
SAT-based Compositional Verification using

Lazy Learning ?

Nishant Sinha, Edmund Clarke

Carnegie Mellon University, USA
{nishants,emc}@cs.cmu.edu

Abstract. A recent approach to automated assume-guarantee reason-
ing (AGR) for concurrent systems relies on computing environment as-
sumptions for components using the L∗ algorithm for learning regular
languages. While this approach has been investigated extensively for mes-
sage passing systems, it still remains a challenge to scale the technique
to large shared memory systems, mainly because the assumptions have
an exponential communication alphabet size. In this paper, we propose a
SAT-based methodology that employs both induction and interpolation
to implement automated AGR for shared memory systems. The method
is based on a new lazy approach to assumption learning, which avoids an
explicit enumeration of the exponential alphabet set during learning by
using symbolic alphabet clustering and iterative counterexample-driven
localized partitioning. Preliminary experimental results on benchmarks
in Verilog and SMV are encouraging and show that the approach scales
well in practice.

1 Introduction

Verification approaches based on compositional reasoning allow us to prove prop-
erties (or discover bugs) for large concurrent systems in a divide-and-conquer
fashion. Assume-guarantee reasoning (AGR) [21, 18, 24] is a particular form
of compositional verification, where we first generate environment assumptions
for a component and discharge them on its environment (i.e., the other compo-
nents). The primary bottleneck is that these approaches require us to manually
provide appropriate environment assumptions. Recently, an approach [12] has
been proposed to automatically generate these assumptions using learning al-
gorithms for regular languages assisted by a model checker. Consider an AGR
rule, called NC. This rule states that given finite state systems M1, M2 and
P , the parallel composition M1 ‖ M2 satisfies P (written as M1 ‖ M2 � P) iff
there exists an environment assumption A for M1 such that the composition of
M1 and A satisfies P (M1 ‖ A � P) and M2 satisfies A (M2 � A). It is known
that if M1 and P are finite-state (their languages are regular), then a finite state
assumption A exists. Therefore, the task of computing A is cast as a machine
learning problem, where an algorithm for learning regular languages L∗ [6, 26]

? This research was sponsored by the National Science Foundation under grant nos.
CNS-0411152, CCF-0429120, CCR-0121547, and CCR-0098072, the US Army Re-
search Office under grant no. DAAD19-01-1-0485, the Office of Naval Research under
grant no. N00014-01-1-0796, the Defense Advanced Research Projects Agency under
subcontract no. SA423679952, the General Motors Corporation, and the Semicon-
ductor Research Corporation grant no. TJ-1366.

is used to automatically compute A. The L∗ learner computes a determinis-
tic finite automaton (DFA) corresponding to an unknown regular language by
asking queries to a teacher entity, which is capable of answering membership
(whether a trace belongs to the desired assumption) and candidate (whether the
current assumption hypothesis is correct) queries about the unknown language.
Using these queries, the learner improves its hypothesis DFA using iterative
state-partitioning (similar to the DFA minimization algorithms [17]) until the
teacher replies that a given hypothesis is correct. In our context, a model checker
plays the role of the teacher. It answers the queries by essentially checking the
two premises of the rule NC with respect to the a given hypothesis A. While
this approach is effective for small systems, there are a number of problems in
making it scalable:

– Efficient Teacher Implementation: The teacher, i.e., the model checker, must
be able to answer membership and candidate queries efficiently. More pre-
cisely, each query may itself involve exploration of a large state space making
explicit-state model checking infeasible.

– Alphabet explosion: If M1 and M2 interact using a set X of global shared com-
munication variables (referred to as a shared memory system subsequently),
the alphabet of the assumption A consists of all the valuations of X and is
exponential in size of X . The learning algorithm explicitly enumerates the
alphabet set at each iteration and performs membership queries for enumer-
ation step. Therefore, it is prohibitively expensive to apply L∗ directly to
shared memory systems with a large number of shared communication vari-
ables. Indeed, it is sometimes impossible to enumerate the full alphabet set,
let alone learning an assumption hypothesis. We refer to this problem as the
alphabet explosion problem.

– System decomposition: The natural decompositions of a system according
to its modular syntactic description may not be suitable for compositional
reasoning. Therefore, techniques for obtaining good decompositions auto-
matically are required.

In this work we address the first two problems. More precisely, we propose
(i) to efficiently implement the teacher using SAT-based model checking; and
(ii) a lazy learning approach for mitigating the alphabet explosion problem. For
an approach dealing with the third problem, see, for instance, the work in [22].

SAT-based Teacher. In order to allow the teacher to scale to larger models,
we propose to implement it using a SAT-based symbolic model checker. In par-
ticular, we use SAT-based bounded model checking (BMC) [9] to process both
membership and candidate queries. BMC is effective in processing membership
queries, since they involve unrolling the system transition relation to a finite
depth (corresponding to the given trace t) and require only a Boolean answer.
The candidate queries, instead, require performing unbounded model checking
to show that there is no counterexample for any depth. Therefore, we employ
complete variants of BMC to answer the candidate queries. In particular, we
have implemented two different variants based on k-induction [27] and interpo-
lation [20] respectively. Moreover, we use a SMT solver as the main decision
procedure [29, 3].

