
Pattern Discovery Techniques for Music Audio
Roger B. Dannenberg and Ning Hu

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

1-412-268-3827

{rbd,ninghu}@cs.cmu.edu
ABSTRACT
Human listeners are able to recognize structure in music through
the perception of repetition and other relationships within a piece
of music. This work aims to automate the task of music analysis.
Music is “explained” in terms of embedded relationships,
especially repetition of segments or phrases. The steps in this
process are the transcription of audio into a representation with a
similarity or distance metric, the search for similar segments,
forming clusters of similar segments, and explaining music in
terms of these clusters. Several transcription methods are
considered: monophonic pitch estimation, chroma (spectral)
representation, and polyphonic transcription followed by
harmonic analysis. Also, several algorithms that search for
similar segments are described. These techniques can be used to
perform an analysis of musical structure, as illustrated by
examples.

1. INTRODUCTION
Digital sound recordings of music can be considered the lowest
level of music representation. These audio representations offer
nothing in the way of musical or sonic structure, which is
problematic for many tasks such as music analysis, music search,
and music classification. Given the current state of the art,
virtually any technique that reveals structure in an audio
recording is interesting. Techniques such as beat detection, key
detection, chord identification, monophonic and polyphonic
transcription, melody and bass line detection, source separation,
speech recognition, and instrument identification all derive some
higher-level information from music audio. There is somehope
that by continuing to develop these techniques and combine
them, we will be better able to reason about, search, and classify
music, starting from an audio representation.

In this work, we examine ways to discover patterns in music
audio and to translate this into a structural analysis. The main
idea is quite simple: musical structure is signaled by repetition.
Of course, “repetition” means similarity at some level of
abstraction above that of audio samples. We must process sound
to obtain a higher-level representation before comparisons are
made, and must allow approximate matching to allow for
variations in performance, orchestration, lyrics, etc. In a number
of cases, our techniques have been able to describe the main
structure of music compositions.

We have explored several representations for comparing music.
Monophonic transcription can be used for music where a single
voice predominates (even in a polyphonic recording). Spectral
frames can be used for more polyphonic material. We have also
experimented with a polyphonic transcription system.

For each of these representations, we have developed heuristic
algorithms to search for similar segments of music. We identify
pairs of similar segments. Then, we attempt to simplify the
potentially large set of pairs to a smaller set of clusters. These
clusters identify “components” of the music. We can then
construct an explanation or analysis of the music in terms of
these components. The goal is to derive structural descriptions
such as “AABA.”

We believe that the recognition of repetition is a fundamental
activity of music listening. In this view, the structure created by
repetition and transformation is as essential to music as the
patterns themselves. In other words the structure AABA is
important regardless of what A and B represent. At the risk of
oversimplification, the first two A’s establish a pattern, the B
generates tension and expectation, and the final A confirms the
expectation and brings resolution. Structure is clearly important
to music listening. Structure can also contribute expectations or
prior probabilities for other analysis techniques, such as
transcription and beat detection, where knowledge of pattern and
form might help to improve accuracy. It follows that the analysis
of structure is relevant to music classification, music retrieval,
and other automated processing tasks.

2. RELATED WORK
It is well known that music commonly contains patterns and
repetition. Any music theory book will discuss musical form and
introduce notation, such as “AABA,” for describing musical
structures. Many researchers in computer music have
investigated techniques for pattern discovery and pattern search.
Cope [4] searches for “signatures” that are characteristic of
composers, and Rolland and Ganascia describe search techniques
[21]. Interactive systems have been constructed to identify and
look for patterns [24], and much of the work on melodic
similarity [9] is relevant to the analysis of music structure.

Simon and Sumner wrote an early paper on music listening and
its relationship to pattern formation and memory [23], proposing
that we encode melody by referencing patterns and
transformations. This has some close relationships to data
compression, which has also inspired work in music analysis and
generation. [11] Narmour describes a variety of transformative
processes that operate in music to create structures that listeners
perceive. [18]

A fundamental idea in this work is to compareevery point of a
music recording with every other point. This naturally leads to a
matrix representation in which rowi, columnj corresponds to the
similarity of time points i and j. A two-dimensional grid to
compute and display self-similarity has been used by Wakefield
and Bartsch [1] and by Foote and Cooper [8].

