M1 T2 M2 M1/M2 |A| MQ CQ

SSL-1Invalid * 2146 325 207 10.4 8 265 3
SSL-2 Valid * 2080 309 163 12.8 8 279 3
SSL-3 Valid * 2077 309 163 12.7 8 279 3
SSL-4 Valid * 2076 976 167 12.4 16 770 4
SSL-5 Valid * 2075 969 167 12.4 16 767 4
SSL-6Invalid * 20743009234 8.9 24 1514 5
SSL-7Invalid * 20753059234 8.9 24 1514 5
SSL-8Invalid * 20723048234 8.9 24 1514 5

Fig. 4.Experimental results. Result = specification valid/invalid; T1 andT2 are times in seconds;
M1 andM2 are memory in mega bytes;|A| is the assumption size that sufficed to prove/disprove
specification;MQ is the number of membership queries;CQ is the number of candidate queries.
A * indicates out of memory (2 GB limit). Best figures are in bold.

with 3 GB of RAM running RedHat 9.0. Our results are summarized in Table 4. The
learning based approach shows superior performance in all cases in terms ofmemory
consumption (up to afactor of 12.8). An important reason behind such improvement is
that the sizes of the (automatically learnt) assumptions that suffice to prove or disprove
the specification (shown in column labeled|A|) are much smaller than the size of the
second (client) component (3136 states).

6 Conclusion

We have presented an automated AG-style framework for checking simulation con-
formance between LTSs. Our approach uses a learning algorithm LT to incrementally
construct the weakest assumption that can discharge the premises of a non-circular AG
proof rule. The learning algorithm requires a minimally adequate teacher that is imple-
mented in our framework via a model checker. We have implemented this framework
in the COMFORT [7] toolkit and experimented with a set of benchmarks based on
the OPENSSL source code and the SSL specification. Our experiments indicate that
in practice, extremely small assumptions often suffice to discharge the AG premises.
This can lead to orders of magnitude improvement in the memory and time required for
verification. Extending learning-based AG proof frameworks to other kinds of confor-
mances, such as LTL model checking and deadlock detection, and to other AG-proof
rules [3] remains an important direction for future investigation.

Acknowledgement. We thank the CAV 2005 referees for their invaluable comments
and suggestions. The first author is also grateful to Corina Păsăreanu and Dimitra Gi-
annakopoulou for informative discussions on assume-guarantee and learning.

References

1. R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis ofinterface specifications for java
classes. InPOPL, pages 98–109, 2005.

2. D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987.

3. H. Barringer, D. Giannakopoulou, and C.S Pasareanu. Proof rules for automated composi-
tional verification. InProc. of the 2nd Workshop on SAVCBS, 2003.

4. M. Bernard and C. de la Higuera. Gift: Grammatical inference for terms. InInternational
Conference on Inductive Logic Programming, 1999.

5. R. C. Carrasco, J. Oncina, and J. Calera-Rubio. Stochastic inference of regular tree lan-
guages. InProc. of ICGI, pages 187–198. Springer-Verlag, 1998.

6. S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient verification
of sequential and concurrent C programs.FMSD, 25(2–3), 2004.

7. S. Chaki, J. Ivers, N. Sharygina, and K. Wallnau. The ComFoRT Reasoning Framework. In
Proc. of CAV, 2005. to appear.

8. E. Clarke, D. Long, and K. McMillan. Compositional model checking. InLICS, 1989.
9. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. InProc. of CAV, 2000.
10. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.ACM Trans-

actions on Programming Languages and System (TOPLAS), 16(5):1512–1542, 1994.
11. E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 2000.
12. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions for compo-

sitional verification. InProceedings of TACAS ’03.
13. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-

masi. Tree Automata Techniques and Applications, chapter 1. 2002. available at
http://www.grappa.univ-lille3.fr/tata.

14. F. Drewes and J. Hogberg. Learning a regular tree language. In LNCS 2710, pp. 279–291,
Proc. Developments in Language Theory (DLT) ’03.

15. M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. InProc. of ICSE, 1999.

16. P. Garca and J. Oncina. Inference of recognizable tree sets. Technical Report II/47/1993,
Dept. de Sistemas Informticos y Computacin, Universidad Politcnica de Valencia, 1993.

17. E. M. Gold. Language identification in the limit.Information and Control, 10(5), 1967.
18. E. M. Gold. Complexity of automaton identification from given data. Information and

Control, 37(3):302–320, June 1978.
19. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. InTools and Algorithms

for Construction and Analysis of Systems, pages 357–370, 2002.
20. P. Habermehl and T. Vojnar. Regular model checking usinginference of regular languages.

In Proc. of INFINITY’04, 2004.
21. P. Oncina, J.; Garca. Identifying regular languages in polynomial time. World Scientific

Publishing, 1992. Advances in Structural and Syntactic Pattern Recognition,.
22. D. Peled, M.Y. Vardi, and M. Yannakakis. Black box checking. InFORTE/PSTV, 1999.
23. A. Pnueli. In transition from global to modular temporalreasoning about programs.Logics

and models of concurrent systems, pages 123–144, 1985.
24. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. In

Information and Computation, volume 103(2), pages 299–347, 1993.
25. Y. Sakakibara. Learning context-free grammars from structural data in polynomial time.

Theoretical Computer Science (TCS), 76(2-3):223–242, 1990.