Lazy Learning. The main contribution of our work is a lazy learning al-
gorithm l∗ which tries to ameliorate the alphabet explosion problem. The lazy
approach avoids an expensive eager alphabet enumeration by clustering alphabet
symbols and exploring transitions on these clusters symbolically. In other words,
while the states of the assumption are explicit, each transition corresponds to a
set of alphabet symbols, and is explored symbolically. The procedure for learning
from a counterexample ce obtained from the teacher is different: besides parti-
tioning the states of the previous hypothesis as in the L∗ algorithm, the lazy
algorithm may also partition an alphabet cluster (termed as cluster-partitioning)
based on the analysis of the counterexample. Note that since our teacher uses a
SAT-based symbolic model checker, it is easily able to answer queries for traces
where each transition corresponds to a set of alphabet symbols. Moreover, this
approach is able to avoid the quantifier elimination step (expensive with SAT)
that is used to compute the transitions in an earlier BDD-based approach to
AGR [4]. We have developed several optimizations to l∗, including a SAT-based
counterexample generalization technique that enables coarser cluster partitions.

Our hope, however, is that in real-life systems where compositional verifi-
cation is useful, we will require only a few state and cluster partitions until we
converge to an appropriate assumption hypothesis. Indeed if the final assumption
has a small number of states and its alphabet set is large, then there must be a
large number of transitions between each pair of states in the assumption which
differ only on the alphabet label. Therefore, a small number of cluster partitions
should be sufficient to distinguish the different outgoing clusters from each state.
Experiments based on the earlier BDD-based approach to AGR [4, 22] as well
as our approach have confirmed this expectation.

We have implemented our SAT-based compositional approach in a tool called
Symoda (stands for SYmbolic MODular Analyzer). The tool implements SAT-
based model checking algorithms based on k-induction and interpolation to-
gether with the lazy learning algorithms presented in this paper. Preliminary
experiments on Verilog and SMV examples show that our approach is effective
as an alternative to the BDD-based approach in combating alphabet explosion
and is able to outperform the latter on some examples.

Related Work. Compositional verification based on learning was proposed
by Cobleigh et al. [12] in the context of rendezvous-based message passing sys-
tems and safety properties using explicit-state model checking. It has been ex-
tended to to shared memory systems using symbolic algorithms in [4, 22]. The
problem of whether it is possible to obtain good decompositions of systems for
this approach has been studied in [11]. An overview of other related work can
be found in [16, 22, 28]. SAT-based bounded model checking for LTL properties
was proposed by Biere et al. [9] and several improvements, including techniques
for making it complete have been proposed [25, 5]. All the previous approaches
are non-compositional, i.e., they build the transition relation for the whole sys-
tem. To the best of our knowledge, our work in the first to address automated
compositional verification in the setting of SAT-based model checking.

The symbolic BDD-based AGR approach [4] for shared memory systems
using automated system decomposition [22] is closely related to ours. The tech-
nique uses a BDD-based model checker and avoids alphabet explosion by using
eager state-partitioning to introduce all possible new states in the next assump-
tion, and by computing the transition relation (edges) using BDD-based quan-
tifier elimination. In contrast, we use a SAT-based model checker and our lazy
learning approach does not require a quantifier elimination step, which is ex-
pensive with SAT. Moreover, due to its eager state-partitioning, the BDD-based
approach may introduce unnecessary states in the assumptions. Two other ap-
proaches to improve learning based on alphabet set underapproximation and
iterative enlargement have been proposed [10, 16]. Our lazy approach is comple-
mentary and can learn assumptions effectively in cases where a small alphabet
set is not sufficient. Further, it is possible to combine the previous approach with
ours by removing variables from assumption alphabets and adding them back
iteratively. Finally, a learning algorithm for parameterized systems (where the
alphabet consists of a small set of basis symbols, each of which is parameter-
ized by a set of boolean variables) was proposed in [8]. Our lazy algorithm, in
contrast, performs queries over a set of traces using a SAT-based model checker
and performs more efficient counterexample analysis.

2 Notation and Preliminaries

We define the notions of symbolic transition systems, automata, and composition
which we will use in the rest of the paper. Our formalism borrows notation
from [23, 19]. Let X = {x1, . . . , xn} be a finite set of typed variables defined
over a non-empty finite domain of values D. We define a label a as a total map
from X to D which maps each variable xi to value di. An X-trace ρ is a finite
sequence of labels on X . The next-time label is a′ = a〈X/X ′〉 is obtained from a
by replacing each xi ∈ dom(a) by x′

i. Given variables X and the corresponding
next-time variables X ′, let us denote the (finite) set of all predicates on X ∪X ′

by ΦX (true and false denote the boolean constants). Given labels a and b on
X , we say that a label pair (a, b′) satisfies a predicate φ ∈ ΦX , denoted φ(a, b′),
if φ evaluates to true under the variable assignment given by a and b′.

CFA. A communicating finite automata (CFA) C on a set of variables X
(called the support set) is a tuple 〈X, Q, q0, δ, F〉; Q denotes a finite set of
states, q0 is the initial state, δ ⊆ Q × ΦX × Q is the transition relation and F
is the set of final states. For states q, q′ ∈ Q and φ ∈ ΦX , if δ(q, φ, q′) holds,
then we say that φ is a transition predicate between q and q′. For each state q,
we define its follow set fol(q) to be the set of outgoing transition predicates, i.e.,
fol(q) = {φ|∃q′ ∈ Q. δ(q, φ, q′)}. We say that fol(q) is complete iff

∨
{φ ∈ fol(q)}

= true and disjoint iff for all φi, φj ∈ fol(q), φi ∧φj = false. Also, we say that
δ is complete (deterministic) iff for each q ∈ Q, fol(q) is complete (disjoint). The
alphabet Σ of C is defined to be the set of label pairs (a, a′) on variables X
and X ′. The above definition of transitions (on current and next-time variables)
allows compact representation of CFAs and direct composition with STSs below.