Mont-Reynaud and Goldstein proposed rhythmic pattern
discovery as a way to improve music transcription. [16] Conklin
and Anagnostopoulou examine a technique for finding significant
exactly identical patterns in a body of music. [3] A different
approach is taken by Meek and Birmingham to search for
commonly occurring melodies or other sequences. [14]

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.
© 2002 IRCAM – Centre Pompidou

3. PATTERN SEARCH
In this section, we describe the general problem of searching for
similar sections of music. We assume that music is represented as
a sequencesi, i = 0…n–1. A segmentof music is denoted by a
starting and ending point: (i, k), 0 ≤ i ≤ k < n. Similar sections
consists of two segments: ((i, k), (j, l)), 0 ≤ i ≤ k < j ≤ l < n. For
convenience, we do not allow overlapped segments1, hencek < j.

There are O(n4) possible pairs of segments. To compute a
similarity function of two segments, one would probably use a
dynamic programming algorithm with a cost proportional to the
lengths of the two segments. This increases the cost to O(n6) if
each pair of segments is evaluated independently. However,
given a pair of starting points,i,j, the dynamic programming
alignment step can be used to evaluate all possible pairs of
segment endpoints. There are O(n2) starting points and the
average cost of the full alignment computation is also O(n2), so
the total cost is then O(n4). Using frame sizes from 0.1 to 0.25
seconds and music durations of several minutes, we can expectn
to be in the range of 200 to 2000. This implies that a brute-force
search of the entire segment pair space is will take hours or even
days. This has led us to pursue heuristic algorithms.

In our work, we assume a distance function between elements of
the sequencesi. To compute the distance between two segments,
we use an algorithm for sequence alignment based on dynamic
programming. A by-product of the alignment is a sum of
distances between corresponding sequence elements. This
measure has the property that it generally increases with length,
whereas longer patterns are generally desirable. Therefore, we
divide distance by length to get an overall distance rating.

Typically there are many overlapping candidates for similar
segments. Extending or shifting a matching segment by a frame
or two will still result in a good rating. Therefore, the problem is
not so much to find all pairs of similar segments but the locally
“best” matches. In practice, all of our algorithms work by
extending promising matches incrementally to find the “best”
match. This approach reduces the computation time considerably,
but introduces heuristics that make formal descriptions difficult.
Nevertheless, we hope this introduction will help to explain the
following solutions.

4. MONOPHONIC ANALYSIS
Our first approach is based on monophonic pitch estimation,
which is used to transcribe music into a note-based
representation. Notes are represented as a pitch (represented on a
continuous rather than quantized scale), starting time, and
duration (in seconds). The pitch estimation is performed using
autocorrelation [20] and some heuristics for rejecting false peaks
and outliers, as described in an earlier paper. [5]

We worked with a saxophone solo, “Naima,” written and
performed by John Coltrane [2] with a jazz quartet (sax, piano,
bass, and drums). To find matching segments in the transcription,
we construct a matrixM whereMi,j is the length of a segment2

starting at notei and matching a segment at notej.

4.1 Algorithm 1
The search algorithm in this case is a straightforward search of
every combination ofi, j such thati < j. For n notes, there are
n(n−1)/2 pairs. The search proceeds only if there is a close match
between pitchi and pitch j. Although we could use dynamic
programming for note alignment [9, 22], we elected to try a
simple iterative algorithm that attempts to extend the current pair
of similar segments with additional matching notes to find the
longest similar segments starting ati and j. The rules for

extending segments consider note pitch and duration, and allow
for (short) note deletions and consolidation [15].

If segment (i, k) matches (j, l), then in many cases, (i + 1, k) will
match (j + 1, l) and so on. To eliminate the redundant pairs, we
make a pass through the elements ofM, clearing cells contained
by longer similar segments. For example if (i, k) matches (j, l),
we clear all elements of the rectangular submatrixMi..k,j..l except
for Mi,j.

Finally, we can read off pairs of similar segments and their
durations by making another pass over the matrixM. Although
this approach works well if there is a good transcription, it is not
generally possible to obtain a useful melodic transcription from
polyphonic audio. In the next section, we consider an alternative
representation.

