
Range Allocation for Separation Logic

Muralidhar Talupur1, Nishant Sinha1, Ofer Strichman2, Amir Pnueli3

1Carnegie Mellon University, Pittsburgh, PA, USA
2 Technion - Israel Institute of Technology, Haifa, Israel

3The Weizmann Institute of Science, Rehovot, Israel

Abstract. Separation Logic consists of a Boolean combination of predi-
cates of the form vi ≥ vj +c where c is a constant and vi, vj are variables
of some ordered infinite type like real or integer. Any equality or in-
equality can be expressed in this logic. We propose a decision procedure
for Separation Logic based on allocating small domains (ranges) to the
formula’s variables that are sufficient for preserving satisfiability. Given
a Separation Logic formula ϕ, our procedure constructs the inequalities
graph of ϕ, based on ϕ’s predicates. This graph represents an abstraction
of the formula, as there are many formulas with the same set of predi-
cates. Our procedure then analyzes this graph and allocates a range to
each variable that is adequate for all of these formulas. This approach
of finding small finite ranges and enumerating them symbolically is both
theoretically and empirically more efficient than methods based on case-
splitting or reduction to Propositional Logic. Experimental results show
that the state-space (that is, the number of assignments that need to
be enumerated) allocated by our procedure is frequently exponentially
smaller than previous methods.

1 Introduction

Separation Logic, also known as Difference Logic, consists of a Boolean combi-
nation of predicates of the form vi � vj + c where � ∈ {>,≥}, c is a constant,
and vi, vj are variables of some ordered infinite type like real or integer. All
the other equality and inequality relations can be expressed in this logic. Unin-
terpreted functions can be handled as well since they can be reduced to Boolean
combinations of equalities [2]. In this paper, we consider Separation Logic with
integer variables and constants only, assuming that only minor adaptations are
needed for other cases. Further we consider only predicates with ≥ relations as
it does not reduce expressivity in any way.

Separation predicates are used in verification of timed systems, scheduling
problems, and more. Hardware models with ordered data structures have in-
equalities as well. For example, if the model contains a queue of unbounded
length, the test for head ≤ tail introduces inequalities. In fact, as observed by
Pratt [7], most inequalities in verification conditions are of this form. Further-
more, since theorem provers can decide mixed theories (by invoking an appropri-
ate decision procedure for each logic fragment [8]), an efficient decision procedure

for Separation Logic will be helpful in verification of any formula that contains
a significant number of these predicates.

There are various known methods for solving Separation Logic (see tools such
as cvc [11] and mathsat [3] that solves this logic), which we survey in detail in
the full version of this article [12]. Let us just mention here the most recent one,
which is based on a reduction to Propositional Logic. In [10, 9] such a reduction
is proposed, based on an analysis of a graph derived from the formula, called the
inequalities graph. The inequalities graph is based on the formula’s predicates,
regardless of the Boolean connectives between them. It encodes each predicate
of the form x ≥ y + c with a new Boolean variable ec

xy, and then gradually
removes nodes from the graph while adding transitivity constraints (similar to
the Fourier-Motzkin technique). The following example illustrates this method.
Consider the formula ϕ : x ≥ y + 1 ∧ (y ≥ z + 2 ∨ z ≥ x + 1). As a first step,
abstract this formula with Boolean constraints, i.e. ϕ′ : e1

xy ∧ (e2
yz ∨ e1

zx).

Next, nodes (variables) are eliminated one at a time while adding proper
constraints to the formula. Given the order x, y, z it first eliminates x, deriving
from the first and third predicates the new constraint z − 1 ≥ y + 1. It conse-
quently adds the constraint e1

xy ∧ e1
zx → e2

zy. Eliminating y it derives from the
second and fourth constraint the new unsatisfiable constraint z − 2 ≥ z + 2 and
adds, accordingly, the constraint e2

yz ∧ e2
zy → false . This procedure may result

in an exponential number of constraints and a quadratic number of variables. In
contrast, the Range-Allocation approach which we present now, requires in the
worst case n · log n variables and no additional constraints.