A run of C is defined to be a sequence (q0, . . . , qn) of states in Q such that
q0 = q0. A run is said to be accepting if qn ∈ F . Given a W -trace (X ⊆ W), ρ =
a0, . . . , an, is said to be a trace of C if there exists an accepting run (q0, . . . , qn)
of C, such that for all j < n, there exists a predicate φ, such that δ(qj , φ, qj+1)
and φ(aj , a

′
j+1) holds. In other words, the labels aj and aj+1 must satisfy some

transition predicate between qj and qj+1. The W -trace language LW (C) is the
set of all W -traces of C. Note that this definition of W -trace allows a sequence
of labels on X to be extended by all possible valuations of variables in W \X and
eases the definition of the composition operation below. In general, we assume
W is the universal set of variables and write L(C) to denote the language of C.

A CFA can be viewed as an ordinary finite automaton with alphabet Σ
which accepts a regular language over Σ. While the states are represented
explicitly, the follow function allows clustering a set of alphabet symbols into one
transition symbolically. The common automata-theoretic operations, viz., union,
intersection, complementation and determinization via subset-construction can
be directly extended to CFAs. The complement of C is denoted by C, where
L(C) = L(C). An illustration of a CFA is given in the extended version [28].
Symbolic Transition System. A symbolic transition system (STS) M is a
tuple 〈X, S, I, R, F〉, defined over a set of variables X called its support, where
S consists of all labels over X , I(X) is the initial state predicate, R(X, X ′) is
the transition predicate and F (X) is the final state predicate. Given a variable
set W (X ⊆ W), a W -trace ρ = a0, . . . , an is said to be a trace of M if I(a0)
and F (an) hold and for all j < n, R(aj , a

′
j+1) holds. The trace language L(M)

of M is the set of all traces of M .1

CFA as an STS. Given a CFA C = 〈XC , QC , q0C , δC , FC〉, there exists an
STS M = 〈X, S, I, R, F〉 such that L(C) = L(M). We construct M as follows:
(i) X = XC ∪ {q} where q is a fresh variable which ranges over QC , (ii) I(X) =
(q = q0), (iii) F (X) = ∃qi ∈ FC .(q = qi), and (iv) R(X, X ′) =

(∃q1, q2 ∈ QC , φ ∈ Φ. (q = q1 ∧ q′ = q2 ∧ δC(q1, φ, q2) ∧ φ(XC , X ′
C))

Synchronous Composition of STSs. Suppose we are given two STSs
M1 = 〈X1, S1, I1, R1, F1〉 and M2 = 〈X2, S2, I2, R2, F2〉. We define the compo-
sition M1 ‖ M2 to be a STS M = 〈X, S, I, R, F〉 where: (i) X = X1 ∪X2, (ii) S
consists of all labels over X , (iii) I = I1 ∧ I2, (iv) R = R1 ∧ R2, and (v) F =
F1 ∧ F2.

Lemma 1. Given two STSs M1 and M2, L(M1 ‖ M2) = L(M1) ∩ L(M2).

We use STSs to represent system components and CFA on shared variables to
represent automata computed in the various AGR sub-tasks. We assume that
all STSs have total transition predicates. We define the composition of an STS
M with a CFA C, denoted by M ‖ C, to be M ‖ MC , where MC is the STS
obtained from C. Although we use a synchronous notion of composition in this
paper, our work can be directly extended to asynchronous composition also.

Definition 1 (Model Checking STSs). Given an STS M and a property
CFA P , the model checking question is to determine if M � P where � denotes

1 We overload the symbol L() to describe the trace language of both CFAs and STSs.

a conformance relation. Using the trace semantics for STSs and CFAs and set
containment as the conformance relation, the problem can be reduced to checking
if L(M) ⊆ L(P).

Since CFAs are closed under negation and there is a language-equivalent STS
for each CFA, we can further reduce the model checking question to checking if
L(M ‖ MP) is empty, where the STS MP is obtained by complementing P to
form P and then converting it into an STS. Let STS M = M ‖ MP . In other
words, we are interested in checking if there is an accepting trace in M, i.e., a
trace that ends in a state that satisfies FM.

2.1 SAT-based Model Checking

It is possible to check for existence of an accepting trace in an STS M using
satisfiability checking. A particular instance of this problem is bounded model
checking [9] where we check for existence of an accepting trace of length k using
a SAT solver.

Bounded Model Checking(BMC). Given an integer bound k, the BMC
problem can be formulated in terms of checking satisfiability of the following
formula [9]:

BMC(M, k) := IM(s0) ∧
∧

0≤j≤k−1

RM(sj , sj+1) ∧
∨

0≤j≤k

FM(sj) (1)

Here sj (0 ≤ j ≤ k) represents the set of variables XM at depth j. The transition
relation of M is unfolded up to k steps, conjuncted with the initial and the final
state predicates at the first and the last steps respectively, and finally encoded
as a propositional formula that can be solved by a SAT solver. If the formula is
SAT then the satisfying assignment corresponds to an accepting trace of length
k (a counterexample to M � P). Otherwise, no accepting trace exists of length k
or less. It is possible to check for accepting traces of longer lengths by increasing
k and checking iteratively.