5. SPECTRUM-BASED ANALYSIS
When transcription is not possible, a lower-level abstraction
based on the spectrum can be used. We chose to use Wakefield’s
chromabecause it seemed to do a good job of identifying similar
segments in an earlier study where the goal was to find the
chorus of a pop song. [1]

The chroma is a 12-element vector where each element
represents the energy associated with one of the 12 pitch classes.
Essentially, the spectrum “wraps around” ateach octave and bins
are combined to form the chroma vector. Distance is then defined
as Euclidean distance between vectors normalized to have a mean
of zero and a standard deviation of one.

The most important feature of a chroma representation is that the
music is divided into equal-duration frames rather than notes.
Typically, there will be hundreds or thousands of frames as
opposed to tens or hundreds of notes. Matching will tend to be
more ambiguous because the data is not segmented into discrete
notes. Therefore, we need to use more robust (and expensive)
sequence alignment techniques and therefore more clever
algorithms.

5.1 Brute-Force Approach
At first thought, observing that dynamic programming computes
a global solution from incremental and local properties, one
might try to reuse local computations to form solutions to our
similar segments problem. A typical dynamic programming step
computes the distance at celli,j in terms of cells to the left (j−1),
above (i−1), and diagonal (i−1, j−1). The value ati,j is:

M i,j = di,j + min(M i,j−1, M i−1,j, M i−1,j−1)

In terms of edit distances, we usedi,j, the distance from framei to
frame j as either a replacement cost, insertion cost, or deletion
cost, although many alternative cost/distance functions are
possible within the dynamic programming framework. [10]
Unfortunately, even if we precompute the full matrix, it does not
help us in computing the distance between two segments because
of initial boundary conditions, which change for every
combination ofi andj. As mentioned in the introduction, the best
we can do is to compute a submatrix starting ati,j for every 0≤ i
< j < n. This leaves us with an O(n4) algorithm to compute the
distance for every pair ((i, k), (j, l)). To avoid very long
computation times, we developed a faster, heuristic search.

5.2 Heuristic Search
We compute the distance between two segments by finding a
path from i,j to k,l that minimizes the distance function. Each
step of the path takes one step to the right, downward, or
diagonally. In practice, similar segments are characterized by
paths that consist mainly of diagonal segments because tempo
variation is typically small. Thus we do not need to compute a

full rectangular array to find good alignments. Alternatively, we
can compute several or even all paths with a single pass through
the active matrix. This method is described here.

5.3 Algorithm 2
The main idea of this algorithm is to identify path beginnings and
to follow paths diagonally across a matrix until the path rating
falls below some threshold. The algorithm uses three matrices we
will call distance (D), path (P), and length (L). D andL hold real
(floating point) values, andP holds integers.P is initialized to
zero so that we can determine which cells have been computed. If
Pi,j = 0, we say celli,j is uninitialized. The algorithm scans the
matrix along diagonals of constanti+j as shown in Figure 1,
filling in corresponding cells ofD, P, andL. A cell is computed
in terms of the cells to the left, above, and diagonal. First,
compute distances and lengths as follows:

dh = if Pi,j−1≠0 thenDi,j−1+di,j, elseÿ; lh = L i,j−1+√2/2

dv = if Pi−1,j≠0 thenDi−1,j+di,j, elseÿ; lv = L i−1,j+√2/2

dd = if Pi−1,j−1≠0 thenDi−1,j−1+di,j, elseÿ; ld = L i−1,j−1+1

The purpose of the infinity (ÿ) values is to disregard distances
computed from uninitialized cells as indicated byP. Now, letc =
min(dh/lh, dv/lv, dd/ld). If c is greater than a threshold, the cell ati,j
is left uninitialized. Otherwise, we defineDi,j = c, L i,j = lm, and
Pi,j =Pm, where the subscriptm represents the cell that produced
the minimum value forc, either (i,j−1), (i−1,j), or (i−1,j−1).

Figure 1. In Algorithm 1, the similarity matrix is
computed along diagonals as shown.

As described so far, this computation will propagate paths once
they are started, but how is a path started? WhenPi,j is left
uninitialized by the computation described in the previous
paragraph anddi,j is below a threshold (the same one used to cut
off paths), Pi,j is set to a new integer value to denote the
beginning of a new path. We also defineDi,j = di,j andL i,j = 1 at
the beginning of the path.