Our approach. Our approach is based on the small model property of Separa-
tion Logic. That is, if a formula in this theory is satisfiable, then there is a finite
model that satisfies it. Furthermore, in the case of Separation Logic there exists
an efficiently computable bound on the size of the smallest satisfying model. This
implies that the given formula can be decided by checking all possible valuations
up to that bound.

In the case of predicates of the form x > y (since we treat integers and weak
inequalities this is the same as x ≥ y + 1) the range [1 . . . n] is sufficient, where
n is the number of variables. In other words, it is possible to check for the satis-
fiability of such formulas by enumerating all nn possible valuations within this
range. Informally, the reason that this range is sufficient is that every satisfying
assignment imposes a partial order on the variables, and every assignment that
preserves this order satisfies the formula as well. Since all orderings are possible
in the range [1 . . . n], this range is sufficient, or, as we later call it, it is adequate.
In the case of full Separation Logic (when there are arbitrary constants), it was
shown [4] that in the worst case a range [1 . . . n + maxC] is required for each
variable, where maxC can be as high as the sum of all constants in the formula.
This result leads to a state-space of (n + maxC)n. These results refer to a uni-
form range allocation to all variables, regardless of the formula structure. In this
article we investigate methods for reducing this number, based on an analysis of
the formula’s structure, which typically results in non-uniform range allocation.

A similar approach was taken in the past by Pnueli et al. [6] in the context of
Equality Logic (Boolean combinations of equalities). This article can be seen as
a natural continuation of that work.

As an example of the reduction in state-space that our method can achieve
consider the ‘diamond’ graph shown below. For such a graph with n nodes and
all edge weights equal to 1, the uniform range allocation results in a state-space
of size O(nn). In contrast, our approach allocates a single constant to one node,
and 2 values to all the rest, which results in a state-space of size O(2n). If the
graph has arbitrary edge weights, the state-space resulting from a uniform range
allocation can grow up to O((n+maxC)n), while in our approach it would remain
O(2n) (it will, however, increase the values themselves, which has a relatively
minor effect on performance).

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
��� ��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

2 Problem Formulation

Let V ars(ϕ) denote the set of variables used in a Separation formula ϕ over the
set of integers Z. A domain (or range) R(ϕ) of a formula ϕ is a function from
V ars(ϕ) to 2Z. Let V ars(ϕ) = {v1, . . . vn} and |R(vi)| be equal to the number of
elements in the set R(vi). The size of domain R(ϕ), denoted by |R(ϕ)| is given
by |R(ϕ)| = |R(v1)| · |R(v2)| · · · · · |R(vn)|. Now, let SATR(ϕ) denote that ϕ is
satisfiable in a domain R. Our goal is the following:

Find a small domain R such that

SATR(ϕ) ⇐⇒ SATZ(ϕ) (1)

We say that a domain R is adequate for ϕ if it satisfies formula (1). It is straight-
forward to see that if SATZ(ϕ) holds then the minimal adequate domain has size
1: simply assign the variables in V ars(ϕ) a constant value according to one of
the satisfying assignment. Thus, finding the smallest domain for a given formula
is at least as hard as checking the satisfiability of ϕ. So, rather than examining ϕ

we investigate the set of all Separation formulas with the same set of predicates
as ϕ, denoted by Φ(ϕ). Thus, our new, less ambitious goal is the following:

Given a Separation formula ϕ, find the smallest domain R which is ad-
equate for Φ(ϕ).

The problem of finding the smallest adequate domain for Φ(ϕ) is still too compu-
tationally expensive (it is still exponential, although we will not prove it here).
We will therefore concentrate on finding over-approximations which are easier
to compute. As was previously indicated, our solution is based on a graph-based
analysis of the formula’s structure.

Input formula We define a normal form for Separation logic as follows: 1)
‘greater-equal than’ (≥) is the only allowed predicate, and 2) there are no nega-
tions in the formula. Every Separation logic formula can be transformed to this
form by first translating it to NNF, reversing negated inequalities, reversing
‘less than’ (<,≤) predicates and finally, replacing strong inequalities of the form
x > y + c with weak inequalities of the form x ≥ y + c + 1.

A graph representation Given a Separation Logic formula ϕ, we construct
the inequalities graph Gϕ(V, E) as follows (we will write Gϕ from now on).