Unbounded Model Checking(UMC). The unbounded model checking
problem involves checking for an accepting trace of any length. Several SAT-
based approaches have been proposed to solve this problem [25]. In this paper,
we consider two approaches, one based on k-induction [27, 14, 15] and the other
based on interpolation [20].

The k-induction technique [27] tries to show that there are no accepting traces
of any length with the help of two SAT checks corresponding to the base and
induction cases of the UMC problem. In the base case, it shows that no accepting
trace of length k or less exists. This exactly corresponds to the BMC formula
(Eq. 1) being UNSAT. In the induction step, it shows that if no accepting trace
of length k or less exists, then there cannot be an accepting trace of length k +1
in M, and is represented by the following formula:

Step(M, k) :=
∧

0≤j≤k

RM(sj , sj+1)∧
∧

0≤j≤k

¬FM(sj)∧FM(sk+1)∧
∧

0≤i≤j≤k

si 6= sj+1

(2)

The induction step succeeds if Step(M, k) is UNSAT. Otherwise, the depth k is
increased iteratively until it succeeds or the base step is SAT (a counterexample is
found). The set of constraints of form si 6= sj+1 in (Eq. 2) (also known as simple
path or uniqueness constraints) are necessary for completeness of the method
and impose the condition that all states in the accepting trace must be unique.
The method can be implemented efficiently using an incremental SAT solver [14],
which allows reuse of recorded conflict clauses in the SAT solver across iterations
of increasing depths. The k-induction technique has the drawback that it may
require as many iterations as the length of the longest simple path between
any two states in M (also known as recurrence diameter [9]), which may be
exponentially larger than the longest of all the shortest paths (or the diameter)
between any two states. Translating the above formulas to propositional logic
may involve loss of structural information; we avoid it by using a SMT solver [29,
3, 28] as our main decision procedure.

Another approach to SAT-based UMC is based on using interpolants [20].
The method computes an over-approximation I of the reachable set of states in
M, which is also an inductive invariant for M, by using the UNSAT proof of the
BMC instance (Eq. 1). If I does not overlap with the set of final states, then it
follows that there exists no accepting trace in M. An important feature of this
approach is that it does not require unfolding the transition relation beyond the
diameter of the state space of M, and, in practice, often succeeds with shorter
unfoldings. We do not present the details of this approach here; they can be
found in [20, 5].

3 Assume-Guarantee Reasoning using Learning

Assume-Guarantee reasoning allows dividing the verification task of a system
with multiple components into subtasks each involving a small number of com-
ponents. AGR rules may be syntactically circular or non-circular in form. In this
paper, we will be concerned mainly with the following non-circular AGR rule:

Definition 2. Non-circular AGR (NC) Given STSs M1, M2 and CFA P ,
show that M1 ‖ M2 � P , by picking an assumption CFA A, such that both (n1)
M1 ‖ A � P and (n2) M2 � A hold.

The NC rule is sound and complete [23, 4, 28] and can be extended to a system
of n STSs M1 . . . Mn by picking a set of assumptions 〈A1 . . . An−1〉 [12]. The
proof of completeness of NC relies on the notion of weakest assumptions 2.

Lemma 2. (Weakest Assumptions) Given a finite STS M with support set
XM and a CFA P with support set XP , there exists a unique weakest assumption
CFA, WA, such that (i) M ‖ WA � P holds, and (ii) for all CFA A where
M ‖ A � P , L(A) ⊆ L(WA) holds. Moreover, L(WA) is regular and the support
variable set of WA is XM ∪ XP .

2 Although we focus our presentation on NC rule, our results can be applied to a
circular rule C presented in literature [7, 22] in a straightforward way. We implement
and experiment with both the rules (cf. Section 5).

As mentioned earlier (cf. Section 1), a learning algorithm for regular languages,
L∗, assisted by a model checker based teacher, can be used to automatically
generate the assumptions [12, 7]. However, there are problems in scaling this
approach to large shared memory systems. Firstly, the teacher must be able to
discharge the queries efficiently even if it involves exploring a large state space.
Secondly, the alphabet Σ of an assumption A is exponential in its support set of
variables. Since L∗ explicitly enumerates Σ during learning, we need a technique
to curb this alphabet explosion. We address these problems by proposing a SAT-
based implementation of the teacher and a lazy algorithm based on alphabet
clustering and iterative partitioning (Section 4).

3.1 SAT-based Assume-Guarantee Reasoning

We now show how the teacher can be implemented using SAT-based model
checking. The teacher needs to answer membership and candidate queries.

Membership Query. Given a trace t, we need to check if t ∈ L(WA) which
corresponds to checking if M1 ‖ {t} � P holds. To this end, we first convert t into
a language-equivalent STS Mt, obtain M = M1 ‖ Mt and perform a single BMC
check BMC(M, k) (cf. Section 2.1) where k is the length of trace t. Note that
since Mt accepts only at the depth k, we can remove the final state constraints at
all depths except k. The teacher replies with a true answer if the above formula
instance is UNSAT; otherwise a false answer is returned.

