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ABSTRACT
Query-by-humming systems search a database of music for good
matches to a sung, hummed, or whistled melody. Errors in
transcription and variations in pitch and tempo can cause
substantial mismatch between queries and targets. Thus,
algorithms for measuring melodic similarity in query-by-
humming systems should be robust. We compare several
variations of search algorithms in an effort to improve search
precision. In particular, we describe a new frame-based algorithm
that significantly outperforms note-by-note algorithms in tests
using sung queries and a database of MIDI-encoded music.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – query formulation, retrieval models, search
process.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
dynamic programming, melodic comparison, melodic search,
Music Information Retrieval (MIR), sung query

1. INTRODUCTION
Music Information Retrieval (MIR) is a relatively new area of
investigation. The goal of MIR research is to develop new theory
and techniques for processing musical information and searching
music databases by content. One interesting branch of MIR is
sometimes called “Query by Humming”. Compared to other data
entry methods, humming is considered the easiest way for
ordinary non-musicians to express a music query. A client’s input
device can be a simple microphone connected to a computer.
Unfortunately, one feature of sung queries is a high error rate
exacerbated by a difficult transcription problem, so robust
matching techniques are essential. We are interested in comparing
and evaluating melodic matching techniques that compare sung

queries to MIDI data. (In the future, we plan to investigate
searching audio data as well.)

In this work, we are not particularly concerned with long
execution times even though a practical system operating on a
large database must be efficient. By ignoring efficiency issues, we
can explore a wider range of algorithms. The best of these will
serve as a benchmark to evaluate more practical, efficient
approaches. Our work indicates that better search is possible by
using new measures of melodic similarity.

Our work is part of a larger project, MUSART [1], which integrates
techniques for music analysis, representation, abstraction, and
search. In this study, we use a database of themes that is
automatically constructed from full MIDI files using the MUSART

theme extractor [12], and queries are sung by non-experts without
any specific instructions for style or articulation. Thus, we believe
these results are indicative of “real-world” data. We are in the
process of moving our work to a music library to help with data
collection and evaluation.

2. RELATED WORK AND BACKGROUND
Music database systems that accept humming queries are
becoming increasingly common and more sophisticated. [2, 5, 11]
Typically, these databases transcribe sung queries into a sequence
of pitches and rhythms. These are then matched to database
entries using various string comparison and N-gram algorithms.

Sung queries are known to be difficult to segment into discrete
notes. One reason is that people tend to make all kinds of
accidental and intentional variations in pitch and duration when
they sing. [6, 11] Tempo can vary from roughly half the speed to
double, even within one sung query. Furthermore, current
methods for pitch extraction and vowel detection make systematic
errors. The result is that there can be a large difference between
the user’s intended query and the query transcribed from a user’s
vocalization. This makes the melodic search problem difficult.

3. VARIATIONS ON MELODIC SEARCH
Dynamic programming [17] has been applied to melodic
comparison [3, 7] and has become a standard technique in music
information retrieval. Dynamic programming is popular for music
information retrieval because melodic contours can be represented
as character strings, thus melodic comparison and search can
benefit from the more mature research area of string matching. As
the dynamic programming technique is popular for approximate
string matching, it is only natural that it be broadly used in the
area of melodic search. However, although melodic search is
inspired by string matching techniques, it has many properties and
practical problems that do not exist in string matching. Here, we
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would like to discuss some important characteristics of melodic
search. We can then pursue variations of the dynamic
programming techniques to achieve better performance in melodic
search.

Dynamic programming is also used in algorithms associated with
Markov Models (e.g. the Viterbi algorithm) and Hidden Markov
Models (HMM). In fact, many string comparison algorithms and
our melodic similarity algorithms can be viewed as special cases
of Markov or Hidden Markov Models. [4] The advantage of the
Markov formalisms is that arbitrary “edit distances” in string
algorithms can be replaced by estimated probabilities in Markov
algorithms. We are currently pursuing this direction in hope of
improving our search algorithms.

3.1 Edit Distance
When melodies are viewed as strings, one measure of similarity is
the number or cost of editing operations that must be performed to
make the strings identical. The minimum cost is called the “edit
distance.” The most common editing operations for melodic
comparisons are inserting a note (insertion), deleting a note
(deletion) and replacing a note (replacement). Mongeau and
Sankoff [13] define two more advanced editing operations:
segment one note into multiple notes (fragmentation) and combine
multiple notes to form a single note (consolidation). Those five
basic operations set up the foundation of a dynamic programming
algorithm applied to melodic comparison.

