

Learning Valuation Functions

Maria Florina Balcan

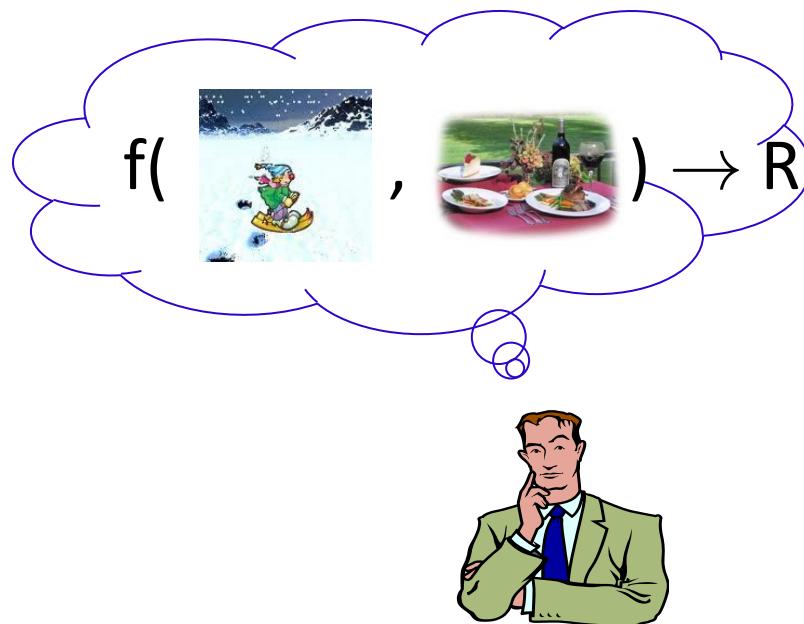
Georgia Institute of Technology

Joint with Florin Constantin, Satoru Iwata, Lei Wang

Valuation Functions

A first step in economic modeling:

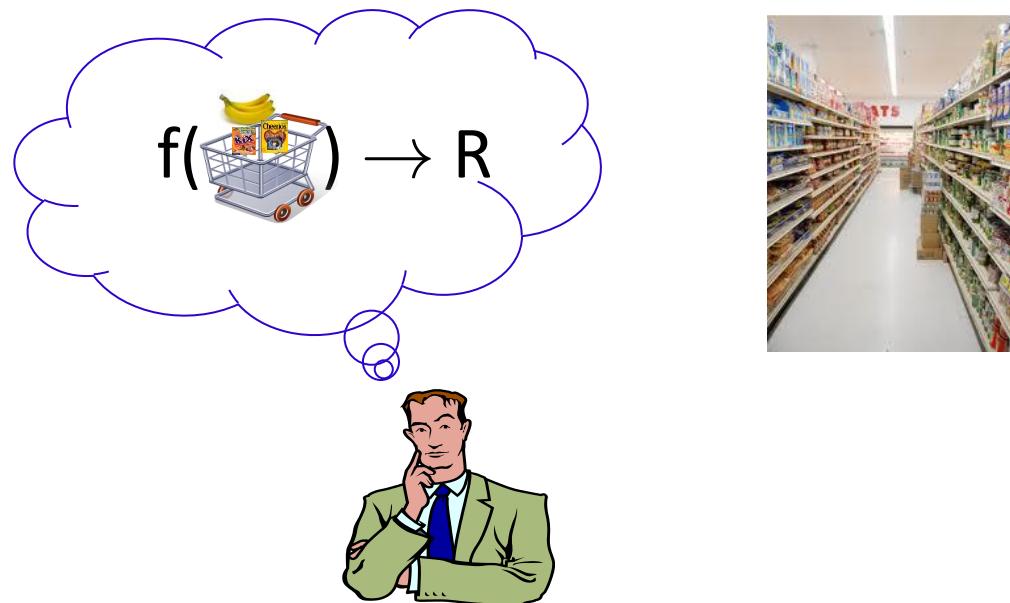
- individuals have valuation fns giving their value on different outcomes or events.



Valuation Functions

A first step in economic modeling:

- individuals have valuation fns giving their value on different outcomes or events.



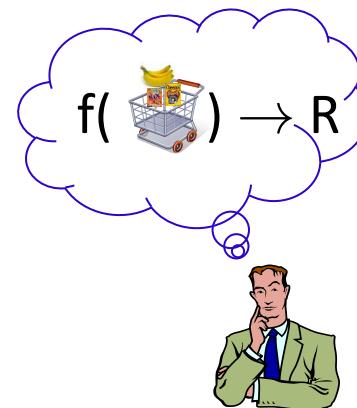
Valuation Functions

A first step in economic modeling:

- individuals have valuation fns giving their value on different outcomes or events.

