Foundations of Data Driven Algorithm Design

Maria-Florina (Nina) Balcan
Carnegie Mellon University
Data Driven Algorithm Selection

Some domains we have polynomial time optimal algorithms:

- E.g., sorting, searching, shortest paths...

Some domains we don’t:

- Different methods work better in different settings.
- Large family of methods – what’s best in our application?
- E.g., data clustering, partitioning problems, auction design, ...

Use ML to automate algo design in difficult domains.
Data Driven Algorithm Selection

Use ML to automate algo design in difficult domains.

- Large body of empirical work.
 - AI community: E.g., [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]
 - Computational Biology: E.g., [DeBlasio-Kececioglu, 2018]
 - Game Theory: E.g., [Likhodedov and Sandholm, 2004]

- **This talk**: formal guarantees for this approach.
Algorithm Selection as a Learning Problem

Goal: given large family of algos, sample of typical instances from domain, find an algo that performs well on new instances from same domain.

Large family F of algorithms

Sample of typical inputs

Facility location:

Clustering:
Sample Complexity of Algorithm Selection

Goal: given large family of algos, sample of typical instances from domain, find an algo that performs well on new instances from same domain.

Approach: ERM, find the algo that performs best over our sample.

Key Question: When do we generalize?

Sample Complexity: How large should our sample of typical instances be in order to guarantee good performance on new instances?
Data Driven Algorithm Selection

Goal: widely applicable techniques for analyzing the intrinsic complexity of families of algos and ensuring good generalizability. Also design an efficient meta-algorithm.

Natural Idea: apply tools from learning theory.

$$m = O(dim(F)/\epsilon^2)$$ instances suffice to ensure generalizability

Challenge: analyze $dim(F)$, due to combinatorial & modular nature, “nearby” programs/algos can have drastically different behavior.

Classic machine learning

Our work
Formal Guarantees for Algorithm Selection

Prior Work:

[Gupta-Roughgarden, ITCS 2016 & SICOMP 2017]: proposed learning theoretic model for analyzing algorithm selection; analyzed greedy procedures for subset selection problems (knapsack & independent set).
Formal Guarantees for Algorithm Selection

- **Our Work:** Distributional settings, new algo classes applicable for a wide range of problems.

[Balcan-Nagarajan-Vitercik-White, COLT 2017]

- **Clustering:** Linkage + Dynamic Programming

- **Partitioning pbs via IQPs:**
 SDP + Rounding

 E.g., Max-Cut,
 Max-2SAT, Correlation Clustering

- **Semidefinite Programming Relaxation (SDP)**
- **Integer Quadratic Programming (IQP)**
- **GW rounding**
- **1-linear rounding**
- **s-linear rounding**
- **Feasible solution to IQP**
Formal Guarantees for Algorithm Selection

- **Our Work**: Distributional settings, new algo classes applicable for a wide range of problems.

[Balcan-Dick-Sandholm-Vitercik, ICML 2018]

- **Branch and Bound Techniques for solving MIPs**

\[
\begin{align*}
\text{Max } c \cdot x \\
\text{s.t. } Ax &= b \\
& x_i \in \{0,1\}, \forall i \in I
\end{align*}
\]

\[
\begin{align*}
\text{Max } (40, 60, 10, 10, 30, 20) \cdot x \\
\text{s.t. } (40, 50, 30, 10, 10, 40) \cdot x &\leq 100 \\
& x \in \{0,1\}^7
\end{align*}
\]
Formal Guarantees for Algorithm Selection

• **Our Work**: Distributional settings, new algo classes applicable for a wide range of problems.

 [Balcan-Nagarajan-Vitercik-White, COLT 2017]

 [Balcan-Dick-Sandholm-Vitercik, ICML 2018]

• **Related Work**: guarantees for automated mechanism design in distributional settings. [Balcan-Sandholm-Vitercik, EC 2018]

• **Recent Work**: General results for private and online algorithm selection. [Balcan-Dick-Vitercik, 2018]
Clustering

Problem: Given a set of n objects (news articles, customer surveys, web pages, ...), organize into natural groups.

- E.g., objective based clustering
 - *k*-median: find centers \(\{c_1, c_2, ..., c_k\} \) to minimize \(\Sigma_p \min d(p, c_i) \)
 - *k*-means: find centers \(\{c_1, c_2, ..., c_k\} \) to minimize \(\Sigma_p \min d^2(p, c_i) \)
 - *k*-center: find centers to minimize the maximum radius.

