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Valuation Functions 

A first step in economic modeling: 

• individuals have valuation fns giving their value on 
different outcomes or events.  

f(             ,             ) ! R 
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Valuation Functions 

A first step in economic modeling: 

• individuals have valuation fns giving their value on 
different outcomes or events.  

f(       ) ! R  
• n items, V = {1,2,…,n} 
 
• f : 2V ! R.   

Focus on combinatorial settings:  



Learning Valuation Functions 

This talk: learning  valuation fns from past data. 

• Web-app to find good deals 
  

• Supermarket pricing, advertising, coupons 



Valuation Functions 

Additive µ OXS µ Submodular µ XOS µ Subadditive 

•  Well-studied subclasses of subadditive valuations. 

[Sandholm’99] [Lehman-Lehman-Nisan’01] 

   This talk 



Subadditive valuations 

• For S µ V,  f(S) = valuation of user for S. 

• Ground set V={1,2, …, n} (e.g., the items in a store) 

  For all S,T µ V: f(S)+f(T)  ¸ f(S [ T) 

 

 

• Set-function f : 2V !  R subadditive if 

T S S [ T 
+ ¸ 

E.g., 



Subadditive valuations 

• For S µ V,  f(S) = valuation of user for S. 

• Ground set V={1,2, …, n} (e.g., the items in a store) 

  For all S,T µ V: f(S)+f(T)  ¸ f(S [ T) 

 

 

• Set-function f : 2V !  R subadditive if 

T S S [ T + ¸ 

f(S) · f(T) ,  8 S µ T 

f(S) ¸ 0, 8 S µ V •  Non-negative: 

•  Monotone: 



g( {1,2} ) = $16 

XOS valuations 

XOS : Fns that can be represented as a MAX of SUMs.  

g( {1,2,3} ) = $16 

XOR 

OR 

({1}, $2) ({2}, $5) 

XOR means MAX 

OR means SUM 

Romania Switzerland OR 

({2}, $6) ({1}, $10) 
({3}, $5) 

g( {2,3} ) = $10 



  Learning valuation functions 
from data. 



   Labeled Examples   

Passive Supervised Learning 

Learning 
Algorithm 

Expert / Oracle 

Data Source 

Alg.outputs 

Distribution 
D on 2[n]  

f : 2[n]  R+ 

(S1,f(S1)),…, (Sk,f(Sk)) 

g :2[n]  R+ 



Distribution 
D on 2[n]  

   Labeled Examples   

Learning 
Algorithm 

Expert / Oracle 

Data 
Source 

Alg.outputs f : 2[n]  R+ 
g :2[n]  R+ 

(S1,f(S1)),…, (Sk,f(Sk)) 

•  Algo sees (S1,f(S1)),…, (Sk,f(Sk)), Si i.i.d. from D, produces g. 

Probably Mostly Approximately Correct [Balcan-Harvey’11]  

•  With probability ¸ 1-± we have PrS[g(S) · f(S)· ® g(S)]¸ 1-² 

PMAC model for learning real valued functions 



PMAC model for learning real valued functions 

Distribution 
D on 2[n]  

   Labeled Examples   

Learning 
Algorithm 

Expert / Oracle 

Data 
Source 

Alg.outputs f : 2[n]  R+ 
g :2[n]  R+ 

(S1,f(S1)),…, (Sk,f(Sk)) 

•  Algo sees (S1,f(S1)),…, (Sk,f(Sk)), Si i.i.d. from D, produces g. 

•  With probability ¸ 1-± we have PrS[g(S) · f(S)· ® g(S)]¸ 1-² 

• Compared to 𝐸𝑆{ 𝑓 𝑆 − 𝑔 𝑆
2

}, aligns better with the optimization literature.  

• Allows fine-grained control of errors: distinguishes between low error on most of 
the distrib & high error on a few points vs moderately high error everywhere. 



Learning XOS, subadditive valuations 

 
Efficient alg. for PMAC-learning XOS fns with approx. factor 
®=O(n1/2) and subadditive fns with ®=O(log n ¢ n1/2). 

   No algorithm can PMAC learn the class of XOS/subadditive 
fns with an approx. factor õ(n1/2). 

Theorem: (Our general lower bound) 
 

Theorem: (Our general upper bound) 
 

Theorem: XOS with Polynomial number of XOR trees 
    O(n²) approximation in time O(n1/²). 

   Improves over [Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden’12] and 
[Balcan-Harvey’11] . 

   Similar to [Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden’12] and much 
simpler than [Balcan-Harvey’11]  for submodular fns. 



Lower Bound for XOS valuations 

Main Idea: 

 There exist A1, …, AL, L=nlog log n s.t.: 

 (i) |A_i| ¼  n1/2 

 (ii) |A_i Å A_j| · log n 

A1 A2 AL A3 

X 

X X 

Low=log n 

High=n1/2 

X 

… … …. …. 

L=nlog log n 

B 

Theorem: No algorithm can PMAC learn the class of XOS 
valuations with an approx. factor õ(n1/2). 