Focus on **combinatorial settings**:

- n items, $V = \{1, 2, \dots, n\}$
- $f : 2^V \rightarrow R$.



Learning Valuation Functions

This talk: learning valuation fns from past data.

- Supermarket pricing, advertising, coupons

- Web-app to find good deals

Valuation Functions

- Well-studied subclasses of subadditive valuations.

Additive \subseteq OXS \subseteq Submodular \subseteq XOS \subseteq Subadditive

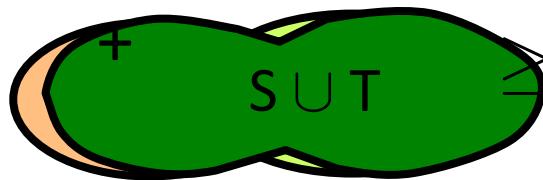
[Sandholm'99] [Lehman-Lehman-Nisan'01]

This talk

Subadditive valuations

- Ground set $V = \{1, 2, \dots, n\}$ (e.g., the items in a store)
- For $S \subseteq V$, $f(S)$ = valuation of user for S .
- Set-function $f : 2^V \rightarrow \mathbb{R}$ subadditive if

For all $S, T \subseteq V$: $f(S) + f(T) \geq f(S \cup T)$

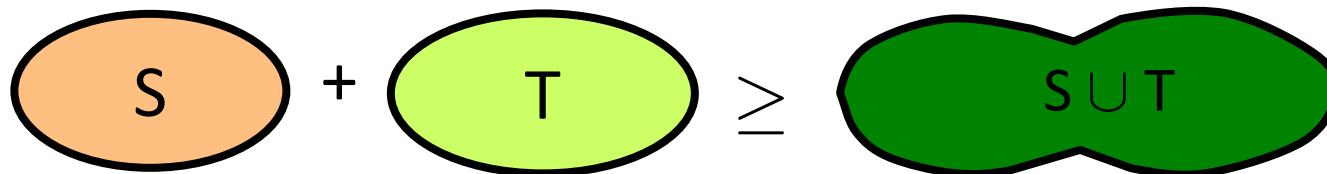


E.g.,

Subadditive valuations

- Ground set $V = \{1, 2, \dots, n\}$ (e.g., the items in a store)
- For $S \subseteq V$, $f(S)$ = valuation of user for S .
- Set-function $f : 2^V \rightarrow \mathbb{R}$ subadditive if

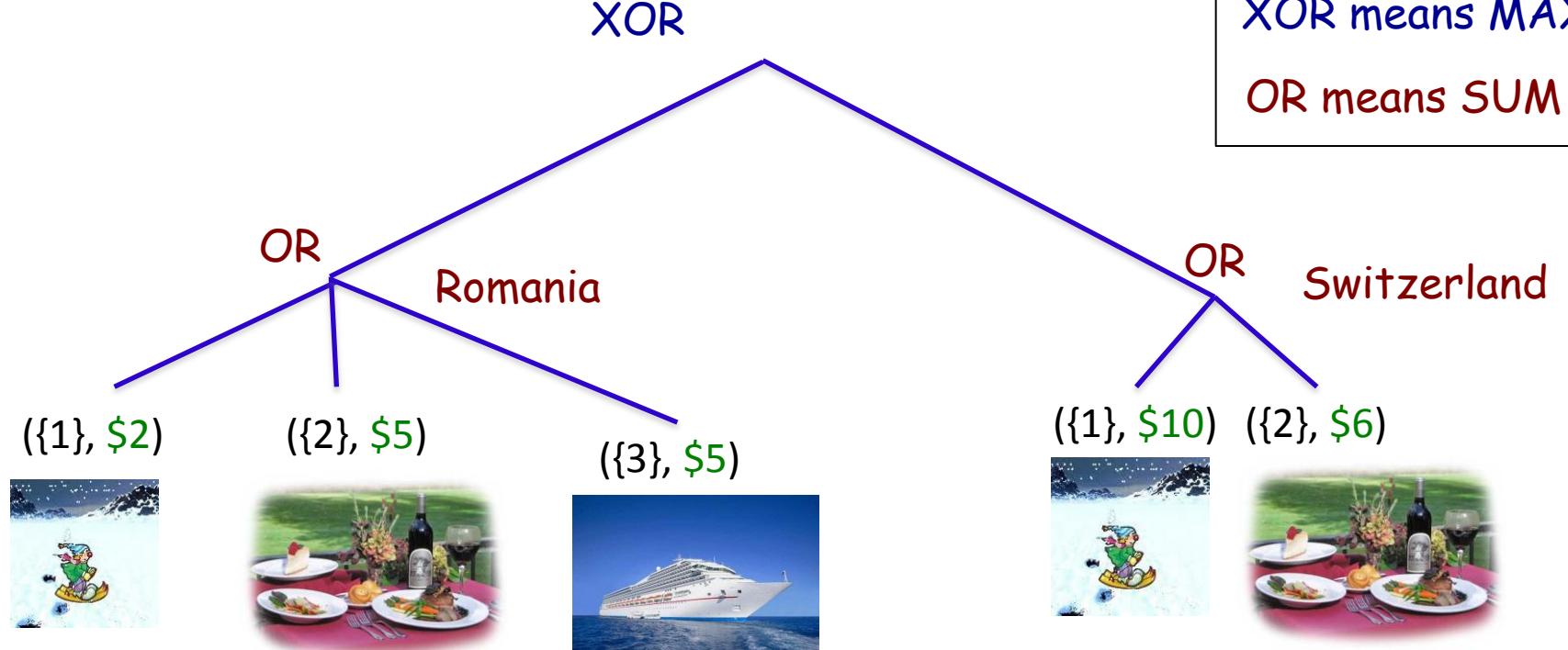
For all $S, T \subseteq V$: $f(S) + f(T) \geq f(S \cup T)$