- Finding OPT is NP-hard, so no universal efficient algo that works on all domains.
Clustering: Linkage + Dynamic Programming

Family of poly time 2-stage algorithms:

1. Use a linkage-based algorithm to organize data into a hierarchy (tree) of clusters.

2. Dynamic programming over this tree to identify pruning of tree corresponding to the best clustering.
Clustering: Linkage + Dynamic Programming

1. Use a linkage-based algorithm to get a hierarchy.
2. Dynamic programming to the best pruning.
Linkage Procedures for Hierarchical Clustering

Bottom-Up (agglomerative)

- Start with every point in its own cluster.
- Repeatedly merge the “closest” two clusters.

Different defs of “closest” give different algorithms.
Linkage Procedures for Hierarchical Clustering

Have a distance measure on pairs of objects.

\(d(x,y) \) - distance between \(x \) and \(y \)

E.g., # keywords in common, edit distance, etc

- **Single linkage:** \(\text{dist}(A, B) = \min_{x \in A, x' \in B'} \text{dist}(x, x') \)

- **Complete linkage:** \(\text{dist}(A, B) = \max_{x \in A, x' \in B'} \text{dist}(x, x') \)

- **Average linkage:** \(\text{dist}(A, B) = \frac{\text{avg}_{x \in A, x' \in B'} \text{dist}(x, x')} \)

- **\(\alpha \)-weighted linkage:**

\[
\text{dist}(A, B) = \alpha \min_{x \in A, x' \in B'} \text{dist}(x, x') + (1 - \alpha) \max_{x \in A, x' \in B'} \text{dist}(x, x')
\]
Clustering: Linkage + Dynamic Programming

1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best pruning.

- Used in practice.
 E.g., [Filippova-Gadani-Kingsford, BMC Informatics]

- Strong properties.
 E.g., best known algs for perturbation resilient instances for k-median, k-means, k-center.

[Balcan-Liang, SICOMP 2016] [Awasthi-Blum-Sheffet, IPL 2011]
[Angelidakis-Makarychev-Makarychev, STOC 2017]

PR: small changes to input distances shouldn’t move optimal solution by much.
Clustering: Linkage + Dynamic Programming

Our Results: α-weighted linkage + DP

- Pseudo-dimension is $O(\log n)$, so small sample complexity.

- Given sample S, find best algo from this family in poly time.

Key Technical Challenge: small changes to the parameters of the algo can lead to radical changes in the tree or clustering produced.

Problem: a single change to an early decision by the linkage algorithm can snowball and produce large changes later on.
Clustering: Linkage + Dynamic Programming

Our Results: α-weighted linkage+DP

- Pseudo-dimension is $O(\log n)$, so small sample complexity.

Key idea:

- Break real line into a small number of intervals s.t. on each instance:

 \[\alpha \in \mathbb{R} \]

 - Two α's from one interval result in the same tree.
 - And therefore the same clustering.
 - And therefore the same performance cost.
Our Results: α-weighted linkage+DP

Pseudo-dimension is $O(\log n)$, so small sample complexity.

Key idea:

- Break real line into intervals s.t. on each instance same performance.

 $\alpha \in \mathbb{R}$

- For a clustering instance of n points, $O(n^8)$ intervals.

 - Over any α interval, so long as order in which all pairs of nodes are merged is fixed, then resulting tree is invariant.

 - Which will merge first, \mathcal{N}_1 and \mathcal{N}_2, or \mathcal{N}_3 and \mathcal{N}_4?

 - Depends on which of $(1 - \alpha)d(p, q) + \alpha d(p', q')$ or $(1 - \alpha)d(r, s) + \alpha d(r', s')$ is smaller.

 - Any interval boundary must be an equality for some such set of 8 points, so $O(n^8)$ interval boundaries. Order of merges is fixed between any two adjacent interval boundaries.
Clustering: Linkage + Dynamic Programming

Our Results: \(\alpha\)-weighted linkage+DP

Pseudo-dimension is \(O(\log n)\), so small sample complexity.

Key idea:
- Break real line into intervals s.t. **on each instance** same performance.
- For \(m\) clustering instances of \(n\) points, \(O(mn^8)\) intervals.

\[\alpha \in \mathbb{R}\]

So, pseudo-dim is \(O(\log n)\).
Our Results: α-weighted linkage + DP

- Pseudo-dimension is $O(\log n)$.