After this computation, regions ofP are partitioned according to
path names. Every point with the same name is a candidate
endpoint for the same starting point. We still need to decide
where paths end. We can compute endpoints by reversing the
sequence of chroma frames, so that endpoints become starting
points. Recall that starting points are uninitialized cells wheredi,j

is below a threshold. To locate endpoints, scan the matrix in
reverse from the original order (Figure 1). Whenever a new path
name is encountered, and the distancedi,j is below threshold, find
the starting point and output the path. An array can keep track of
which path names have been output and where paths begin.

6. POLYPHONIC TRANSCRIPTION
Polyphonic transcription offers another approach to similarity.
Although automatic polyphonic transcription has rather high
error rates, it is still possible to recover a significant amount of
musical information. We use Marolt’s SONIC transcription
program [12], which transcribes audio files to MIDI files.

SONIC does not attempt to perform source separation, so the
resulting MIDI data combines all notes into a single track.
Although SONIC was intended for piano transcription, we get
surprisingly good results with arbitrary music sources.
Transcriptions inevitably have spurious notes, so we reduce the
transcriptions to a chord progression using the Harman program
by Pardo [19]. Harman is able to ignore passing tones and other
non-chord tones, so in principle, Harman can help to reduce the
“noise” introduced by transcription errors.

After computing chords with Harman, we generate a sequence of
frames si, 0 < i < n , where each frame represents an equal
interval of time andsi is a set of pitch classes corresponding to
the chord label assigned by Harman.

In our experiments with polyphonic transcription, wedeveloped
yet another algorithm for searching for similar segments. This
algorithm is based on an adaptation of dynamic programming for
computer accompaniment [6]. In this accompaniment algorithm,
a score is matched to a performance not by computing a fulln×m
matrix but by computing only a diagonal band swept out by a
moving window, which is adaptively centered on the “best”
current score position.

6.1 Algorithm 3
To find similar segments, we will sweep a window diagonally
from upper left to lower right as shown in Figure 2. When a
match is found, indicated by good match scores, the window is
moved to follow the best path. We need to decide where paths
begin and end. For this purpose, we compute similarity (rather
than distance) such that similarity scores increase where
segments match, and decrease where segments do not match.

Figure 2. In Algorithm 2, the similarity matrix is computed
in diagonal bands swept out along the path shown. The
shaded area shows a partially completed computation.

An example function for similarity of chords is to count the
number of notes in common minus the number of notes not in
common. For chords A and B (sets of pitch classes), the
similarity is:

σ(A, B) = |A∩B| − |A∪B − A∩B|,

where |X| is the number of elements in (cardinality of) set X. We
will write σi,j to denoteσ(si, sj), the similarity between chords at
framesi andj.

When we compute the matrix, we initialize cells to zero and store
only positive values. A path begins when a window element
becomes positive and ends when the window becomes zero
again. The computation for a matrix cell is:

M i,j = max(M i,j−1 − p, M i−1,j − p, M i−1,j−1) + σi,j − c

wherep is a penalty for insertions and deletions, andc is a bias
constant, chosen so that matching segments generate increasing
values along the alignment path, and non-matching segments
quickly decrease to zero.

The computation ofM proceeds as shown by the shaded area in
Figure 2. This evaluation order is intended to find locally similar
segments and follow their alignment path. The reason for
computing in narrow diagonal bands is that ifM were computed
entire row by entire row, all paths would converge to the main
diagonal where all frames match perfectly. At each iteration, cells
are computed along one row to the left and right of the current
path, spanning data that represents a couple of seconds of time.
Because of the limited width of the path, references will be made
to uninitialized cells inM. These cells and their values are
ignored in the maximum value computation.

This algorithm can be further refined. The score along an
alignment path will be high at the end of the similar segments,
after which the score will decrease to zero. Thus, the algorithm
will tend to compute alignment paths that are too long. We can
improve on the results by interactively trimming a frame from
either end of the path as long as the similarity/length quotient
increases. This does not always work well because of local
maxima. Another heuristic we use is to trim the final part of a
path where the slope is substantially off-diagonal, as shown in
Figure 3.