- Non-negative: $f(S) \geq 0, \forall S \subseteq V$
- Monotone: $f(S) \leq f(T), \forall S \subseteq T$

XOS valuations

XOS : Fns that can be represented as a MAX of SUMs.



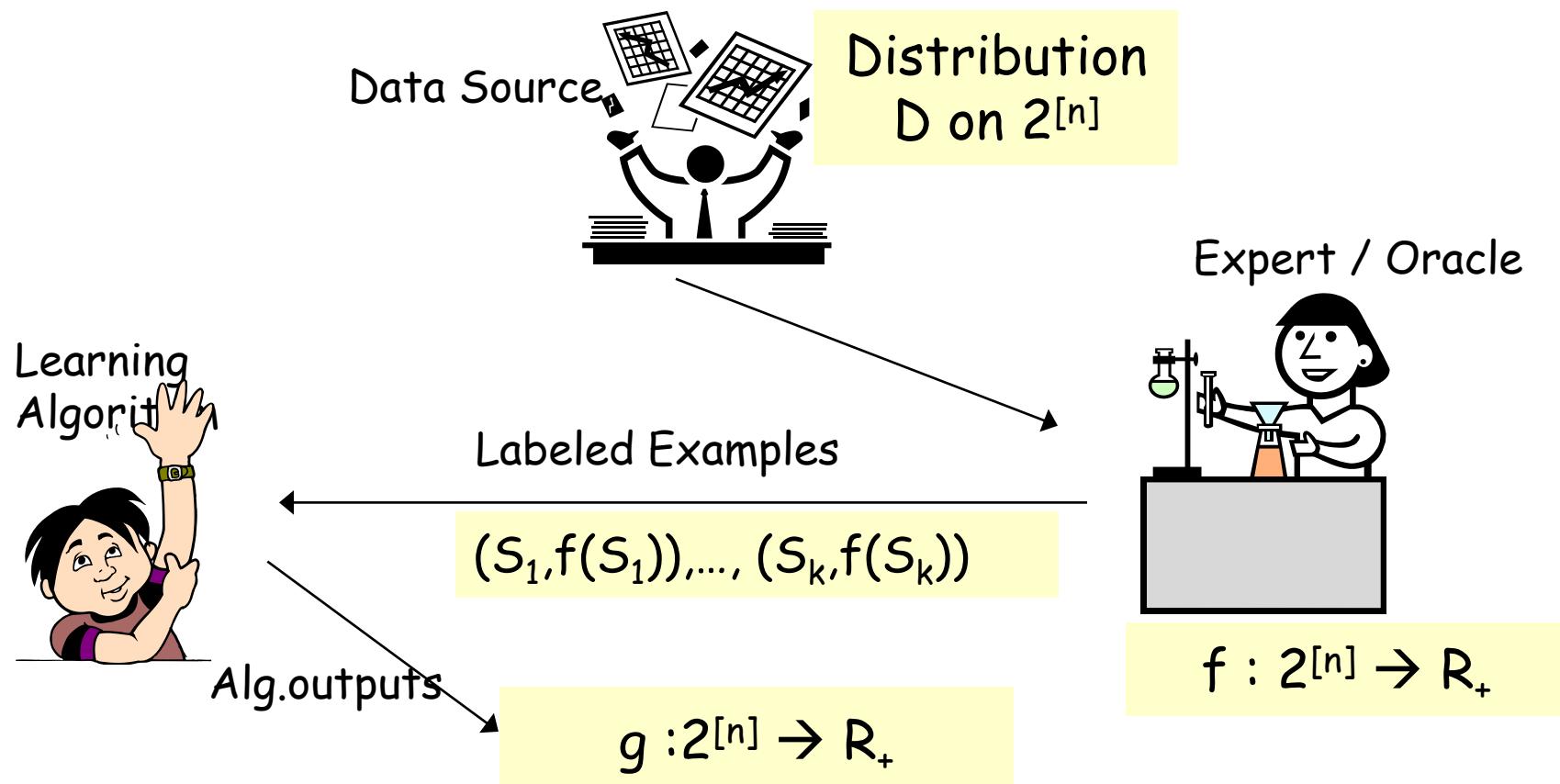
$$g(\{1,2\}) = \$16$$

$$g(\{2,3\}) = \$10$$

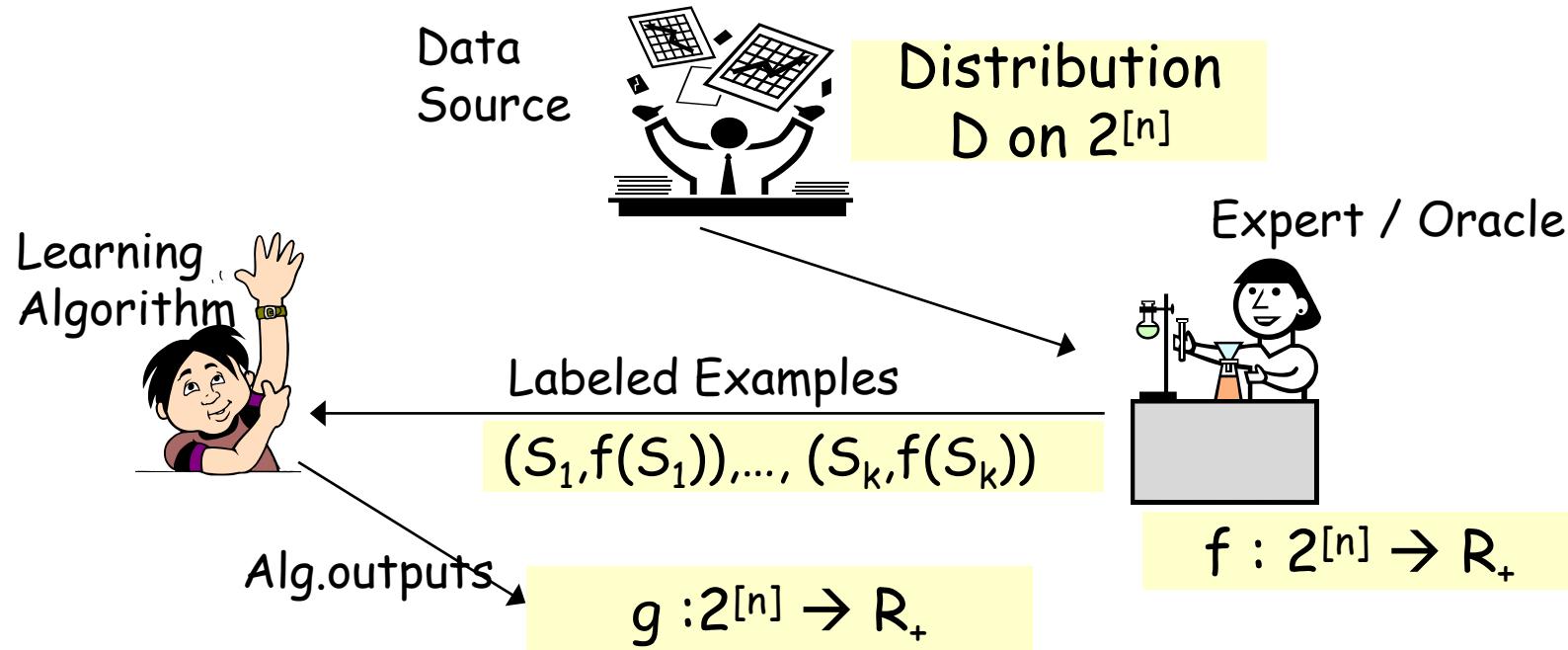
$$g(\{1,2,3\}) = \$16$$

Learning valuation functions
from data.