For $m = \tilde{O}(\log n / \epsilon^2)$, w.h.p. expected performance cost of best α over the sample is ϵ-close to optimal over the distribution.

- Given sample S, can find best algo from this family in poly time.

Algorithm (high level)

- Solve for all α intervals over the sample

 $\alpha \in \mathbb{R}$

- Find the α interval with the smallest empirical cost
Partitioning Problems via IQPs

IQP formulation

\[
\text{Max } x^T A x = \sum_{i,j} a_{i,j} x_i x_j \\
\text{s.t. } x \in \{-1,1\}^n
\]

E.g., max-cut

\[
\text{Max } \sum_{(i,j) \in E} w_{ij} \left(\frac{1-v_i v_j}{2} \right) \\
\text{s.t. } v_i \in \{-1,1\}
\]

Many of these problems are NP-hard.
Partitioning Problems via IQPs

IQP formulation

\[
\begin{align*}
\text{Max } x^T A x &= \sum_{i,j} a_{i,j} x_i x_j \\
\text{s.t. } x &\in \{-1,1\}^n
\end{align*}
\]

Algorithmic Approach: SDP + Rounding

1. SDP relaxation:
 Associate each binary variable \(x_i \) with a vector \(u_i \).
 \[
 \begin{align*}
 \text{Max } &\sum_{i,j} a_{i,j} \langle u_i, u_j \rangle \\
 \text{subject to } &\|u_i\| = 1
 \end{align*}
 \]

2. Rounding procedure [Goemans and Williamson ’95]
 - Choose a random hyperplane.
 - (Deterministic thresholding.) Set \(x_i \) to \(-1\) or \(1\) based on which side of the hyperplane the vector \(u_i \) falls on.
IQP formulation
\[
\text{Max } x^T Ax = \sum_{i,j} a_{i,j} x_i x_j \\
\text{s.t. } x \in \{-1,1\}^n
\]

Algorithmic Approach: SDP + Rounding

1. SDP relaxation:
 - Associate each binary variable \(x_i \) with a vector \(u_i \).
 \[
 \text{Max } \sum_{i,j} a_{i,j} \langle u_i, u_j \rangle \\
 \text{subject to } \|u_i\| = 1
 \]

2. s-Linear Rounding [Feige&Landberg'06]
 - Choose a random hyperplane.
 - Random thresholding
 Set \(x_i \) to 1 w.p. \(\frac{1}{2} + \frac{1}{2} \varphi_s(\langle u_i, Z \rangle) \) and -1 w.p. \(\frac{1}{2} - \frac{1}{2} \varphi_s(\langle u_i, Z \rangle) \)

\[\varphi_s(x) = -1_{x < -s} + \frac{x}{s} 1_{x \in [-s,s]} + 1_{x > s}\]
Parametrized family of rounding procedures

IQP formulation

\[\text{Max } x^T A x = \sum_{i,j} a_{i,j} x_i x_j \]

s.t. \(x \in \{-1,1\}^n \)

Algorithmic Approach: SDP + Rounding

1. **SDP relaxation:**
 - Associate each binary variable \(x_i \) with a vector \(u_i \).
 - \(
 \text{Max } \sum_{i,j} a_{i,j} \langle u_i, u_j \rangle \\
 \text{subject to } ||u_i|| = 1
 \)

2. **s-Linear Rounding** [Feige&Landberg'06]
 - Choose a random hyperplane.
 - Random thresholding
 - Set \(x_i \) to 1 w.p. \(\frac{1}{2} + \frac{1}{2} \varphi_s(\langle u_i, Z \rangle) \)
 - and -1 w.p. \(\frac{1}{2} - \frac{1}{2} \varphi_s(\langle u_i, Z \rangle) \)
Partitioning Problems via IQPs

Our Results: SDP + s-linear rounding

Pseudo-dimension is $O(\log n)$, so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic in $\frac{1}{s}$ with n boundaries.

Given sample S, can find best algo from this family in poly time.

- Solve for all α intervals over the sample, find best parameter over each interval, output the best parameter overall.
Online Algorithm Selection

• So far, batch setting: the collection of typical instances given upfront.

• Scoring functions non-convex, with lots of discontinuities, cannot use known techniques. They are piecewise Lipschitz.

• Online optimization with Piecewise Lipschitz functions.