Definition 1 (Inequalities graph). The inequalities graphGϕ(V, E) is con-
structed as follows: Add a node to V for each v ∈ V ars(ϕ). For each predicate
of the form x ≥ y + c in ϕ, add an edge to E from the node representing x to
the node representing y, with a weight c.

We will say that a domain is adequate for a graph Gϕ if it is adequate for
Φ(ϕ).

Definition 2 (Consistent subgraphs). A subgraph of an inequalities graph
Gϕ is consistent if it does not include a cycle with positive accumulated weight
(positive cycle for short).

Intuitively, a consistent subgraph represents a set of edges (predicates) that can
be satisfied simultaneously. Restating in graph-theoretic terms, our goal is:

Given Gϕ, find a domain R for each node in V such that every consistent
subgraph of Gϕ can be satisfied from values in R.

Example 1. The set of constants associated with each vertex in the following
graph constitute an adequate domain. Each edge is assumed to have weight 1.
There exists a solution from these sets to every consistent subset of edges in the
graph.

{7} {4,8}

{6,10} {5,9}

1

1

11
x3

x2

x4

x1

For example, the set of edges {(x1, x2), (x2, x3), (x3, x4)} can be satisfied by the
assignment x1 = 10,x2 = 9,x3 = 8,x4 = 7. Note that there is no need to satisfy
the subset containing all the edges because it is inconsistent.

It can be shown that for every simple cycle there exists an adequate domain
with size 2|V |−1. In our example the size of the domain is 8. If we try to reduce
this size, for example by setting R(x1) = {6}, the domain becomes inadequate,
because the subset (x1, x2), (x2, x3), (x3, x4) is unsatisfiable under R. ut

It is obvious that we should find small ranges with an overhead smaller than
what is saved compared to the other methods mentioned earlier. In this respect
we were not entirely successful, as in the worst case our algorithm is exponential
(it requires at some point to look for all negative cycles in the graph). In practice,
however, we did not encounter an example that takes a long time to allocate
ranges for. It is left for future research to find polynomial approximations to our
algorithm.

3 The Range Allocation algorithm

As mentioned in the introduction, it is known that for every inequalities graph
(with all edge weights equal to 1), the range 1 . . . |V | is adequate, resulting in
a state-space of size |V ||V |. However Example 1 shows that analysis of the
graph structure may yield smaller state-spaces. For example, if a graph has
two unconnected subgraphs then they can be allocated values separately, hence
reducing the overall state-space. In fact, it is possible to analyze every Strongly
Connected Component (SCC) separately. The edges between the SCCs can then
be satisfied by appropriately shifting the allocated domains of each SCC. Thus,
a solution to this problem for SCCs implies directly a solution for the general
problem.

The pseudo-code in Figure 1 shows the overall structure of our algorithm.
The main procedure, Allocate-Graph receives a graph as input and returns a
graph where all its nodes are annotated with adequate ranges. For each node x

we denote the corresponding range by R(x). It allocates values for SCCs with the
procedure Allocate-SCC and then shifts them so that these ranges are valid in
relation to the other SCCs present in the graph. Given an SCC S, Allocate-SCC
calls itself recursively on a smaller SCC derived from S (the recursion stops
when S is the trivial SCC comprised of a single node). When returning from the
recursive call, the values assigned to the smaller SCC are used to allocate values
for all the nodes in SCC S. The description of Allocate-SCC, which requires
several definitions, appears in the next subsection.

3.1 Range allocation for SCCs

The goal of Allocate-SCC is to annotate each node x of a given SCC S with a
finite and adequate range R(x) (not necessarily continuous). The primary source
of difficulty in assigning adequate values to SCCs is the presence of cycles. We
introduce the notion of cutpoints to deal with cycles in the SCC.

Definition 3 (Cutpoint-set). Given a directed graph G(V, E), a set of nodes
v ⊆ V is a Cutpoint-set if removing them and their adjacent nodes makes the
graph cycle free.