Passive Supervised Learning



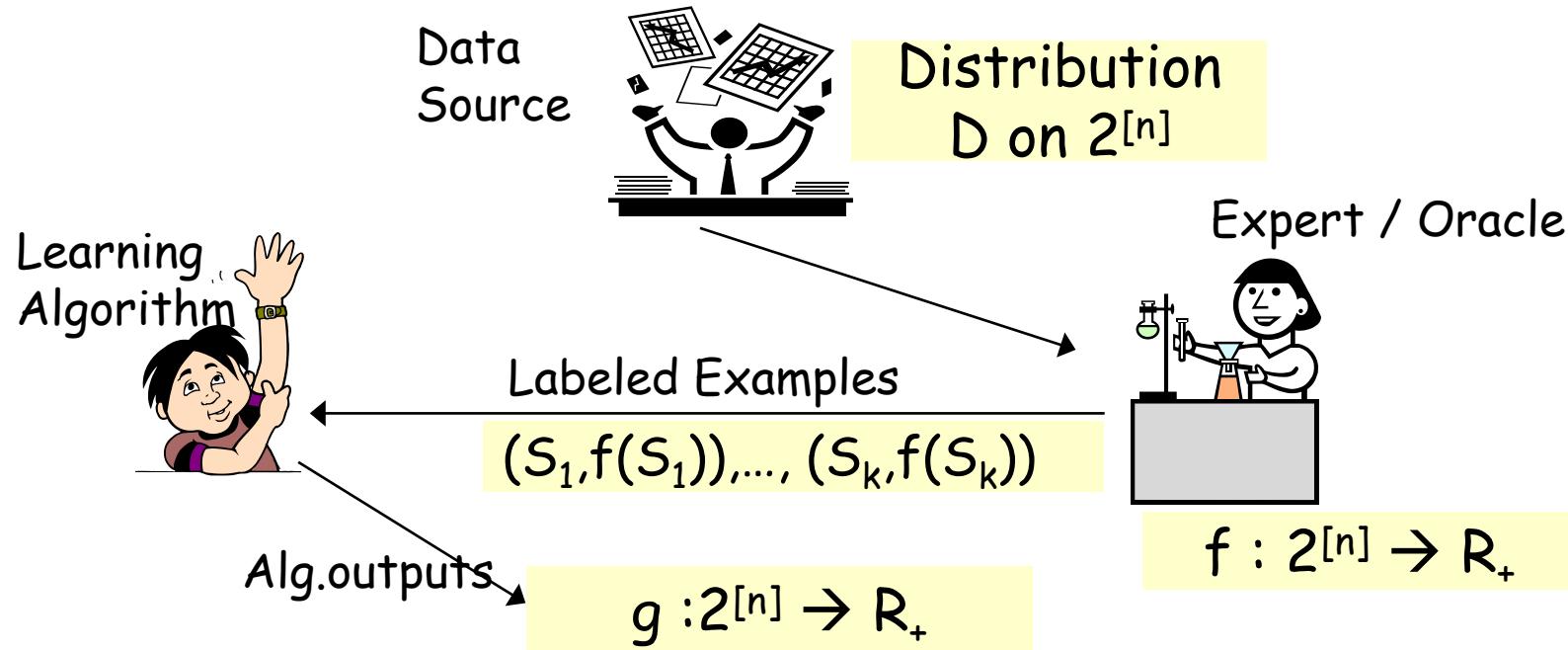
PMAC model for learning real valued functions



- Algo sees $(S_1, f(S_1)), \dots, (S_k, f(S_k))$, S_i i.i.d. from D , produces g .
- **With probability $\geq 1-\delta$ we have $\Pr_S[g(S) \leq f(S) \leq \alpha g(S)] \geq 1-\epsilon$**

Probably Mostly Approximately Correct [Balcan-Harvey'11]

PMAC model for learning real valued functions



- Algo sees $(S_1, f(S_1)), \dots, (S_k, f(S_k))$, S_i i.i.d. from D , produces g .
- **With probability $\geq 1-\delta$ we have $\Pr_S[g(S) \leq f(S) \leq \alpha g(S)] \geq 1-\epsilon$**
- Compared to $E_S\{(f(S) - g(S))^2\}$, aligns better with the optimization literature.
- Allows fine-grained control of errors: distinguishes between low error on most of the distrib & high error on a few points vs moderately high error everywhere.

Learning XOS, subadditive valuations

Theorem: (Our general upper bound)

Efficient alg. for PMAC-learning XOS fns with approx. factor $\alpha=O(n^{1/2})$ and subadditive fns with $\alpha=O(\log n \cdot n^{1/2})$.