• Identify a general structural property called dispersion that allows us to get good regret bounds and show this property holds for many alg. selection problems.
Recent Work: Online Algorithm Selection

Recent Work: [Balcan-Dick-Vitercik 2018]

Online optimization

On each round $t \in \{1, \ldots, T\}$:

1. The online learning algorithm chooses a parameter ρ_t
2. The adversary chooses a piecewise Lipschitz function $u_t: \mathcal{C} \rightarrow [0, H]$ (corresponds to some problem instance and its induced scoring function)
 Receive the score of the parameter we selected $u_t(\rho_t)$.

3. Full information: Algorithm observes the function $u_t(\cdot)$
4. Bandit feedback: Algorithm only receives payout $u_t(\rho_t)$.

Goal: minimize regret: $\max_{\rho \in \mathcal{C}} \sum_{t=1}^{T} u_t(\rho) - \mathbb{E}[\sum_{t=1}^{T} u_t(\rho_t)]$

\[\uparrow \quad \text{Performance of best parameter in hindsight} \quad \uparrow \quad \text{Our cumulative performance}\]
Dispersion, Sufficient Condition for No-Regret

{u_1(·), ..., u_T(·)} is (w, k)-dispersed if any ball of radius w contains boundaries for at most k of the u_i.
Full information: exponentially weighted forecaster

On each round $t \in \{1, ..., T\}$:

- Sample a vector ρ_t from a distribution p_t where

$$p_t(\rho) \propto \exp\left(\lambda \sum_{s=1}^{t-1} u_s(\rho)\right)$$

Our Results:

If $\sum_{t=1}^{T} \mathcal{U}_t(\cdot)$ piecewise L-Lipschitz, $\{\mathcal{U}_1(\cdot), ..., \mathcal{U}_T(\cdot)\}$ is $(\mathcal{W}, \mathcal{K})$-dispersed.

The expected regret is $O\left(H\left(\sqrt{Td \log \frac{1}{\mathcal{W}}} + \mathcal{K}\right) + TL\mathcal{W}\right)$.

Usual \sqrt{T} bound, but lose a $\log(1/\mathcal{W})$ multiplicative term, and an additive $\mathcal{K}H$ term [for the \mathcal{K} discontinuities that might be inside a ball of radius \mathcal{W} around the optimal solution] and an additive $TL\mathcal{W}$ for the Lipschitz constant.
For most problems:

- Set $\mathbf{w} \approx 1/\sqrt{T}$
- Get $\mathbf{k} = \sqrt{T} \times \text{(some function of problem)}$
- Overall, get regret $\tilde{O}(H\sqrt{Td})$.

If $\sum_{t=1}^{T} u_t(\cdot)$ is piecewise L-Lipschitz, $\{u_1(\cdot), \ldots, u_T(\cdot)\}$ is (\mathbf{w}, \mathbf{k})-dispersed.

The expected regret is $O\left(H\left(\sqrt{Td \log \frac{1}{\mathbf{w}}} + \mathbf{k}\right) + TL\mathbf{w}\right)$.
Example: rounding of SDP relaxation of IQP

Idea:

- Exploit **randomness of algorithm** to give a guarantee on dispersion.
- Prove that whp, for any $\alpha \geq \frac{1}{2}$, the set of u_i are $(T^{\alpha-1}, O(nT^\alpha \sqrt{\log n}))$-dispersed
- Lipschitz value depends on which class of rounding schemes.
- Setting $\alpha = \frac{1}{2}$ leads to regret of $\tilde{O}(Hn\sqrt{T})$.
Example: Knapsack

A problem instance is collection of items i, each with a value v_i and a size s_i, along with a knapsack capacity C.

Goal: select most valuable subset of items that fits. Find subset T to maximize $\sum_{i \in T} v_i$ subject to $\sum_{i \in T} s_i \leq C$.

Natural family of algorithms: given ρ, select the better of:

- Greedily pack items in order of value (highest value first) subject to feasibility.
- Greedily pack items in order of v_i/s_i^ρ subject to feasibility.

We show: under natural conditions on items (every pair of items has a bounded joint value distribution), can get $\tilde{O}(n^2\sqrt{T})$ regret.
Discussion

• Strong performance guarantees for data driven algorithm selection for combinatorial problems.

• Exploit structure to provide good sample complexity and regret bounds. Also privacy guarantees.

• From a learning theory point of view, techniques of independent interest beyond algorithm configuration.

• Related in spirit to Hyperparameter tuning, AutoML, MetaLearning.

• **Future Work**: use our insights to analyze problems commonly studied in these settings (e.g., tuning hyper-parameters in deep nets)