The notion of cutpoints is also known in the literature as Feedback Vertex Sets
[5]. Finding a minimal set of cutpoints is an NP -Hard problem, so our imple-
mentation uses a polynomial approximation (several such approximations are

Annotated-Graph Allocate-Graph(directed graph G)

1. For each non-trivial SCC S ∈ G, S = Allocate-SCC (S)
2. Following the partial-order forest, allocate values to non-SCC

nodes and shift the allocated values of the SCCs so they satisfy

all predicates. // If every SCC is contracted to a single node, the
// resulting graph is a forest

3. Return the Annotated graph G.

Annotated-Graph Allocate-SCC(SCC S)

1. If S has a single node x assign R(x) = {0} and return S.

2. Find the set of cutpoints C of S // See Definition 3
3. Construct the Cutpoint-graph SC // See Definition 4
4. Allocate-SCC (SC).
5. For each regular node x:// See description of the four phases in Sec. 3.2

(a) (Phase 1) Find the cycle-values of x

(b) (Phase 2) Find the dfs-values of x

(c) (Phase 3) Let {C1x, C2x, . . . , Cnx} be the set of cutpoints that can

reach x. Then assign

R(x) =
⋃

Cix

({u+v|u ∈ R(Cix)∧(v ∈ (cycle-values
0

Cix
(x)∪dfs-values

0

Cix
(x)))})

(d) (Phase 4) Add a dfs-value corresponding to the virtual level

6. Return the annotated SCC S.

Fig. 1. Procedures Allocate-Graph calls Allocate-SCC for each SCC. Both procedures
receive a directed graph as input, and annotates each node x in this graph with a set
of adequate values R(x).

described in the above reference). We will refer to non-cutpoint nodes simply as
regular nodes. This distinction refers to the current recursion level only. As we
will soon see, all graphs at recursion levels other than the highest one comprise
only of the cutpoints of the original SCC S.

Next, we define a collapsing of an SCC S on to its Cutpoint-set, which we
call the Cutpoint-graph of S:

Definition 4 (Cutpoint-graph). Given an SCC S and a Cutpoint-set C of
S, a cutpoint graph of S with respect to C is a directed graph SC(C, E) such
that for u, v ∈ C, u 6= v, edge (u, v) ∈ E with weight w if and only if there is
a path in S from u to v not passing through any other vertex in C and with an
accumulated weight w

Note that according to this definition there are no self loops in Cutpoint-graphs.
As an example, consider the graph shown in the left of Figure 2. One possible
Cutpoint-set for this graph is the set {A, C}. The Cutpoint-graph over these
nodes is shown on the right hand side of the figure. We will use this graph as a
running example to illustrate our algorithm.

−1 −1

0

100

10

−1

1
A(0)

C(0) M(3)

X(1)

−1

−1

−1

−1

1Y()

S(2) R(1)

L(2)

CA

−1

−2

10

Fig. 2. An SCC S (left) and its Cutpoint-graph with respect to the Cutpoint-set {A,C}

Allocate-SCC (Figure 1) progresses by calling itself recursively on the graph
SC . It is easy to see that SC is also an SCC, but smaller. This ensures that
Allocate-SCC terminates. This observation is proven in Lemma 1 below.

Lemma 1. A Cutpoint-graph SC of an SCC S is an SCC and has less vertices
than S.

(All proofs appear in the full version of this article [12]).
In case S is a single node Allocate-SCC assigns it the range {0} and returns.

The set of values returned from the recursive call are then used to assign values to
the rest of the graph (the regular nodes at this level). The process of assigning
these values is involved, and is done in four phases as described in the next
subsection.

3.2 The four phases of allocating ranges to regular nodes

Ranges are assigned to regular nodes in four phases. In the first two phases
the assigned ranges, called cycle-values and dfs-values respectively, should be
thought of as representative values: they do not necessarily belong to the final
ranges assigned by the algorithm. In Phase 3, these values will be combined
with the ranges assigned to the cutpoints to compute the final ranges for all the
regular nodes. In the description of these phases we will use the notion of tight
assignments, defined as follows:

Definition 5 (Tight assignments). Given a directed weighted path from node
x to node y with an assignment of a single value to each node, this assignment
is called tight with respect to the value assigned to x, if and only if all the
inequalities represented by the path are satisfied and the value at each node other
than x is the largest possible. In that case, the path is said to be tight with respect
to the value at x.