Candidate Query. Given a deterministic CFA A, the candidate query in-
volves checking the two premises of NC, i.e., whether both M1 ‖ A � P and
M2 � A hold. The latter check maps to SAT-based UMC (cf. Section 2.1) in a
straightforward way. Note that since A is deterministic, complementation does
not involve a blowup. For the previous check, we first obtain an STS M =
M1 ‖ MA where the STS MA is language-equivalent to A (cf. Section 2) and
then use SAT-based UMC for checking M � P .

In our implementation, we employ both induction and interpolation for SAT-
based UMC. Although the interpolation approach requires a small number of
iterations, computing interpolants, in many cases, takes more time in our imple-
mentation. The induction-based approach, in contrast, is faster if it converges
within small number of iterations. Using the above SAT-based query implemen-
tations, automated AGR is carried out in the standard way [12, 22, 28]. Note
that the support variable set for the assumption A is initialized to that of the
weakest assumption WA, i.e., XM1

∪ XP . Also, in practice, the AGR procedure
terminates with an assumption A with significantly fewer states than WA.

4 Lazy Learning

This section presents our new lazy learning approach to address the alphabet
explosion problem (cf. Section 1); in contrast to the eager BDD-based learning
algorithm [4], the lazy approach (i) avoids use of quantifier elimination to com-
pute the set of edges and (ii) introduces new states and transitions lazily only

when necessitated by a counterexample. We first propose a generalization of the
L∗ [26] algorithm and then present the lazy l∗ algorithm based on it. Due to
lack of space, we omit the full details of our generalization here. The details can
be found in the technical report [28].
Notation. We represent the empty trace by ε. For a trace u ∈ Σ∗ and symbol
a ∈ Σ, we say that u · a is an extension of u. The membership function J·K is
defined as follows: if u ∈ LU , JuK = 1, otherwise JuK = 0. We define a follow
function follow : Σ∗ → 2Σ, where follow(u) consists of the set of alphabet
symbols a ∈ Σ that u is extended by, in order to form u · a. A counterexample
trace ce is positive if JceK = 1, otherwise, it is said to be negative.
Generalized L∗. Given an unknown language LU defined over alphabet Σ, L∗

maintains an observation table T = (U,UA, V, T) consisting of trace samples
from LU , where U ⊆ Σ∗ is a prefix-closed set, V ⊆ Σ∗ is a set of suffixes, UA
contains extensions of elements in U and T is a map so that T (u, v) = Ju · vK for
some u ∈ U ∪UA and v ∈ V . In contrast to L∗, which extends each u ∈ U by the
full alphabet Σ to obtain UA, the generalized algorithm only allows each u to be
extended by the elements in the corresponding follow set, follow(u). The follow
sets may vary for different u ∈ U . We assume that a procedure Close Table

makes T closed by introducing new elements u into U and adding extensions of
u on elements in follow(u) to UA. Note that with follow(u) = Σ, the general-
ized algorithm is able to compute a deterministic and complete hypothesis CFA
C from a closed table T . Given any t ∈ Σ∗, we define its representative trace
[t]r to be the unique u ∈ U corresponding to the final state q of a run on t in
C. Also, the procedure Learn CE analyzes a counterexample ce obtained from
the teacher, obtains a split ce = ui · vi with distinguishing suffix vi using the
classification function αi = J[ui]

r · viK, and adds vi to V [26, 28]. An illustration
of the algorithm can be found in the extended version.
Lazy l∗ Algorithm. The main bottleneck in generalized L∗ algorithm is due
to alphabet explosion, i.e., it enumerates and asks membership queries on all
extensions of an element u ∈ U on the (exponential-sized) Σ explicitly. The lazy
approach avoids this as follows. Initially, the follow set for each u contains a
singleton element, the alphabet cluster true, which requires only a single enu-
meration step. This cluster may then be partitioned into smaller clusters in the
later learning iterations, if necessitated by a counterexample. In essence, the
lazy algorithm not only determines the states of the unknown CFA, but also
computes the set of distinct alphabet clusters outgoing from each state lazily.
More formally, l∗ performs queries on trace sets, wherein each transition cor-
responds to an alphabet cluster. We therefore augment our learning setup to
handle sets of traces. Let Σ̂ denote the set 2Σ and concatenation operator · be
extended to sets of traces S1 and S2 by concatenating each pair of elements from

S1 and S2 respectively. The follow function is redefined as follow : Σ̂∗ → 2Σ̂

whose range now consists of alphabet cluster elements (or alphabet predicates).
The observation table T is a tuple (U,UA, V, T) where U ⊆ Σ̂∗ is prefix-closed,
V ⊆ Σ̂∗ and UA contains all extensions of elements in U on elements in their
follow sets. T (u, v) is defined on a sets of traces u and v, so that T (u, v) = Ju ·vK

where the membership function J·K is extended to a set of traces as follows: given
a trace set S, JSK = 1 iff ∀t ∈ S. JtK = 1. In other words, a JSK = 1 iff S ⊆ LU .
This definition is advantageous in two ways. Firstly, the SAT-based teacher (cf.
Section 3.1) can answer membership queries in the same way as before by con-
verting a single trace set into the corresponding SAT formula instance. Secondly,
in contrast to a more discriminating 3-valued interpretation of JSK in terms of
0, 1 and undefined values, this definition enables l∗ to be more lazy with respect
to state partitioning.