 



Lower Bound for XOS valuations 

XOR 

OR OR OR 

… … 

 There exist A1, …, AL, L=nlog log n s.t.: 

 (i) |A_i| ¼  n1/2 

 (ii) |A_i Å A_j| · log n 

For each Ai in B, add an OR tree with leaves elements in Ai 

Ai in B  

 (i) f(Ai)=|Ai|, Ai in B  
 
 (ii) f(Ai) · log n, Ai  not in B  

Theorem: No algorithm can PMAC learn the class of XOS 
valuations with an approx. factor õ(n1/2). 

 
Main Idea: 



Lower Bound for XOS valuations 

Theorem: No algorithm can PMAC learn the class of XOS 
valuations with an approx. factor õ(n1/2). 

 

 There exist A1, …, AL, L=nlog log n s.t.: 

 (i) |A_i| ¼  n1/2 

 (ii) |A_i Å A_j| · log n 

A1 A2 AL A3 

X 

X X 

Low=log n 

High=n1/2 

X 

… … …. …. 

L=nlog log n 

B 

Main Idea: 



General Upper Bound 

Main Ideas: 

                      Efficient alg  for PMAC-learning XOS fns with 
approx. factor ®=O(n1/2) and  subadditive fns with approx. 
factor ®=O(log n ¢ n1/2). 

Theorem: 

  For all T µ V: f(T) · S {¸ S f(S)} whenever 

 

 

• Set-function f : 2V !  R fractionally subadditive if 

   ¸ S ¸ 0,  S: s 2 S ¸S ¸ 1, for any s in T. 

• f : 2V !  R fractionally subadditive iff XOS [Feige’06]. 

• Claim: f XOS approx. within n1/2  by linear function 



General Upper Bound 

Main Ideas: 

• Claim: f fractionally subad. approx. within n1/2  by linear function 

•  f(T)= maxx 2 P(f) {x(T)}, where P(f)={x ¸ 0: x(S)  · f(S), 8 S µ [n]} 

• John’s ellipsoid theorem for symmetric convex bodies implies 

 9 E such that E contains P(f) and  (1/n1/2 ) E  is contained in  P(f)    

• Define  g(T)= max_{x 2 1/n1/2 E }{x(T)}. So g(S) ·  f(S) · n1/2 g(S) 

• E  is axis alligned, so g is linear function 

                      Efficient alg  for PMAC-learning XOS fns with 
approx. factor ®=O(n1/2) and  subadditive fns with approx. 
factor ®=O(log n ¢ n1/2). 

Theorem: 



• Labeled examples  ((Â(S), f2(S) ), +) and ((Â(S), n ¢ f2(S) ), -) linearly 
separable in Rn+1. 

• Idea: reduction to learning a linear separator.  

Problem: data not i.i.d.  

Solution: create a related distib. P. Sample S from D; flip a coin. 
If heads add ((Â(S), f2(S) ), +) . Else add ((Â(S), n ¢ f2(S) ), -). 

+ 

+ 

- 
- 

+ 

+ - 
- 

- 

g2(S) · f(S) · n g2(S)   where  
features 

• Claim: A linear separator with low error on P induces a linear 
function with an approx. factor of n1/2 on the original data. 

General Upper Bound 

Main Ideas: 

                      Efficient alg  for PMAC-learning XOS fns with 
approx. factor ®=O(n1/2) and  subadditive fns with approx. 
factor ®=O(log n ¢ n1/2). 

Theorem: 

𝑔 𝑆 = 𝑤 ⋅ 𝜒 𝑆
1
2  



Input: (S1, f(S1)) …, (Sm, f(Sm)) 

•  For each Si, flip a coin.  

• If heads add ((Â(S), f2(Si) ), +). 

• Else add  ((Â(S), n f2(Si) ), -). 

• Learn a linear separator u=(w,-z) in Rn+1.  

Output: g(S)=1/(n+1)1/2  w ¢ Â (S) 

 A subadditive function is within log n factor of a XOS function. 

Main Ideas: 

                      Efficient alg  for PMAC-learning XOS fns with 
approx. factor ®=O(n1/2) and  subadditive fns with approx. 
factor ®=O(log n ¢ n1/2). 

Theorem: 

General Upper Bound 



XOS: Target dependent Upper Bound 

XOR 

OR OR OR 

… … 

where  kj (S) = wj ¢ Â (S) 

f(S) = maxj=1.. R {kj(S)} 

• g(S)=(1/R) sumj {(kj(S))L}  satisfies g(S) · f(S)L · R g(S) 

• Reduction to learning a linear separator over L-tuples. 

Theorem: (Polynomial number of XOR trees) 
    O(n²) approximation in time O(n1/²). 

Main Proof Idea: 

Highlights importance of complexity of the target function.  

 



Conclusions 

Discrete 
Convex 
Analysis 

Machine  
Learning 

AGT 

Learnability of important classes of valuation functions 
(OXS, XOS, subadditive). 

• Better bounds for XOS functions with polynomial number 
of XOR trees 

• Analyze learnability of other interesting classes of 
valuations functions 

Open Questions 



24 