For two sequences A = a1, a2, … , am and B = b1, b2, … , bn, di,j

represents the dissimilarity between a1, a2, … , ai and b1, b2, … ,
bj. The recurrence equation for 1 ≤ i ≤ m and
1 ≤ j ≤ n is
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Figure 1. Calculation pattern 1.

The calculation of di,j is illustrated in Figure 1. w(ai, φ) is the
weight associated with the deletion of ai, w(φ, bj) with the
insertion of bj and w(ai, bj) with the replacement of ai by bj, w(ai,
bj-k+1, …, bj) and w(ai-k+1, …, ai, bj) with the fragmentation and the
consolidation respectively. Initial conditions are

di,0 = di-1,0 + w(ai, φ), i ≥ 1 (deletion)
d0,j = d0,j-1 + w(φ, bj), j ≥ 1 (insertion)
and
d0,0 = 0.

The definitions above represent one possible approach. In fact,
there are many variations, some of which will be discussed later.

3.2 Windows and Constraints
Melodic comparison, as just described, compares two strings in
their entirety, from beginning to end, and finds the best match
even if it requires extensive and unlikely edits. Windows and
constraints can be used to rule out some unlikely matches. [9] For
hummed queries, it may help to assume that people do not skip
many notes, insert many notes, or make drastic tempo changes at
any one point. Therefore, “true” matches will match along or near
a diagonal of the matrix di,j. We can apply a window to the
algorithm, and only the cells inside the window are calculated.
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Figure 2. Window within the table.

Figure 2 shows a window applied to the sequence comparison
table. The window is basically a diagonal band representing the
allowable range of misalignment between the two patterns. The
cells in the gray area are assigned a predefined maximum value
directly, in order to force the valid paths starting from d1,1 to dm,n

never to extend outside the window.

While we have described a complete comparison, melodic search
is in fact substring matching because queries need not contain
every note in a song. In melodic search, the dissimilarity between
the query and the compared sequence is actually the smallest
dissimilarity between the query sequence and any substring from
the compared sequence. Those substrings can start at any position
of the sequence and end at any later position, which means they
do not have fixed start/end points and the lengths may vary.

Let A be a database sequence and B be a query sequence. To find
a match starting at a1, we use dynamic programming as described
above to match all of B, but we do not specify an ending symbol
in A. Instead, we take the minimum value (over i) of di,n. A
window is used to limit the extent of the search. Assuming the
window width grows in proportion to n, the time complexity of
this substring comparison will be O(n2). To find the best match to
any substring, we can compute the best match starting at each
symbol in A, as shown in Figure 3. The time complexity of this
algorithm is O(n2m): each step takes O(n2) and the window is



moved O(m) times. If a window is not used, this time can be
reduced to O(nm) (see below).
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Figure 3. Sliding windows in melodic search.

3.3 Frames vs. Notes
We call the note-by-note matching approach event-based search to
emphasize that notes are discrete events rather than continuous
functions of time. As mentioned earlier, there are problems in
segmenting (transcribing) an audio query into discrete notes
correctly. Furthermore, pitch and duration are two significant
attributes of notes, but it is hard to define edit distance other than
to consider some linear combination of pitch and duration
differences. [16] Because of these problems, the edit distance may
not be the best measure of perceptual melodic dissimilarity.

Another representation and search strategy we have explored is
called frame-based search. Instead of working with discrete notes,
the frame-based representation encodes a query rather directly by
segmenting the time-varying pitch contour into frames of equal
duration. There is no segmentation into notes. [10] This approach
is inspired by early speech recognition research [15] and also
related to the approach of Nishimura, et al. [14]. Figure 4
illustrates a pitch contour, a sequence of pitch estimates used in
frame-based algorithms, and a transcribed series of notes used in
event-based algorithms.

The frame-based representation has some important advantages
over the event-based representation. First, frames do not represent
notes explicitly, thus problems relating to note transcription do not
arise. These problems include note segmentation (where are the
notes?), pitch variation within notes (how do we pick a single
pitch for the note?), and note quantization (should pitch be
quantized to a musical scale?). Secondly, since the frame
sequence includes both the pitch and rhythm information, no
weighted combination of pitch and duration distance is required.
We also found that incorporating window-like constraints in the
frame-based approach is relatively easy. One method we tested
can implicitly achieve a window-like constraint within the edit
distance equations.