Phase 1 The role of Phase 1 is to find values that satisfy all non-positive cycles
in the graph, assuming that the cutpoints in the cycles are assigned the value 0
(this assumption will be removed in Phase 3).

We find all the non-positive cycles, each of which, by definition, has one or
more cutpoints. For every path p on that cycle from cutpoint Ci to cutpoint Cj ,
we then assign 0 to Ci and tight values with respect to Ci’s assignment, to the

other nodes in p except Cj . Typically there is only one cutpoint in the cycle,
which can be thought of as a particular case of the above one where C2 = C1. If
in this step a node x on p is assigned a value v, we say that this value is obtained
from Ci.

At the end of this phase regular nodes have one value for each non-positive
cycle that goes through them, while cutpoints have the single value 0. In Figure 2
these values are shown in parenthesis. Note that Y has an empty set of values
as there are no non-positive cycles going through it.

The set of values associated with each node x is called the cycle-values cor-
responding to level 0 and is denoted by cycle-values0(x) (0 being the value
assumed at cutpoints). Further, the subset of cycle-values at x obtained from
Ci is denoted by cycle-values0

Ci
(x).

Phase 2 The role of Phase 2 is to assign values that satisfy all acyclic paths
in the SCC starting from a cutpoint, assuming that the cutpoint has a value 0
(this assumption will be removed in Phase 3). In the second phase, we begin by
creating a new set of values at each node called dfs-values. Regular nodes have
one dfs-value corresponding to each cutpoint that can reach it directly (that
is, without going through any other cutpoint). For a node x and a cutpoint Ci

that can reach it directly (i.e. not through other cutpoints), denote the dfs-value
corresponding to Ci at level 0 by dfs-values0

Ci
(x). The value of dfs-values0

Ci
(x)

is calculated as follows. Let n be the number of direct paths from Ci to x, and let
v1, . . . , vn be values corresponding to tight assignments to x with respect to Ci.
Then dfs-values0

Ci
(x) = min{v1 . . . vn}. The implementation of Phase 2 involves

a simple Depth-First Search (DFS) which starts from cutpoints and backtracks
on reaching any cutpoint.

Referring to Figure 2, dfs-values0

A(Y) = −1 and dfs-values0

C(Y) = −100.
Thus, the dfs-values for Y are [−1,−100]. The other dfs-values are shown in
Figure 3 in square brackets. The first value is obtained from A and the other, if
present, from C.

−1 −1

0

100

10

−1

1
A[0] Y[−100, −1]

−1

−1

−1

−1

1

S[2]
R[1]

M[0, −99]C[0]

L[−100, −1]

X[−101, −2]

Fig. 3. The dfs-values of nodes appear in square brackets. Both cutpoints (A and C)
have a path to Y , hence the two dfs-values. The final allocated ranges for all nodes are
shown in curly brackets

Phase 3 The role of Phase 3 is to translate the representative values computed in
the first two phases into actual ranges using the ranges allocated to the cutpoints
by the recursive call. In the third phase, we use ranges assigned to cutpoints by
the recursive call Allocate-SCC (SC) as the base for shifting the representative
values that were computed by the first two phases. The ranges assigned to the
cutpoints remain unchanged (none of the three phases modify the ranges assigned
to the cutpoints by deeper recursive calls).

For each regular node x we find all the cutpoints {C1x, C2x, .., Cnx} that can
reach it not through other cutpoints. Then R(x) is given by

R(x) =
⋃

Cix

({u + v|u ∈ R(Cix) ∧ (v ∈ (cycle-values0

Cix
(x) ∪ dfs-values0

Cix
(x)))})

Example 2. Consider once again the graph in Figure 2. Assume that cutpoints
have already been assigned the following values: R(A) = {−10,−1} and R(C) =
{0}. For node Y , the set cycle-values0(Y) is empty and dfs-values0(Y) =
{−1,−100}. The cutpoints that can reach Y are A and C. So the range as-
sociated with Y is the union of {−100} (the values from C) and {−11,−2} (the
values from A).

The value u+v ∈ R(x) such that u ∈ R(Cix) and v is a dfs-value or a cycle-value
is said to correspond to level u at Cix.