Figure 3. The encircled portion of the alignment path is trimmed
because it represents an extreme difference in tempo. The

remainder determines a pair of similar segments.

Because the window has a constant size, this algorithm runs in
O(n2) time, and by storing only the portion of the matrix swept
by the window, O(n) space. The algorithm is quite efficient in
practice.

7. CLUSTERING
After computing pairs of similar segments with any of the three
previously described algorithms, we need to form clusters to
identify where segments occur more than twice in the music.
Essentially, we are just applying the transitivity property of
similarity to locate sets of similar segments. However, similarity
is not strictly transitive, and the boundaries of segments are
imprecise. We must allow approximate matches and somewhat
inconsistent data.

We have implemented clustering using a simple algorithm: Start
with a set of similar pairs, as computed by algorithms 1, 2, and 3.
Remove any pair from the set to form the first cluster. Then
search the set for pairs (a, b) such that eithera or b (or both) is
an approximate match to a segment in the cluster. Ifa (or b) is
not already in the cluster, add it to the cluster. Continue
extending the cluster in this way until there are no more similar
segments in the set of pairs. Now, repeat this process to form the
next cluster, etc., until the set of pairs is empty.

Sometimes, a segment in a cluster will correspond to a
subsegment of a pair, e.g. (10, 20) overlaps half of the first
segment of the pair ((10, 30), (50, 70)). We do not want to add
(10, 30) or (50, 70) to the cluster because these have length 20,
whereas the cluster element (10, 20) only has length 10.
However, it seems clear that there is a segment similar to (10, 20)

starting at 50. In this situation, we split the pair proportionally to
synthesize a matching pair. In this case, we would create the pair
((10, 20), (50, 60)) and add (50, 60) to the cluster.

8. ANALYSIS AS EXPLANATION
The final step is to produce an analysis of the musical structure
implied by the clusters. We like to view this as an “explanation”
process. For each section of music, we “explain” the music in
terms of its relationship to other sections. If we could determine
relationships of transposition, augmentation, and other forms of
variation, these relationships would be part of the explanation.
With only similarity, the explanation amounts to labeling music
with clusters.

To build an explanation, recall that music is represented by a
sequencesi, 0 ≤ i < n. Our goal is to fill in an arrayEi, 0 ≤ i < n,
initially nil, with cluster names, indicating which cluster (if any)
contains a note or frame of music. The explanationE serves to
describe the music as a structure based on the repetition and
organization of patterns.

Recall that a cluster is a set of intervals. For eachi in some
member of the cluster, we setEi to the name of the cluster.
(Names are arbitrary, e.g. “A”, “B”, “C”, etc.) We then continue
searching for the nexti such thatEi = nil and i is in some new
cluster. We then label additional points inEi with this new
cluster. However, once a label is set, we do not replace it. This
gives priority to musical material that is introduced the earliest,
which seems to be a reasonable heuristic to resolve conflicts
when clusters overlap.

9. EXAMPLES
9.1 Transcription and Algorithm 1
Figure 4 illustrates an analysis of “Naima” using monophonic
transcription and Algorithm 1 to find similar segments. Clusters
are shown as heavy lines, which show the location of segments,
connected by thin lines. The analysis is shown at the bottom of
the figure. The simple “textbook” analysis of this piece would be
a presentation of the theme with structure AABA, followed by a
piano solo. The saxophone returns to play BA followed by a
short coda. In the computer analysis, further structure is
discovered within the B part (the bridge), so the computer
analysis might be written as AABBCA, where BBC forms the
bridge.

The transcription failed to detect more than a few notes of the
piano solo. There are a few spurious matching segments here.
After the solo, the analysis shows a repetition of the bridge and
the A part: BBCA. This is followed by the coda in which there is
some repetition. Aside from the solo section, the computer
analysis corresponds quite closely to the “textbook” analysis. It
can be seen that the A section is half the duration of the B part,
which is atypical for an AABA song form. If the program had
additional knowledge of standard forms, it might easily guess
that this is a slow ballad and uncover additional structure such as
the tempo, number of measures, etc. Note, for example, that once
the piece is subdivided into segments, further subdivisions are
apparent in the RMS amplitude of the audio signal, indicating a
duple meter. Additional examples are presented in another paper.
[7]

9.2 Chroma and Algorithm 2
Figure 5 illustrates an analysis of Beethoven’s “Minuet in G”
(performed on piano) using the chroma representation and
Algorithm 2 for finding similar segments. Because the repetitions
are literal and the composition does not involve improvisation,

the analysis is definitive, revealing that the structure is:
AABBCCDDAB.