The disadvantage of the frame-based approach is that it is very
slow because of much longer query sequences. Also, frames do
not carry rhythmic information. If transcription produces good
segmentation (for example, if the user can indicate notes by clear
articulation or by tapping), then event-based algorithms can take
advantage of the additional structure, but frame-based algorithms
cannot. In our work, segmentation is generally poor, and this
favors the frame-based approach.
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Figure 4. Original melody contour, frame-based
representation and event-based representation.

3.4 Prefix and Suffix
For a substring Asub = ai, ai+1, … , ak derived from original
sequence A = a1, a2, … , am (1 ≤ i ≤ k ≤ m), we define the prefix
and suffix of that substring to be:

Aprefix = a1, a2, … , ai-1

Asuffix = ak+1, ak+2, … , am

Recall that we want to search for a match between the query
sequence and any substring of the compared sequence. Therefore,
we want the best match, ignoring some prefix and suffix. In the
conventional dynamic programming algorithm, there is a penalty
for skipping. As we discussed before, we can avoid the penalty by
applying a sliding window that starts at each ai. Alternatively, we
can assign no penalty for skipping the prefix and suffix by making
slight changes to the algorithm. [11] The initial conditions of the
original melodic comparison algorithm are changed to:

di,0 = 0, i ≥ 0
d0,j = d0,j-1 + w(φ, bj), j ≥ 1

Then, di,j represents the minimum dissimilarity between the query
sequence b1, b2, … , bj and any subsequence of a1, a2, … , ai.

Because there are no fixed start points and end points, we cannot
restrict computation to a specific window, but the time complexity
is O(mn). We call this the “one pass” technique to differentiate
with the “sliding window” technique.

3.5 Pitch Transposition
We are not very sensitive to absolute pitch, so the pitches of a
melody can be shifted, or transposed, by any interval. A melodic
sequence can be made invariant with respect to transposition by
recording intervals between notes rather than absolute pitches.
[18] This representation has the disadvantage of allowing
transpositions in the middle of a melody, a major perceptual
change, with only a small penalty in terms of edit distance. An
alternative is to simply transpose queries into each of 12 possible



keys. To limit the number to 12, we ignore octave transpositions.
This still allows shifts of an octave within a melody without
penalty, but this is not unreasonable from a perceptual point of
view.

For event-based algorithms, we search the database 12 times, once
for each possible transposition. Pitches are rounded to the nearest
semitone after adjusting sung queries for systematically sharp or
flat pitches. The pitches of the frames are not quantized but are
represented as floating point values. To limit the cost of search,
we ignore octaves here as well and search the database 24 times,
transposing the query by quartertones (there are 24 quartertones in
one octave).

3.6 Tempo Scaling
In the same way that pitches can be offset without changing the
perceptual quality of a melody, time can also be scaled. Thus, it is
the relative durations of notes, or perhaps the shape of the melodic
contour rather than absolute duration that gives a melody its
rhythmic and temporal identity. As with transposition, this
problem could be approached with a representation of duration
ratios rather than absolutes. However, as with the interval
representation for pitch, this would allow a drastic change in
tempo with only a single insertion or deletion, hence a minor
penalty in terms of edit distance. We chose to search the database
with numerous time-scaled versions of queries (or alternatively,
time-scaled versions of the database entries) to cover a reasonable
range of tempos. At least one of these time-scaled versions should
be a close match to a correct target in the database. Further minor
adjustments are allowed through the dynamic programming
algorithm and its associated edit distances.

3.7 Pitch Estimation and Transcription
Pitch estimation is performed using an enhanced autocorrelation
algorithm [19] using overlapping windows to estimate 100
fundamental frequencies per second, reporting zero when the
amplitude is low or when there is no clear peak fundamental. We
found that this works as well as other methods and commercial
products that we also tested. [10] For frame-based algorithms, the
data is converted to 10 estimates per second by taking the mean of
non-zero estimates for that region. For event-based algorithms,
transcription is accomplished by first using a histogram method to
identify an absolute pitch reference. This minimizes quantization
error when fundamental frequency estimates are mapped to
discrete pitches. Then, consecutive frames with small pitch
differences are merged to form notes. Notes with very low
durations are not reported. Source code is available from the
authors.