Figure 1 shows the pseudocode for the procedure Learn CE, which learns
from a counterexample ce and improves the current hypothesis CFA C. Note
that for each u, follow(u) is set to true initially. The procedure Learn CE

calls the Learn CE 0 and Learn CE 1 procedures to handle negative and positive
counterexamples respectively. Learn CE 0 is the same as Learn CE in generalized
L∗: it finds a split of ce at position i (say, ce = ui · vi = ui · oi · vi+1), so
that αi 6= αi+1 and adds a new distinguishing suffix vi+1 (which must exist
by Lemma 3 below) to V to partition the state corresponding to [ui · oi]. The
procedure Learn CE 1, in contrast, may either partition a state or partition an
alphabet cluster. The case when vi+1 is not in V is handled as above and leads
to a state partition. Otherwise, if vi+1 is already in V , Learn CE 1 first identifies
states in the current hypothesis CFA C corresponding to [ui] and [ui · oi], say, q
and q′ respectively, and the transition predicate φ corresponding to the transtion
on symbol oi from q to q′. Let ur = [ui]

r. Note that φ is also an alphabet cluster
in follow(ur) and if oi = (ai, b

′
i), then φ(ai, b

′
i) holds (cf. Section 2).

The procedure Partition Table partition φ using oi (into φ1 and φ2) and
updates the follow set of ur. Also, it modifies the sets U and UA so that U
remains prefix-closed and UA only contains extensions of U on the new follow
set [28]. Note that since all the follow sets are disjoint and complete at each iter-
ation, the hypothesis CFA obtained from a closed table T is always deterministic
and complete (cf. Section 2).

Init: ∀u ∈ Σ∗, set follow(u) = true

Learn CE(ce)
if (JceK = 0)
Learn CE 0(ce)
else Learn CE 1(ce)

Learn CE 1(ce)
Find i so that αi = 1 and αi+1 = 0
if vi+1 6∈ V

V := V ∪ {vi+1}
For all u ∈ U ∪ UA: Fill(u, vi+1)

else
Let ce = ui · oi · vi+1

Let q = [ui] and q′ = [ui · oi]
Suppose RC(q, φ, q′) and oi ∈ φ

Partition Table([ui]
r
, φ, oi)

Learn CE 0(ce)
Find i so that αi = 0 and αi+1 = 1
V := V ∪ {vi+1}
For all u ∈ U ∪ UA: Fill(u, vi+1)

Partition Table(ur , φ, a)
φ1 := φ ∧ a, φ2 := φ ∧ ¬a

follow(ur) := follow(ur) ∪ {φ1, φ2} \ {φ}

Let Uext = {u ∈ U | ∃v ∈ Σ̂∗. u = ur · φ · v}
Let UAext = {u · φf | u ∈ Uext ∧ φf ∈ follow(u)}
U := U \ Uext

UA := UA \ UAext

For u ∈ {ur · φ1, ur · φ2}
UA := UA ∪ {u}
For all v ∈ V : Fill(u, v)

Fig. 1. Pseudocode for the lazy l∗ algorithm (mainly the procedure Learn CE).

Example. Figure 2 illustrates the l∗ algorithm for the unknown language LU

= (a|b|c|d) · (a|b)∗. Recall that the labels a, b, c and d are, in fact, predicates
over program variables. The upper and lower parts of the table represent U and
UA respectively, while the columns contain elements from V . The Boolean table
entries correspond to the membership query Ju · vK where u and v are the row
and column entries respectively. The algorithm initializes both U and V with
element ε and fills the corresponding table entry by asking a membership query.
Then, it asks query for a single extension of ε on cluster T (the L∗ algorithm will
instead asks queries on each alphabet element explicitly). Since ε 6≡ T , in order
to make the table closed, the algorithm further needs to query on the trace T ·T .
Now, it constructs the first hypothesis (Figure 2(i)) and asks a candidate query
with it. The teacher replies with a counterexample a · a, which is then used to
partition the follow set of T into elements a and ā. The table is updated and the
algorithm continues iteratively. The algorithm converges to the final CFA using
four candidate queries; the figure shows the hypotheses CFAs for first, third and
last queries. The first three queries are unsuccessful and return counterexamples
a · a (positive), a · b (positive), a · d · c (negative). The first two counterexamples
lead to cluster partitioning (by a and b respectively) and the third one leads
to state partitioning. Note that the algorithm avoids explicitly enumerating the
alphabet set for computing extensions of elements in Σ. Also, note that the
algorithm is insensitive to the size of alphabet set to some extent: if LU is of the
form Σ · (a|b)∗, the algorithm always converges in the same number of iterations
since only two cluster partitions from state q1 need to be made.

The drawback of this lazy approach is that it may require more candidate
queries as compared to the generalized L∗ in order to converge. This is because
the algorithm is lazy in obtaining information on the extensions of elements in U
and therefore builds candidates using less information, e.g., it needs two candi-
date queries to be able to partition the cluster T on both a and b (note that the
corresponding counterexamples a·a and a·b differ only in the last transition). We
have developed a SAT-based method [28] that accelerates learning in such cases
by generalizing a counterexample ce to include a set of similar counterexamples
(ce′) and then using ce′ to perform a coarser cluster partition.
Lemma 3. The procedure Learn CE 0 must lead to addition of at least one new
state in the next hypothesis CFA.