Figure 6 applies the same techniques to a pop song [17] with
considerable repetition. Not all of the song structure was
recovered because the repetitions are only approximate; however,

the analysis shows a structure that is clearly different from the
earlier pieces by Coltrane and Beethoven.

9.3 Polyphonic Transcription & Algorithm 3
So far, polyphonic transcription has not yielded good results as
anticipated. Recall that we first transcribe a piece of music and

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

T im e (s)
Figure 4. Analysis of Naima. Audio is shown at top. Below that is a transcription shown in piano roll notation. Next is a diagram of

clusters. At bottom is the analysis; similar segments are shaded in the same pattern. The form is AABA, where the B part has
additional structure that appears as two solid black rectangles and one filled with a “///” pattern. The middle section is a piano solo.

The saxophone reenters at the B section, repeats the A part, and ends with a coda consisting of another repetition.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
T im e (s)

Figure 5. Analysis of Beethoven’s Minuet in G performed on piano. The structure, shown at the bottom, is clearly AABBCCDDAB.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
T im e (s)

Figure 6. Analysis of a pop song, showing many repetitions of a single segment. Similar segments
exist around 20s and 60s, but this similarity was not detected.

then construct a harmonic analysis, so the final representation is a
sequence of frames, where each frame is a chord. When we listen
to the transcriptions, we can hear the original notes and harmony
clearly even though many errors are apparent. Similarly, the
harmonic analysis of the transcription seems to retain the
harmonic structure of the original music. However, the resulting
representation does not seem to have clear patterns that are
detectable using Algorithm 3. On the other hand, using synthetic
data, Algorithm 3 successfully finds matching segments.

The observed problems are probably due to many factors. The
analysis often reports different chords when the music is similar;
for example, an A minor chord in one segment and C major in
the other. Since these chords have 2 pitch classes in common and
2 that are different,σ(Amin, Cmaj) = 0, whereasσ(Cmaj, Cmaj)
= 3. Perhaps there is a better similarity function that gives less
penalty for plausible chord substitutions. In addition, chord
progressions in tonal music tend to use common tones and are
based on the 7-note diatonic scale. This tends to make any two
chords chosen at random from a given piece of music more
similar, leading to false positives. Sometimes Algorithm 3
identifies two segments that have the same single chord, even
though the segments are not otherwise similar. A better similarity
metric that requires more context might help here. Also, there is a
fine line between similar and dissimilar segments, so finding a
good value for the bias constantc is difficult. Finally, the
harmonic analysis may be removing useful information along
with the “noise.”

To get a better idea of the information content of this
representation, Figure 7 is based on an analysis of “Let it Be”
performed by the Beatles [13], using polyphonic analysis and
chord labeling. After a piano introduction, the vocal melody
starts at about 13.5s and finishes the first 4 measures at about
27s. This phrase is repeated throughout the song, so it is
interesting to match this known segment against the entire song.
Starting at every possible offset, we can search for the best
alignment with the score and plot the distance (negative
similarity). The distance is zero at 13.5s because the segment
matches itself perfectly. The segment repeats almost exactly at
about 27s, which appears as a downward spike at 27s. From the
graph, it is apparent that the segment also appears with the
repetition several other times, as indicated by pairs of downward
spikes in the figure.

Correlation With First 4 Bars

0

20

40

60

80

100

120

0 50 100 150 200 250

Time Offset (s)

D
is

ta
nc

e

Figure 7. The segment from 13.5s to 27s is aligned at every
pointing the score and the distance is plotted. Downward spikes

indicate a similar segments, of which there are several.

Figure 7 gives a clear indication that the representation contains
information and in fact is finding structure within the music;
otherwise, the figure would appear random. Further work is
required to use this information to reliably detect similar
segements.