Phase 4 We now add one more value, called the virtual dfs-value, to each
regular node. The need to have an additional value is explained as follows. Given
a satisfiable subgraph S′ ⊆ G, the values assigned in the previous phases can be
used for a node x only if it can be reached from a cutpoint. For the case where
x is not reachable from any cutpoint in S′ we need to have an extra value.

We allocate virtual dfs-values by starting from the highest value at each
cutpoint, and going backward along the edges until we reach another cutpoint.
We assign tight values along each reverse path with respect to the starting
cutpoint. At the end, for each node x we pick the maximum value among all the
values assigned by different paths and make it the virtual dfs-value.

From now on, by dfs-values of a node x we will mean all the dfs-values
corresponding to all levels and cutpoints. We use the term cycle-values in a
similar way. Considering the graph in Figure 2, the final set of values assigned to
all nodes is shown in Figure 4. Underlined numbers are those that were allocated
in Phase 4.

4 Correctness of the Algorithm

Assuming that Allocate-SCC is correct, the correctness of Allocate-Graph is
easy to see: Allocate-Graph simply shifts the ranges allocated to SCCs and
assigns a single value to nodes between them so that all the inequality con-
straints between the SCCs are satisfied. From now on we will focus on proving

−1 −1

0

100

10

1

C{0}

−1

−1

−1

−1

1

−1

S{-8, 1,-2} R{-9,0,-3}

Y{-100,-11,-2}
X{-101,-12,1,-3}

L{-100, -11, 2,-2}

M{-99,-10,3,-1}

A{-10,-1}

−1

−2

10
C{0}

A{-10, -1}

Fig. 4. The final allocated ranges for all nodes are shown in curly brackets. The right
figure shows the ranges allocated for the Cutpoint-Graph, which are preserved in higher
recursion levels, as can be seen on the left graph. Underlined numbers are allocated in
Phase 4.

the correctness of Allocate-SCC (the proofs of most of the lemmas in this sec-
tion appear in the full version of this article [12], and are omitted here due to
lack of space). We will prove that the procedure terminates and that the ranges
it allocates are adequate.

Termination of Allocate-SCC is guaranteed by Lemma 1 because it implies
that the number of nodes decreases as we go from S to SC . This ensures that
the size of the considered SCC decreases in successive recursive calls until it is
called with a single node and returns.

We now have to show that Allocate-SCC allocates adequate ranges. Assume
that S is an SCC and Allocate-SCC uses a set of cutpoints C in allocating ranges
to S. Given a satisfiable subgraph S′ ⊂ S, we describe an assignment procedure
that assigns values to its nodes from the ranges allocated to it by Allocate-SCC,
which satisfy all of the predicates represented by S′. The assignment procedure
and the proof of correctness are explained using an augmented graph of S′, de-
noted by S′

Aug. Essentially the augmented graph reflects the tightest constraints
in the original graph between nodes in S′. Clearly if we satisfy tighter constraints
than we can satisfy the original set of constraints in S′.

Building the augmented graph We construct the augmented graph as fol-
lows. Find all paths P in S′ starting from some cutpoint Ci and ending at a
regular node x such that:

– The path P does not occur as part of any non-positive cycle in S
– If nodes in P are given corresponding dfs-values0

Ci
values then it is not tight

with respect to value 0 at cutpoint Ci.

For each such path we add an edge from Ci to x with a weight equal to
−(dfs-values0

Ci
(x)) (the negation of the level 0 dfs-value of x corresponding

to Ci). Note that such an edge need not be a part of the graph G. By the fol-
lowing lemma, if S′ is satisfiable then the augmented graph S′

Aug is satisfiable
as well.

Lemma 2. If S′ is a satisfiable subgraph of S then the graph S′
Aug as constructed

above is satisfiable as well. Further, any assignment that satisfies S′
Aug satisfies

S′.

Example 3. Suppose we are given a graph S′ as shown in Figure 5 (refer only
to the solid edges). S′ is a satisfiable subgraph of the graph shown in Figure 2.
The dfs-value of X and Y corresponding to level 0 and cutpoint A are -1 and -2
respectively (shown in square brackets). In S′, the path A → Y → X is not tight
with respect to these values. We therefore augment S′ by adding two edges: one
from A to Y with weight 1 and one from A to X with weight 2, both depicted as
dotted edges in the graph. These edges reflect the tightest constraints between
A, Y and X .