4. EXPERIMENT
To set up our experiment we picked four typical variations of
dynamic programming algorithms combining different
characteristics discussed above.

4.1 Algorithm 1.
The first one is a simple algorithm that integrates only three most
basic operations of dissimilarity comparison: insertion, deletion
and replacement. It is based on note sequences, but only
considering pitch information, ignoring duration information. So
the weight w(ai, bj) is defined as the pitch difference between ai

and bj.

The algorithm is applied with a sliding window, and the
calculation for each dissimilarity value di,j uses the Itakura
constraints [8] as shown below:
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Figure 5. Calculation pattern 2.

The cell relationship for the calculation of di,j according to the
equation shown in Figure 5 represents a typical calculation pattern
used in our experiments.

4.2 Algorithm 2.
The second one is also an event-based algorithm but
implementing all the five basic operations including
fragmentation and consolidation and considering both pitch and
duration information, as described by Mongeau and Sankoff [13].
We tried combining “sliding-window” and “one-pass” techniques
individually with this algorithm but found little difference in
output, except that the one with “one-pass” runs much faster.
Probably, the sliding window does not improve precision because
the edit distance calculation incorporates duration information and
assigns a penalty for tempo variation. In our experiment, this
algorithm is applied with the “one-pass” technique. To deal with
tempo variation, we scale database durations from 0.5 to 2.0 in
steps of 1.08. This was found to significantly enhance the
precision of the search by compensating for tempo differences
between queries and targets.

4.3 Algorithm 3.
The third algorithm is very similar to the first one, same
calculation pattern, same sliding window, same pitch-only weight
definition, but based on frame sequences. The query is segmented
into 100ms frames, while the compared sequence is segmented
according to multiple stretch factors to allow tempo differences.

4.4 Algorithm 4.
The last approach is an improved algorithm invented after
studying the previous algorithms and many variations. It is a
frame-based algorithm implementing three basic operations—
replacement, fragmentation and consolidation, but in an
alternative way. The calculation pattern is:
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Figure 6. Calculation pattern 3.

As shown in Figure 6, the cell relationship for the calculation is
symmetric along the diagonal of di,j. The whole algorithm can be
deemed as shrinking the musical contour of either the query or the
compared sequence to (locally) double the tempo at certain
positions, and then comparing two musical contours exactly. It
can also be viewed as assigning a penalty for insertion/deletion.

By observing the calculation pattern 3, we can see that skipping
two consecutive frames in either A or B is not permitted except
for a prefix and suffix of A. This means that the alignment
between A and B will fall within a rhombic pattern shown in
Figure 7, shaped much like the window seen earlier. Unlike a
window, this constraint is generated implicitly by the edit distance
functions, so we get the efficiency of a “one pass” algorithm and
constraints similar to a “window” algorithm.

4.5 Database and Queries
For the experiment, we collected and processed 598 MIDI files
containing popular songs. These include rock songs, folk songs,
and TV theme songs, making it easy to invite non-musicians to
sing the theme of a song included in the database. The files
contain a total of 1,239,138 notes.
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Figure 7. Window-like constraint implicitly set up by
calculation pattern 3.

The data is processed using the MUSART thematic extractor [12],
which locates the 10 most common phrases or melodies from each
original file. After processing, there are 5980 entries in the
database with an average length of 22 notes. Although this is still
a relatively small number, we believe it is large enough to assess
the relative quality of different melodic comparison and search
algorithms, which is the purpose of this study. Since the original
files now have 10 representative melodies, our search algorithms
report the best match to any of the 10 themes as the match score
for the original file.

Experiments on a smaller, but similar database showed that search
performance improved when we searched over themes rather than
full files. This is consistent with the fact that the theme extractor
does very well at finding the themes that humans identify. And
also, subjects are much more likely to hum these themes than
some other material contained in the file. By removing non-
thematic music from the data, we reduce the chance of matching
harmonies, introductions, and material that contains chance
similarities to themes of other songs.

We collected 37 queries to assess the system. Subjects were not
given any special instructions with respect to how to sing, hum, or
whistle a song. This resulted in queries that are generally
recognizable but difficult to automatically transcribe accurately.
The queries include male and female voices with a range of
musical ability, and the queries include humming, singing, and
whistling. Table 1 shows the distribution of those queries.