10. SUMMARY AND CONCLUSIONS
Music audio presents very difficult problems for music analysis
and processing because it contains virtually no structure that is
immediately accessible to computers. Unless we solve the
complete problem of auditory perception and human intelligence,
we must consider more focused efforts to derive structure from
audio. In this work, we constructed programs that “listen” to
music, recognize repeated patterns, and explain the music in
terms of these patterns.

Several techniques can be used to derive a music representation
that allows similarity comparison. Monophonic transcription
works well if the music consists primarily of one monophonic
instrument. Chroma is a simplification of the spectrum and
applies to polyphonic material. Polyphonic transcription
simplified by harmonic analysis offers another, higher-level
representation. Three algorithms for efficiently searching for
similar patterns were presented. One of these works with note-
level representations from monophonic transcriptions and two
work with frame-based representations. We demonstrate through
examples that the monophonic and chroma analysis techniques
recover a significant, and in some cases, essentially complete top-
level structure from audio input.

We find it encouraging that these techniques apply to a range of
music, including jazz, classical, andpopular recordings. Of
course, not all music will work as well as our examples. In
particular, through-composed music that develops and transforms
musical material rather than simply repeating it cannot be
analyzed with our systems. This includes improvised jazz and
rock soloing, many vocal styles, and most art music. In spite of
these difficulties, we believe the premise that listening is based
on recognition of repetition and transformation is still valid. The
challenge is to recognize repetition and transformation even
when it is not so obvious.

Several areas remain for future work. We are working to better
understand the polyphonic transcription data and harmonic
analysis, which offer great promise for finding similarity in the
face of musical variations. It would be nice to have a formal
model that could help to resolve structural ambiguities. For
example, a model could enable us to search for patterns and
clusters that give the “best” global explanation for observed
similarities. Another enhancement to our work would be the use
of hierarchy in explanations. This would, for example, support a
two-level explanation of the bridge in “Naima.” It would be
interesting to combine data from beat tracking, key analysis, and
other techniques to obtain a more accurate view of music
structure. Finally, it would be interesting to find relationships
other than repetition. Transposition of small phrases is a common
relationship within melodies, but we do not presently detect
anything other than repetition. Transposition often occurs in very
short sequences, so a good model of musical sequence
comparison that incorporates rhythm, harmony, and pitch seems
to be necessary to separate random matches from intentional
ones.

In conclusion, we offer a set of new techniques and our
experience using them to analyze music audio, obtaining
structural descriptions. These descriptions are based entirely on
the music and its internal structure of similar patterns. Our results
suggest this approach is promising for a variety of music
processing tasks, including music search, where programs must
derive high-level structures and features directly from audio
representations.

11. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under award number 0085945. Ann Lewis assisted in the
preparation and processing of data. Matija Marolt offered the use
of his SONIC transcription software, which enabled us to explore
the use of polyphonic transcription for music analysis. We would
also like to thank Bryan Pardo for his Harman program and
assistance using it. Finally, we thank our other colleagues at the
University of Michigan for their collaboration and many
stimulating conversations.

12. REFERENCES

[1] Birmingham, W.P., Dannenberg, R.B., Wakefield, G.H.,
Bartsch, M., Bykowski, D., Mazzoni, D., Meek, C.,
Mellody, M. and Rand, W., MUSART: Music Retrieval
Via Aural Queries. inInternational Symposium on Music
Information Retrieval, (Bloomington, Indiana, 2001), 73-
81.

[2] Coltrane, J. NaimaGiant Steps, Atlantic Records, 1960.

[3] Conklin, D. and Anagnostopoulou, C., Representation and
Discovery of Multiple Viewpoint Patterns. inProceedings
of the 2001 International Computer Music Conference,
(2001), International Computer Music Association, 479-
485.

[4] Cope, D. Experiments in Musical Intelligence. A-R
Editions, Inc., Madison, Wisconsin, 1996.

[5] Dannenberg, R.B. Listening to "Naima": An Automated
Structural Analysis from Recorded Audio, 2002, (in
review).

[6] Dannenberg, R.B., An On-Line Algorithm for Real-Time
Accompaniment. inProceedings of the 1984 International
Computer Music Conference, (Paris, 1984), International
Computer Music Association, 193-198.
http://www.cs.cmu.edu/~rbd/bib-accomp.html#icmc84.