Improves over [Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden'12] and [Balcan-Harvey'11].

Theorem: (Our general lower bound)

No algorithm can PMAC learn the class of XOS/subadditive fns with an approx. factor $\tilde{o}(n^{1/2})$.

Similar to [Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden'12] and much simpler than [Balcan-Harvey'11] for submodular fns.

Theorem: XOS with Polynomial number of XOR trees

$O(n^\epsilon)$ approximation in time $O(n^{1/\epsilon})$.

Lower Bound for XOS valuations

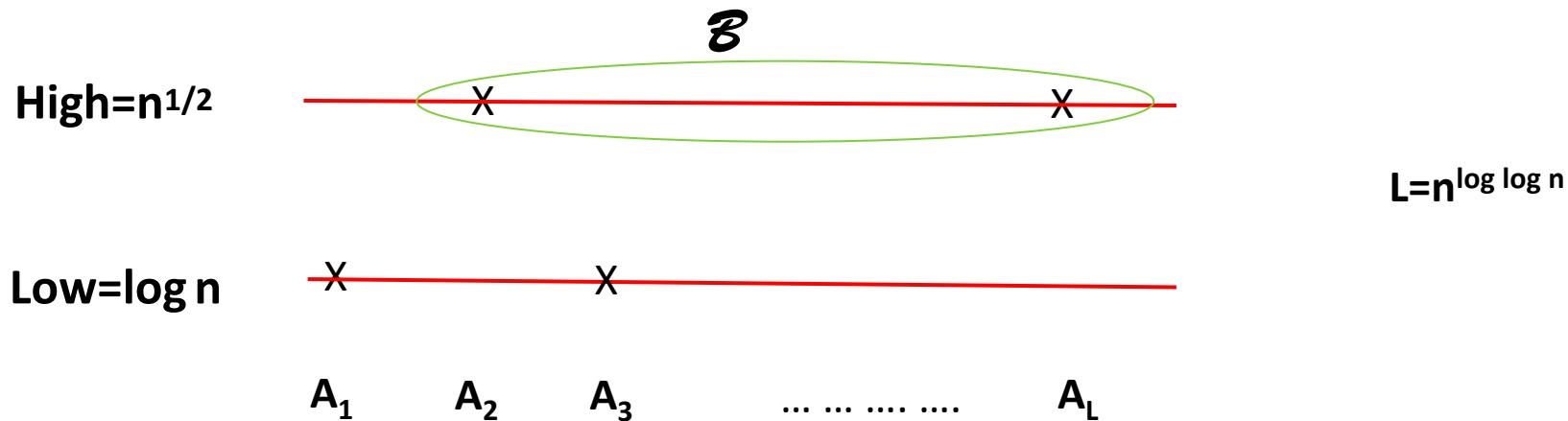
Theorem: No algorithm can PMAC learn the class of XOS valuations with an approx. factor $\tilde{o}(n^{1/2})$.

Main Idea:

There exist A_1, \dots, A_L , $L=n^{\log \log n}$ s.t.:

$$(i) |A_i| \approx n^{1/2}$$

$$(ii) |A_i \cap A_j| \leq \log n$$



Lower Bound for XOS valuations

Theorem: No algorithm can PMAC learn the class of XOS valuations with an approx. factor $\tilde{o}(n^{1/2})$.

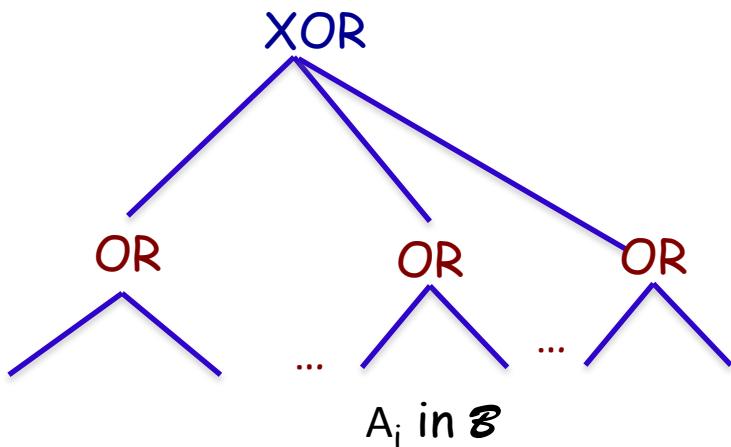
Main Idea:

There exist A_1, \dots, A_L , $L=n^{\log \log n}$ s.t.:

$$(i) |A_i| \approx n^{1/2}$$

$$(ii) |A_i \cap A_j| \leq \log n$$

For each A_i in \mathcal{B} , add an OR tree with leaves elements in A_i



$$(i) f(A_i) = |A_i|, A_i \text{ in } \mathcal{B}$$

$$(ii) f(A_i) \leq \log n, A_i \text{ not in } \mathcal{B}$$

Lower Bound for XOS valuations

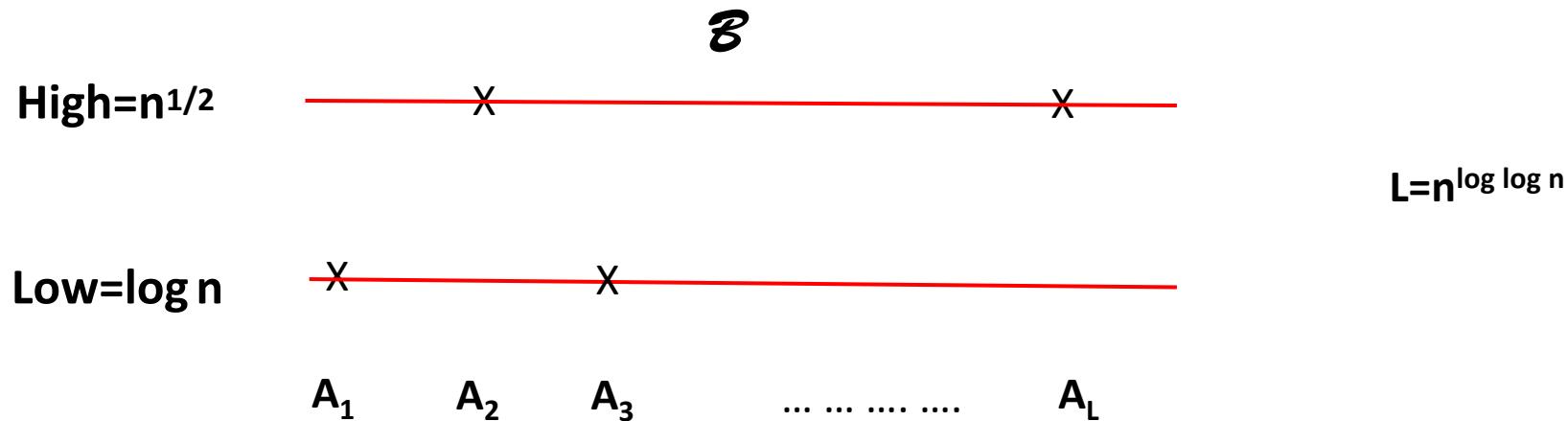
Theorem: No algorithm can PMAC learn the class of XOS valuations with an approx. factor $\tilde{o}(n^{1/2})$.

Main Idea:

$$(i) |A_i| \approx n^{1/2}$$

There exist A_1, \dots, A_L , $L=n^{\log \log n}$ s.t.:

$$(ii) |A_i \cap A_j| \leq \log n$$



General Upper Bound

Theorem: Efficient alg for PMAC-learning XOS fns with approx. factor $\alpha=O(n^{1/2})$ and subadditive fns with approx. factor $\alpha=O(\log n \cdot n^{1/2})$.

Main Ideas:

- **Claim:** f XOS approx. within $n^{1/2}$ by $\sqrt{\text{linear function}}$
- Set-function $f : 2^V \rightarrow \mathbb{R}$ **fractionally subadditive** if
 - For all $T \subseteq V$: $f(T) \leq \sum_S \{\lambda_S f(S)\}$ whenever
$$\lambda_S \geq 0, \sum_{S: s \in S} \lambda_S \geq 1, \text{ for any } s \text{ in } T.$$
- $f : 2^V \rightarrow \mathbb{R}$ fractionally subadditive iff XOS [Feige'06].

General Upper Bound

Theorem: Efficient alg for PMAC-learning XOS fns with approx. factor $\alpha=O(n^{1/2})$ and subadditive fns with approx. factor $\alpha=O(\log n \cdot n^{1/2})$.