Table 1. Query distribution

Sing Whistle Hum

Female 3 2 0

Male 0 15 17

For each query, we compute a measure of dissimilarity to each
entry in the database, and we determine the rank order of the
correct database entry for the query. The quality of the algorithm
is assessed by counting how many searches return correct songs
with a rank order of 1, in the top 10, or in the top 100.

5. RESULTS
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The result shows that frame-based algorithms (Algorithm 3 and 4)
perform much better than event-based algorithms (Algorithm 1
and 2). Comparing the two event-based algorithms, the one
implementing all five basic operations (Algorithm 2) gets better



results. It is also by far the best among all the event-based
algorithms we have tested. We suspect that the consolidation and
fragmentation operations make up, in part, for errors in
segmentation. Therefore, random segmentation errors do not have
such a negative impact on the similarity estimate.

The frame-based algorithm implementing calculation pattern 3
(Algorithm 4) is better than all the other algorithms and it actually
runs much faster than the other frame-based algorithm because it
only runs the dynamic programming algorithm once across the
table. Figure 9 summarizes these properties qualitatively. Speed
(queries per second) is measured relative to the slowest algorithm;
quality is represented using rank order with 1 indicating the best.
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Figure 9. Quality/speed chart for
melodic search algorithms.

6. SUMMARY AND CONCLUSION
“Query by Humming” searches melodies in a database for
matches to an audio query. There are many sources of error in
queries, including the vocalization of the query itself, the
estimation of fundamental frequencies in the sound, and the
transcription of this frequency contour into a discrete
representation.

Algorithms for “Query by Humming” must deal with many issues,
including robustness in the face of transcription errors,
transposition invariance, overall tempo differences, and local
tempo variation. Algorithms must also allow searching for
substrings within an overall melody.

To study these issues, we have implemented and evaluated a
promising set of search algorithms, including a new class of
algorithms we call frame-based, because they segment the query
into equal-sized time frames. The potential advantages of frame-
based algorithms are that they deal with both time and pitch in an
elegant manner and they do not rely upon a note segmentation or
transcription step that is known to introduce errors. From our
experiments, we can conclude that frame-based algorithms
outperform the best event-based algorithms in terms of precision.
(This conclusion assumes that our audio queries and transcription
errors are typical.)

Between the two event-based algorithms, Algorithm 2 performs
better. In preliminary work, we tried this algorithm with and
without the “consolidation” and “fragmentation” operations, and
the performance with these operations is better. Therefore, we

conclude “consolidation” and “fragmentation” are important. In
contrast, Algorithm 1 uses different constraints and ignores
durations.

We found that automatic theme extraction, important for reducing
search time, also enhances precision. This is an important finding
for making search faster on large databases. Because themes tend
to be short, they may allow interesting indexing schemes to be
applied.

Quality and speed are two interdependent factors in evaluating
melodic search algorithms. Of course the ideal solution will
increase both quality and speed. Knowing about the extremes
along each axis is a prerequisite for algorithm evaluation. Known
algorithms such as indexing can be very fast even in a large
database, but our work shows that fast algorithms that have been
the focus of previous investigations are not delivering the best
possible precision.

Our study of melodic similarity has led to an interesting
improvement in which edit distance calculations implicitly
constrain tempo variations, and this algorithm outperforms all
others we have tried. Observing that frame-based approaches tend
to work better than event-based approaches, we can consider
further enhancements such as a probabilistic treatment of edit cost
functions. Although slow, our frame-based algorithm can serve as
a benchmark against which other algorithms can be compared.

7. FUTURE WORK
In the future, we plan to incorporate a probabilistic model of pitch
estimation into the frame-based approach. By measuring actual
pitch estimation errors from hand-labeled queries, we should be
able to improve our edit cost functions. Similar training was used
in another melodic similarity task [6].

Optimization of frame-based matching is important for practical
applications. A frame-based algorithm could be the final pass after
a faster query narrowed the database to a small set of candidates.
Alternatively, some sort of frame-based algorithm might be run at
lower time resolution to increase speed. Tempo estimation and
key estimation might reduce the need to search over different
tempos and keys. Finally, it might be possible to build a database
index based on melodic fragments (shorter than themes) matched
using frame-based techniques.
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