[7] Dannenberg, R.B. and Hu, N. Discovering Musical
Structure in Audio Recordings, 2002, (in review).

[8] Foote, J. and Cooper, M., Visualizing Musical Structure
and Rhythm via Self-Similarity. inProceedings of the
2001 International Computer Music Conference, (Havana,
Cuba, 2001), International Computer Music Association,
419-422.

[9] Hewlett, W. and Selfridge-Field, E. (eds.).Melodic
Similarity: Concepts, Procedures, and Applications. MIT
Press, Cambridge, 1998.

[10] Hu, N. and Dannenberg, R.B., A Comparison of Melodic
Database Retrieval Techniques Using Sung Queries. in
Joint Conference on Digital Libraries, (2002), Association
for Computing Machinery.

[11] Lartillot, O., Dubnov, S., Assayag, G. and Bejerano, G.,
Automatic Modeling of Musical Style. inProceedings of
the 2001 International Computer Music Conference,
(2001), International Computer Music Association, 447-
454.

[12] Marolt, M., SONIC: Transcription of Polyphonic Piano
Music With Neural Networks. inWorkshop on Current
Research Directions in Computer Music, (Barcelona,
2001), Audiovisual Institute, Pompeu Fabra University,
217-224.

[13] McCartney, P. Let It BeLet It Be, Apple Records, 1970.

[14] Meek, C. and Birmingham, W.P., Thematic Extractor. in
2nd Annual International Symposium on Music
Information Retrieval, (Bloomington, Indiana, 2001),
Indiana University, 119-128.

[15] Mongeau, M. and Sankoff, D. Comparison of Musical
Sequences. in Hewlett, W. and Selfridge-Field, E. eds.
Melodic Similarity Concepts, Procedures, and
Applications, MIT Press, Cambridge, 1990.

[16] Mont-Reynaud, B. and Goldstein, M., On Finding
Rhythmic Patterns in Musical Lines. inProceedings of the
International Computer Music Conference 1985,
(Vancouver, 1985), International Computer Music
Association, 391-397.

[17] Mumba, S. Baby Come On OverBaby Come On Over (CD
Single), Polydor, 2001.

[18] Narmour, E. Music Expectation by Cognitive Rule-
Mapping.Music Perception, 17 (3). 329-398.

[19] Pardo, B. Algorithms for Chordal Analysis.Computer
Music Journal, 26 (2). (in press).

[20] Roads, C. Autocorrelation Pitch Detection. inThe
Computer Music Tutorial, MIT Press, 1996, 509-511.

[21] Rolland, P.-Y. and Ganascia, J.-G. Musical pattern
extraction and similarity assessment. in Miranda, E. ed.
Readings in Music and Artificial Intelligence, Harwood
Academic Publishers, 2000, 115-144.

[22] Sankoff, D. and Kruskal, J.B.Time Warps, String Edits,
and Macromolecules: The Theory and Practice of
Sequence Comparison. Addison-Wesley, Reading, MA,
1983.

[23] Simon, H.A. and Sumner, R.K. Pattern in Music. in
Kleinmuntz, B. ed. Formal Representation of Human
Judgment, Wiley, New York, 1968.

[24] Stammen, D. and Pennycook, B., Real-Time Recognition
of Melodic Fragments Using the Dynamic Timewarp
Algorithm. in Proceedings of the 1993 International
Computer Music Conference, (Tokyo, 1993), International
Computer Music Association, 232-235.

1 To understand why, assume there are similar segments,
((i, k), (j, l)), that overlap, i.e. 0≤ i < j ≤ k < l < n. Then,
there is some subsegment of (i, k) we will call (i, m) , m <
k, corresponding to the overlapping region (j, k) and some
subsegment of (k, l) we will call (p, l), p > j, corresponding
to (j, k). Thus, there are three similar segments (i, m), (j, k),
and (p, l) that provide an alternate structure to the original
overlapping pair. In general, a shorter, more frequent
pattern is preferable, so we do not search for overlapping
patterns.
2 An implementation note: for each pair of similar
segments, the starting points are implied by the coordinates
i, j, but we need to store durations. Since we only search
half of the matrix due to symmetry, we store one duration
at locationi, j and the other atj, i .