Main Ideas:

- **Claim:** f fractionally subad. approx. within $n^{1/2}$ by $\sqrt{\text{linear function}}$
 - $f(T) = \max_{x \in P(f)} \{x(T)\}$, where $P(f) = \{x \geq 0: x(S) \leq f(S), \forall S \subseteq [n]\}$
 - John's ellipsoid theorem for symmetric convex bodies implies $\exists \mathcal{E}$ such that \mathcal{E} contains $P(f)$ and $(1/n^{1/2}) \mathcal{E}$ is contained in $P(f)$
 - Define $g(T) = \max_{\{x \in 1/n^{1/2} \mathcal{E}\}} \{x(T)\}$. So $g(S) \leq f(S) \leq n^{1/2} g(S)$
 - \mathcal{E} is axis aligned, so g is $\sqrt{\text{linear function}}$

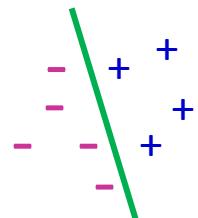
General Upper Bound

Theorem: Efficient alg for PMAC-learning XOS fns with approx. factor $\alpha=O(n^{1/2})$ and subadditive fns with approx. factor $\alpha=O(\log n \cdot n^{1/2})$.

Main Ideas: $g^2(S) \leq f(S) \leq n g^2(S)$ where $g(S) = (w \cdot \chi(S))^{\frac{1}{2}}$

- Labeled examples $((\chi(S), f^2(S)), +)$ and $((\chi(S), n \cdot f^2(S)), -)$ linearly separable in \mathbb{R}^{n+1} .
- Idea: reduction to learning a linear separator.

Problem: data not i.i.d.



Solution: create a related distib. P . Sample S from D ; flip a coin. If heads add $((\chi(S), f^2(S)), +)$. Else add $((\chi(S), n \cdot f^2(S)), -)$.

- Claim: A linear separator with low error on P induces a linear function with an approx. factor of $n^{1/2}$ on the original data.

General Upper Bound

Theorem: Efficient alg for PMAC-learning XOS fns with approx. factor $\alpha=O(n^{1/2})$ and subadditive fns with approx. factor $\alpha=O(\log n \cdot n^{1/2})$.

Main Ideas:

Input: $(S_1, f(S_1)) \dots, (S_m, f(S_m))$

- For each S_i , flip a coin.
 - If heads add $((\chi(S), f^2(S_i)), +)$.
 - Else add $((\chi(S), n f^2(S_i)), -)$.
- Learn a linear separator $u=(w, -z)$ in \mathbb{R}^{n+1} .

Output: $g(S)=1/(n+1)^{1/2} w \cdot \chi(S)$

A subadditive function is within $\log n$ factor of a XOS function.

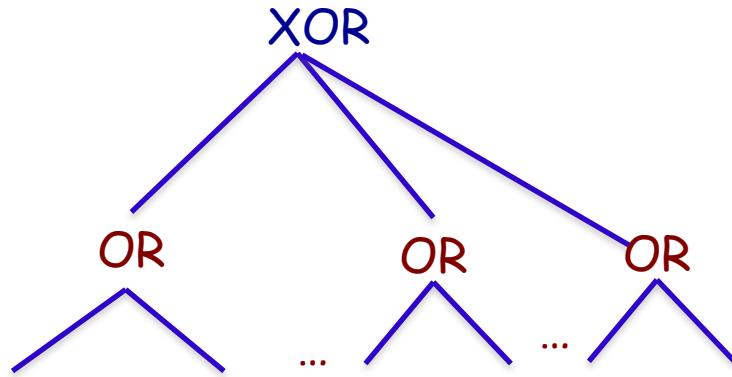
XOS: Target dependent Upper Bound

Theorem: (Polynomial number of XOR trees)

$O(n^\epsilon)$ approximation in time $O(n^{1/\epsilon})$.

Highlights importance of complexity of the target function.

Main Proof Idea:



$$f(S) = \max_{j=1..R} \{k_j(S)\}$$

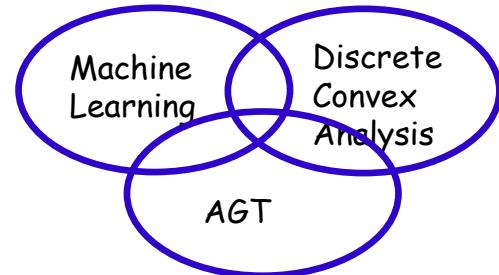
$$\text{where } k_j(S) = w_j \cdot \chi(S)$$

- $g(S) = (1/R) \sum_j \{(k_j(S))^L\}$ satisfies $g(S) \leq f(S)^L \leq R g(S)$
- Reduction to learning a linear separator over L -tuples.

Conclusions

Learnability of important classes of valuation functions (OXS, XOS, subadditive).

Open Questions



- Better bounds for XOS functions with polynomial number of XOR trees
- Analyze learnability of other interesting classes of valuations functions