−1

A[0](−1)

−1

−1

−1

1
L(−2)

X[−2](−3)

Y[−1](−2)

1

S(−2) R(−3)

2

C(0) M(−1)

0

−1

−1

−2

C{0}

−1

A[-2](-1)

Fig. 5. The graph S′ (solid edges), and its augmentation (adding the dotted edges)
S′

Aug for the first and second recursion levels. The augmented graph can be assigned
tight dfs-values. The values assigned by the assignment procedure (see Section 4.1) are
shown in parenthesis.

4.1 The Assignment Procedure

The assignment procedure assigns values to S′
Aug that satisfy its predicates. By

Lemma 2 these values satisfy S′ as well. The assignment procedure is recursive:
we first handle the graph S′

{C′,Aug}, the cutpoint graph of S′
Aug, where C′ is a set

of cutpoints of S′
Aug and C′ ⊆ C. The base case of the recursion corresponds to

a graph with a single node to which we assign the value 0. Assume that we have
already assigned values, recursively, to nodes in C′. Now we assign values to all
the regular nodes in S′

Aug, by starting at cutpoints (with the values assigned to
them by the deeper recursion calls) and doing a DFS-like search. This procedure
is shown below in Figure 6

Referring to Figure 5, the values assigned by DFS-Assign are shown in paren-
thesis beside each node. At the end of this procedure each node in S′ is assigned
a single value such that all predicates in S′ are satisfied (yet to be proved).

Then we have the following lemma:

Lemma 3. Assuming that the assignment procedure assigns satisfying values to
a cutpoint graph S′

{C′,Aug} from the appropriate ranges, it does so for S′
Aug as

well from the ranges allocated by Allocate-SCC.

4.2 The ranges allocated by Allocate-SCC are adequate

Our goal is to prove that Allocate-SCC assigns adequate ranges to the nodes of
any given SCC S. We will use the following lemma

Input: Augmented satisfiable subgraph S′

Aug

Output: A satisfying assignment to S′

Aug from the ranges allocated by

Allocate-SCC.

1. For each regular node x find all cutpoints {C1x . . . Cmx} in S′

Aug that

can reach it directly, not through any other cutpoint.

2. For each cutpoint Cix find all direct paths P to x, and for each

such path find tight values assuming the value of cutpoint Cix is as

assigned by the previous recursive call.

3. Find the minimum among all these tight values corresponding to all

cutpoints in {C1x . . . Cmx} and assign it to x.

4. For nodes that cannot be reached from any point in C′ assign them

their virtual dfs-values (see end of Section 3.2).

Fig. 6. The assignment procedure DFS-Assign, which demonstrates how to assign val-
ues to a given satisfiable subgraph S′ from the ranges allocated by Allocate-SCC.

Lemma 4. Assuming Allocate-SCC assigns adequate ranges to SC , it assigns
adequate ranges to all nodes of S.

This lemma follows directly from Lemma 3. Now we prove the main theorem.

Theorem 1. Allocate-SCC assigns adequate ranges to nodes of any given SCC
S

Proof. The termination of Allocate-SCC follows from Lemma 1. We prove the
correctness of Allocate-SCC by induction on the number of cutpoints present
in the given SCC. The base case is an SCC with one node for which the theorem
holds trivially. For the inductive step, it is shown in Lemma 4 that if we can
assign adequate ranges to the Cutpoint-graph SC then the four phases assign
adequate ranges to all nodes of the SCC. Thus it follows that for any SCC S

Allocate-SCC assigns adequate values to the nodes. ut

5 Experimental Results

We now present results of running Allocate-Graph on different benchmarks.
The results are summarized in the table below.

Example smod uclid sep Example smod uclid sep

bf12.ucl 12 101 28 code27s.smv 85 104 94
bf13.ucl 15 170 48 code32s.smv 114 109 120
bf14.ucl 21 158 33 code37s.smv 57 71 90
bf6.ucl 105 481 127 code38s.smv 32 34 106
bf17.ucl 176 1714 482 code43s.smv 361 555 424
bf18.ucl 280 2102 603 code44s.smv 69 140 84
BurchDill 250 291 336 code46s.smv 264 287 225

The examples beginning with bf were derived from software verification prob-
lems. The examples beginning with code have been used in [6].