Lemma 4. The procedure Learn CE 1 either leads to addition of at least one
new state or one transition in the next hypothesis CFA.

Theorem 1. l∗ terminates in O(k·2n) iterations where k is the alphabet size and
n is the number of states in the minimum deterministic CFA Cm corresponding
to LU .

Optimizing l∗. Although the theoretical complexity of l∗ is high (mainly
due to the reason that l∗ may introduce a state corresponding to each subset of
states reachable at a given depth in Cm), our experimental results show that the
algorithm is effective in computing small size assumptions on real-life examples.
Moreover, in the context of AGR, we seldom need to learn Cm completely; often,
an approximation obtained at an intermediate learning step is sufficient.

ε

ε 0 (q0)
T 1 (q1)

T· T 0

ε

ε 0 (q0)
T 1 (q1)

T·a 1
T·b 1

T·(a|b) 0

ε c

ε 0 1 (q0)
T 1 0 (q1)

T·(a|b) 0 0 (q2)

T·a 1 0
T·b 1 0

T·(a|b)· T 0 0

q0

T

T
q1

T

(a|b)
(a|b)q0

q1 T
(a|b)

(a|b)

Tq0 q1 q2

(i) (ii) (iii)
Fig. 2. Illustration of the l∗ algorithm for LU = (a|b|c|d)(a|b)∗. Rows and column rep-
resent elements of U ∪UA and V respectively. Alphabets are represented symbolically:
T = (a|b|c|d), (a|b) = (c|d).

5 Implementation and Experiments

We have implemented our SAT-based AGR approach based on NC and C rules
in a tool called Symoda, written in C++. The l∗ algorithm is implemented
together with related optimizations. SMV and Verilog benchmarks are translated
into an intermediate input language of the tool using automated scripts [28]. We
use the incremental SMT solver YICES [3, 13] as the main decision procedure.
Interpolants are obtained using the library interface to the FOCI tool [2]. We
represent states of a CFA explicitly while BDDs are used to represent transitions
compactly and avoid redundancy.
Experiments. All experiments were performed on a 1.4GHz AMD machine
with 3GB of memory running Linux. Table 1 compares three algorithms for
automated AGR: a BDD-based approach [4, 22] (BDD-AGR), our SAT-based
approach using l∗ (Lazy-AGR) and (P-AGR), which uses a learning algorithm
for parameterized systems [8]. The last algorithm was not presented in context
of AGR earlier; we have implemented it using a SAT-based teacher and other
optimizations for comparison purposes. The BDD-AGR approach automatically
partitions the given model before learning assumptions while we manually assign
each top-level module to a different partition. Benchmarks s1a, s1b, guidance,
msi and syncarb are derived from the NuSMV tool set and used in the previous
BDD-based approach [22] while peterson and CC are obtained from the VIS
and Texas97 benchmark sets [1]. All examples except guidance and CC can be
proved using monolithic SAT-based UMC in small amount of time. Note that in
some of these benchmarks, the size of the assumption alphabet is too large to
be even enumerated in a short amount of time.

The SAT-based Lazy-AGR approach performs better than the BDD-based
approach on s1a and s2a (cf. Table 1); although they are difficult for BDD-based
model checking [4], SAT-based UMC quickly verifies them. On the msi exam-
ple, the Lazy-AGR approach scales more uniformly compared to BDD-AGR.
BDD-AGR is able to compute an assumption with 67 states on the syncarb
benchmark while our SAT-based approaches with interpolation timeout with

assumption sizes of around 30. The bottleneck is SAT-based UMC in the candi-
date query checks; the k-induction approach keeps unfolding transition relations
to increasing depths while the interpolants are either large or take too much
time to compute. On the peterson benchmark, BDD-AGR finishes earlier but
with larger assumptions of size up to 34 (for two partitions) and 13 (for four
partitions). In contrast, Lazy-AGR computes assumptions of size up to 6 while
P-AGR computes assumptions of size up to 8. This shows that it is possible
to generate much smaller assumptions using the lazy approach as compared to
the eager BDD-based approach. Both the guidance and syncarb examples re-
quire interpolation-based UMC and timeout inside a candidate query with the
k-induction based approach. P-AGR timeouts in many cases where Lazy-AGR
finishes since the former performs state partitions more eagerly and introduces
unnecessary states in the assumptions. We also compare the impact of various
optimizations in the extended version [28].

Example TV GV Mono BDD-AGR P-AGR Lazy-AGR

NC C NC C NC C

#A Time #A Time #A Time #A Time #A Time #A Time

s1a 86 5 0.54 2 754 2 223 3 3 3 3 3 3.5 3 1.3
s1b 94 5 0.58 2 TO 2 1527 3 3.3 3 3.3 3 3.9 3 2

guidance 122 22 129 2 196 2 6.6 1 31.5i 5 146i 1 40i 3 55i

msi(3) 57 22 1.2 2 2.1 2 0.3 1 8 * TO 1 8 3 17
msi(5) 70 25 2.2 2 1183 2 32 1 16 * TO 1 15 3 43

