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Valuation Functions

A first step in economic modeling:

« individuals have valuation fns giving their value on
different outcomes or events.
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Valuation Functions

A first step in economic modeling:
« individuals have valuation fns giving their value on
different outcomes or events.
Focus on combinatorial settings:
nitems, V={12,..n}

«f:2V—= R




Learning Valuation Functions

This talk: learning valuation fns from past data.
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Valuation Functions

Well-studied subclasses of subadditive valuations.

[Sandholm'99] [Lehman-Lehman-Nisan'01] TrTomemem T e

This talk



Subadditive valuations

 Ground set V={1,.2, .., n} (eg., the items ina store) ?%

« ForSCV, f(S)= valuation of user for S.

e Set-function f : 2¥ — R subadditive if
Forall S, TC V: f(S)+f(T) > f(SUT)




Subadditive valuations

Ground set V={1,2, .., n} (eg., the items in a store) %%

For S C V, f(S) = valuation of user for S. ;

e Set-function f : 2¥ — R subadditive if
Forall S, TC V: f(S)+f(T) > f(SUT)

OO oD

Non-negative: f(S) >0,VvS CV
Monotone: f(S) < f(T), VSCT




XOS valuations

XOS : Fns that can be represented as a MAX of SUMs.

XOR XOR means MAX
OR means SUM

OR OR

Romania Switzerland
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9({1,2}) = $16 9({2,3})=%$10  g({1,2,3}) = $16



Learning valuation functions
from data.



Passive Supervised Learning

Data Sour'c Distribution
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PMAC model for learning real valued functions
Data Distribution

Source

§§7f; D on 2[n]

— Expert / Oracle

Algorith 0 e \

Labeled Examples

«
\isl,f(sl)),---, (Sk.f(SK)
Alg.outpu g2l > R,

« Algo sees (5,,f(S9))..... (5,.f(Sy)). S;i.i.d. from D, produces g.
«  With probability > 1-§ we have Pr¢[g(S) < f(S)< a g(S)]> 1-¢

Probably Mostly Approximately Correct [Balcan-Harvey'11]



PMAC model for learning real valued functions
Data Distribution

Source

§§7f; D on 2[n]

E—— Expert / Oracle

Learning
Algorithm ¥

Labeled Examples

«
\isl,f(sl)),---, (Sk.f(SK)
Alg.outpu g2l > R,

« Algo sees (5,,f(S9))..... (5,.f(Sy)). S;i.i.d. from D, produces g.
«  With probability > 1-§ we have Pr¢[g(S) < f(S)< a g(S)]> 1-¢

Compared to E¢{(f(S) — g(S))Z}, alighs better with the optimization literature.

« Allows fine-grained control of errors: distinguishes between low error on most of
the distrib & high error on a few points vs moderately high error everywhere.



Learning XOS, subadditive valuations

Theorem: (Our general upper bound)
Efficient alg. for PMAC-learning XOS fns with approx. factor
a=0(n/?) and subadditive fns with a=O(log n - n'/?),

Improves over [Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden'12] and
[Balcan-Harvey'11] .
Theorem: (Our general lower bound)

No algorithm can PMAC learn the class of XOS/subadditive
fns with an approx. factor o(n'/?).

Similar to [Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden'12] and much
simpler than [Balcan-Harvey'11] for submodular fns.

Theorem: XOS with Polynomial humber of XOR trees
O(n¢) approximation in time O(n%).



Lower Bound for XOS valuations

Theorem: No algorithm can PMAC learn the class of XOS
valuations with an approx. factor o(n'/?).

Main Idea:

There exist A,

.., A, L=nloglognyg t :

(i) |A_i| = n1/2

(i) JALiNA_j| <logn

High=n1/2

|_=nlog log n

Low=logn



Lower Bound for XOS valuations

Theorem: No algorithm can PMAC learn the class of XOS
valuations with an approx. factor o(n'/?).

Main Idea:
(i) |A_i| = n1/2

There exist Al, ey AL, L=nlog logng ¢ (“) |A iN A_Jl < log n
For each A, in 8, add an OR tree with leaves elements in A,

XOR (') f(Ai)=|Ai|: A, ing

/\ (i) f(A) < log n, A, not in 2
OR OR R

A in®&



Lower Bound for XOS valuations

Theorem: No algorithm can PMAC learn the class of XOS
valuations with an approx. factor o(n'/?).
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General Upper Bound

Theorem: Efficient alg for PMAC-learning XOS fns with
approx. factor a=0(n'/?) and subadditive fns with approx.
factor a=0(log n - n'/2),

Main Ideas:

* Claim: f XOS approx. within n/2 by +vlinear function

« Set-function f : 2V — R fractionally subadditive if
Forall TC V: f(T) < > {)\ 5 f(S)} whenever
ANe>0, 2e.ccsAg> 1, foranysinT.

+ f:2Y— R fractionally subadditive iff XOS [Feige'06].



General Upper Bound

Theorem: Efficient alg for PMAC-learning XOS fns with
approx. factor a=0(n'/?) and subadditive fns with approx.
factor a=0(log n - n'/2),

Main Ideas:

* Claim: f fractionally subad. approx. within n/? by vlinear function

f(T)= max, . pry {X(T)}, where P(f)={x > 0: x(S) <f(S),V S C [n]}

John's ellipsoid theorem for symmetric convex bodies implies
3 £ such that & contains P(f) and (1/n¥/2) £ is contained in P(f)

Define g(T)= max_{x € 1/n¥2 E{x(T)}. Sog(S) < f(S) < n2g(S)

£ is axis alligned, so g is Vlinear function



General Upper Bound

Theorem: Efficient alg for PMAC-learning XOS fns with
approx. factor a=0(n'/?) and subadditive fns with approx.

factor a=0(log n - n'/2),

1
Main Ideas: g*(S) <f(S)<n g*S) where g(S) = (w- X(S)){E}

features
+ Labeled examples (), +) and ((x(S), n - f2(S) ), -) linearly
separable in R™1. N
-\+
 Idea: reduction to learning a linear separator. N W

Problem: data not i.i.d.

Solution: create a related distib. P. Sample S from D; flip a coin.
If heads add ((x(S), f3(S) ), +) . Else add ((x(S), n - f3(S) ), -).

Claim: A linear separator with low error on P induces a linear
function with an approx. factor of n!/2 on the original data.




General Upper Bound

Theorem: Efficient alg for PMAC-learning XOS fns with
approx. factor a=0(n'?) and subadditive fns with approx.
factor a=0(log n - n'/2),

Main Ideas:

Input: (S, f(S,)) ..., (S, f(S,,))
« For each s, flip a coin.
« If heads add ((x(S), f4(S) ), +).
« Else add ((x(S), nf(s)), -).
* Learn a linear separator u=(w,-z) in R".

Output: g(S)=1/(n+1)"2 w - x (S)

A subadditive function is within log n factor of a XOS function.



XOS: Target dependent Upper Bound

Theorem: (Polynomial number of XOR tfrees)
O(n¢) approximation in time O(n%).

Highlights importance of complexity of the target function.

Main Proof Idea:
XOR

f(S) = max;_; g {ki(S)}
OR/OR\OR where k; (S) =w; - x (S)

* g8(S)=(1/R) sum; {(k;(S))'} satisfies g(S) < f(S)* <Rg(S)

 Reduction to learning a linear separator over L-tuples.



Conclusions

Learnability of important classes of valuation functions

(OXS, XOS, subadditive).
A e

* Better bounds for XOS functions with polynomial number
of XOR trees

Open Questions

* Analyze learnability of other interesting classes of
valuations functions