We compare our approach against two other methods. The first method,
named uclid, is the standard implementation from uclid [4], which is based on
giving a full range of 1 . . . n + maxC, as described in the Introduction (maxC

being the sum of all constants). The other method, named sep was presented in
[10] and is discussed in the Introduction as well. The table shows the number of
Boolean variables that are required to encode the ranges assigned by the three
different algorithms (given a set of n values the number of Boolean variables
required to encode them is logarithmic in n).

As we can see from the results above, our method is clearly superior to the
other two methods. We outperform uclid by nearly 10 times on large examples
(bf17.ucl and bf18.ucl). Compared to sep we outperform it on the big examples
by a factor of nearly 3.

On graphs which are densely connected and have small edge weights our
algorithm does not do as well as uclid. For such graphs, the ideal ranges seem to
be dependent on the number of variables and relatively independent of the edges.
Our algorithm on the other hand is heavily dependent on the edge structure in
determining the values and as the edges to nodes ratio increases, the number
of values assigned by our algorithm tends to increase as well. Hence on dense
graphs, our algorithm ends up assigning too many values.

6 Conclusion and Future Work

We have presented a technique for allocating small adequate ranges for variables
in a Separation Logic formula based on analyzing the corresponding inequalities
graph. The state-space spawned by these small ranges can be then explored
by standard SAT or BDD solvers. Experimental results show that our decision
procedure can lead to exponential reduction in the state-space to be explored.
A number of optimizations for making the decision procedure faster and reduce
the ranges further were not presented here due to lack of space. The tool that
we have developed, smod, is available for research purposes from [1].

As future work, the most important question still needs to be answered is
whether it is possible to find a polynomial algorithm for range allocation. Al-
though we did not experience long run-times in all the experiments that we
conducted, this can become a bottleneck in the presence of many non-positive
cycles in the inequalities graph.

Acknowledgment We would like to thank Shuvendu Lahiri for helping us by
integrating our tool into uclid and much more.

References

1. www.cs.cmu.edu/∼nishants/smod.tar.gz.

2. W. Ackermann. Solvable cases of the Decision Problem. Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1954.

3. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT
based approach for solving formulas over boolean and linear mathematical proposi-
tions. In Proc. 18th International Conference on Automated Deduction (CADE’02),
2002.

4. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems
using a logic of counter arithmetic with lambda expressions and uninterpreted
functions. In E. Brinksma and K.G. Larsen, editors, Proc. 14th Intl. Conference
on Computer Aided Verification (CAV’02), volume 2404 of LNCS, pages 78–91,
Copenhagen, Denmark, July 2002. Springer-Verlag.

5. D. S. Hochbaum, editor. approximation-algorithms for NP-hard problems. PWS
Publishing Company, 1997.

6. A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The small model property: How
small can it be? Information and computation, 178(1):279–293, October 2002.

7. V. Pratt. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute of Technology, 1977. Cambridge, Mass.

8. R. Shostak. Deciding combinations of theories. J. ACM, 31(1):1–12, 1984.
9. O. Strichman. On solving Presburger and linear arithmetic with SAT. In Formal

Methods in Computer-Aided Design (FMCAD 2002), pages 160 – 170, Portland,
Oregon, Nov 2002.

10. O. Strichman, S.A. Seshia, and R.E. Bryant. Deciding separation formulas with
SAT. In E. Brinksma and K.G. Larsen, editors, Proc. 14th Intl. Conference on
Computer Aided Verification (CAV’02), volume 2404 of LNCS, pages 209–222,
Copenhagen, Denmark, July 2002. Springer-Verlag.

11. A. Stump, C. Barrett, and D. Dill. CVC: a cooperating validity checker. In Proc.
14th Intl. Conference on Computer Aided Verification (CAV’02), 2002.

12. M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range allocation for separa-
tion logic (Full version). Technical Report TR-04-iem/ise-1, Technion, Industrial
Engineering and Management, 2004.