syncarb 21 15 3.16 - - 67 30 * TOi * TOi * TOi * TOi

peterson 13 7 0.54 - - 34 2 6 53i 8 210i 6 13 6 88i

CC(2a) 78 30 3.9 - - - - 1 8 * TO 1 8 4 26
CC(3a) 115 44 3.7 - - - - 1 8 * TO 1 7 4 20
CC(2b)i 78 30 337 - - - - * TO * TO 10 1878 5 87
CC(3b)i 115 44 526 - - - - * TO * TO 6 2037 11 2143
Table 1. Comparison of BDD-based and Lazy AGR schemes. P-AGR uses a learning
algorithm for parameterized systems [8] while Lazy-AGR uses l∗. TV and GV represent
the number of total and global boolean variables respectively. The Mono column shows
the time taken with SAT-based UMC. All times are in seconds. TO denotes a timeout
of 3600 seconds.#A denotes states of the largest assumption. ’-’ denotes that data could
not be obtained due to the lack of tool support (The tool does not support the NC

rule or Verilog programs as input). The superscript i denotes that interpolant-based
UMC was used.

Conclusions. We have presented a new SAT-based approach to automated
AGR for shared memory systems based on lazy learning of assumptions; al-
phabet explosion during learning is avoided by representing alphabet clusters
symbolically and performing on-demand cluster partitioning during learning.
Experimental results demonstrate the effectiveness of our approach on hardware
benchmarks. Since we employ off-the-shelf SMT solvers, we can directly leverage
future improvements in SAT/SMT technology. Our techniques can be applied
to software and other infinite state systems provided the weakest assumption

has a finite bisimulation quotient. Future work includes investigating techniques
to exploit incremental SAT solving for discharging each AGR premise, faster
counterexample detection and obtaining good system decompositions for AGR.

Acknowledgements. We would like to thank Flavio Lerda for help wth the
translator from SMV to SIL and the C interface to FOCI and also for numerous
helpful discussions. We would like to thank Constantinos Bartzis and Tamir
Heyman for several informative discussions. We also thank Dilsun Kaynar for
carefully reading through a draft of this paper and providing useful comments.

References

[1] http://vlsi.coloradu.edu/~vis/.
[2] Foci: An interpolating prover. http://www.kenmcmil.com/foci.html.
[3] Yices: An smt solver. http://yices.csl.sri.com/.
[4] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning as-

sumptions. In CAV, 2005.
[5] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan. An analysis of sat-based

model checking techniques in an industrial environment. In CHARME, pages 254–268, 2005.
[6] Dana Angluin. Learning regular sets from queries and counterexamples. In Information and

Computation, volume 75(2), pages 87–106, November 1987.
[7] H. Barringer, D. Giannakopoulou, and C.S Pasareanu. Proof rules for automated compositional

verification. In SAVCBS, 2003.
[8] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state machines with

parameters. In FASE, pages 107–121, 2006.
[9] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Y. Zue. Bounded

Model Checking, volume 58 of Advances in computers. 2003.
[10] Sagar Chaki and Ofer Strichman. Optimized L* for assume-guarantee reasoning. In TACAS,

2007. To Appear.
[11] J. Cobleigh, G. Avrunin, and L. Clarke. Breaking up is hard to do: an investigation of decom-

position for assume-guarantee reasoning. In ISSTA, pages 97–108, 2006.
[12] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for composi-

tional verification. In TACAS, volume 2619. Springer-Verlag, 2003.
[13] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In CAV,

pages 81–94, 2006.
[14] Niklas Eén and Niklas Sörensson. Temporal induction by incremental sat solving. Electr. Notes

Theor. Comput. Sci., 89(4), 2003.
[15] R. Armoni et al. Sat-based induction for temporal safety properties. Electr. Notes Theor.

Comput. Sci., 119(2):3–16, 2005.
[16] Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S. Pasareanu. Refining interface

alphabets for compositional verification. In TACAS, 2007. To Appear.
[17] JE Hopcroft and JD Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading, Massachusetts, 1979.
[18] Cliff B. Jones. Tentative steps toward a development method for interfering programs. ACM

Trans. Program. Lang. Syst., 5(4):596–619, 1983.
[19] Patrick Maier. A set-theoretic framework for assume-guarantee reasoning. In ICALP, pages

821–834, 2001.
[20] K. L. McMillan. Interpolation and sat-based model checking. In CAV, pages 1–13, 2003.
[21] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans. Software

Eng., 7(4):417–426, 1981.
[22] Wonhong Nam and Rajeev Alur. Learning-based symbolic assume-guarantee reasoning with

automatic decomposition. In ATVA, pages 170–185, 2006.
[23] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional reasoning. In

CAV2000, number 1855, pages 139–153. Springer-Verlag, 2000.
[24] A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics

and models of concurrent systems. Springer-Verlag, 1985.
[25] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in sat-based

formal verification. STTT, 7(2):156–173, 2005.
[26] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing sequences.

In Inf. Comp., volume 103(2), pages 299–347, 1993.
[27] Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety properties using induc-

tion and a sat-solver. In FMCAD, pages 108–125, 2000.
[28] Nishant Sinha and Edmund Clarke. SAT-based compositional verification using lazy learning.

Technical report CMU-CS-07-109, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA,
February 2007.

[29] C. Tinelli and S. Ranise. SMT-LIB: The Satisfiability Modulo Theories Library.
http://goedel.cs.uiowa.edu/smtlib/, 2005.

