Sample and Computationally Efficient Active Learning

Maria-Florina Balcan

Carnegie Mellon University
Two Minute Version

Modern applications: **massive amounts** of raw data.

Only a tiny fraction can be annotated by human experts.

- Protein sequences
- Billions of webpages
- Images

Active Learning: utilize data, minimize expert intervention.
Two Minute Version

Active Learning: technique for best utilizing data while minimizing need for human intervention.

This talk: the power of aggressive localization for label efficient, noise tolerant, poly time algo for learning linear separators

[Awasthi-Balcan-Long JACM’17]
[Awasthi-Balcan-Haghtalab-Urner COLT’15] [Balcan-Long COLT’13]

• Much better noise tolerance than previously known for classic passive learning via poly time algos. [KKMS’05] [KLS’09]

• Solve an adaptive sequence of convex optimization pbs on smaller & smaller bands around current guess for target.
Passive and Active Learning
Supervised Learning

- E.g., which emails are spam and which are important.

- E.g., classify objects as chairs vs non chairs.
Statistical / PAC learning model

- Learning Algorithm sees \((x_1, c^*(x_1)), \ldots, (x_m, c^*(x_m))\), \(x_i\) i.i.d. from \(D\)
- Does optimization over \(S\), finds hypothesis \(h \in C\).
- Goal: \(h\) has small error, \(\text{err}(h) = \Pr_{x \in D}(h(x) \neq c^*(x))\)
- \(c^*\) in \(C\), realizable case; else agnostic
Two Main Aspects in Classic Machine Learning

Algorithm Design. How to optimize?
Automatically generate rules that do well on observed data.

Running time: \(\text{poly}(d, \frac{1}{\epsilon}, \frac{1}{\delta})\)

Generalization Guarantees, Sample Complexity
Confidence for rule effectiveness on future data.

\[O\left(\frac{1}{\epsilon} \left(\text{VCdim}(C) \log \left(\frac{1}{\epsilon}\right) + \log \left(\frac{1}{\delta}\right)\right)\right)\]

\(C=\text{linear separators in } \mathbb{R}^d: O\left(\frac{1}{\epsilon} \left(d \log \left(\frac{1}{\epsilon}\right) + \log \left(\frac{1}{\delta}\right)\right)\right)\)
Modern ML: New Learning Approaches

Modern applications: **massive amounts** of raw data.

Only a tiny fraction can be annotated by human experts.

- Protein sequences
- Billions of webpages
- Images
Active Learning

- Learner can choose specific examples to be labeled.
- Goal: use fewer labeled examples [pick informative examples to be labeled].
Active Learning in Practice

• **Text classification: active SVM** (Tong & Koller, ICML2000).
 - e.g., request label of the example closest to current separator.

• **Video Segmentation** (Fathi-Balcan-Ren-Regh, BMVC 11).
Can adaptive querying help? [CAL92, Dasgupta04]

- Threshold fns on the real line: \(h_w(x) = 1(x \geq w) \), \(C = \{h_w : w \in \mathbb{R}\} \)

Active Algorithm

- How can we recover the correct labels with \(\ll N \) queries?
- Do binary search! Just need \(O(\log N) \) labels!
- Output a classifier consistent with the \(N \) inferred labels.

Passive supervised: \(\Omega(1/\epsilon) \) labels to find an \(\epsilon \)-accurate threshold.
Active: only \(O(\log 1/\epsilon) \) labels. Exponential improvement.
Active learning, provable guarantees

Lots of exciting results on sample complexity. E.g.,

• “Disagreement based” algorithms

Pick a few points at random from the current region of disagreement (uncertainty), query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

[BalcanBeygelzimerLangford’06, Hanneke07, DasguptaHsuMontleoni’07, Wang’09, Fridman’09, Koltchinskii10, BW’08, BeygelzimerHsuLangfordZhang’10, Hsu’10, Ailon’12, …]

Generic (any class), adversarial label noise.

• suboptimal in label complexity
• computationally prohibitive.
Poly Time, Noise Tolerant/Agnostic, Label Optimal AL Algos.
Margin Based Active Learning

Margin based algo for learning linear separators

• Realizable: exponential improvement, only $O(d \log \frac{1}{\varepsilon})$ labels to find w error ε when D logconcave. [Balcan-Long COLT 2013]

• Agnostic & malicious noise: poly-time AL algo outputs w with $\text{err}(w) = O(\eta)$, $\eta = \text{err(best lin. sep)}$. [Awasthi-Balcan-Long JACM 2017]

• First poly time AL algo in noisy scenarios!

• Improves on noise tolerance of previous best passive [KKMS'05], [KLS'09] algos too!
Margin Based Active-Learning, Realizable Case

Draw m_1 unlabeled examples, label them, add them to $W(1)$.

Iterate $k = 2, \ldots, s$

• find a hypothesis w_{k-1} consistent with $W(k-1)$.
• $W(k) = W(k-1)$.
• sample m_k unlabeled samples x satisfying $|w_{k-1} \cdot x| \leq \gamma_{k-1}$
• label them and add them to $W(k)$.
Margin Based Active-Learning, Realizable Case

Log-concave distributions: log of density fnc concave.

- wide class: uniform distr. over any convex set, Gaussian, etc.

\[f(\lambda x_1 + (1 - \lambda x_2)) \geq f(x_1)^\lambda f(x_2)^{1-\lambda} \]

Theorem D log-concave in \(\mathbb{R}^d \). If \(\gamma_k = O\left(\frac{1}{2^k}\right) \) then \(\text{err}(w_s) \leq \varepsilon \) after \(s = \log \left(\frac{1}{\varepsilon}\right) \) rounds using \(\tilde{O}(d) \) labels per round.

Active learning

- \(O\left(d \log \left(\frac{1}{\varepsilon}\right)\right) \) label requests
- \(\Theta\left(\frac{d}{\varepsilon}\right) \) unlabeled examples

Passive learning

- \(\Theta\left(\frac{d}{\varepsilon}\right) \) label requests
Analysis: Aggressive Localization

Induction: all w consistent with $W(k)$, $\text{err}(w) \leq 1/2^k$
Analysis: Aggressive Localization

Induction: all w consistent with $W(k)$, $err(w) \leq 1/2^k$
Analysis: Aggressive Localization

Induction: all w consistent with $W(k)$, $\text{err}(w) \leq 1/2^k$

$$
\begin{align*}
\text{err}(w) &= \Pr(w \text{ errs on } x, |w_{k-1} \cdot x| \geq \gamma_{k-1}) + \\
&\quad \Pr(w \text{ errs on } x, |w_{k-1} \cdot x| \leq \gamma_{k-1})
\end{align*}
$$
Analysis: Aggressive Localization

Induction: all w consistent with $W(k)$, $\text{err}(w) \leq 1/2^k$

$$\text{err}(w) = \text{Pr}(w \text{ errs on } x, \left| w_{k-1} \cdot x \right| \geq \gamma_{k-1}) + \text{Pr}(w \text{ errs on } x | \left| w_{k-1} \cdot x \right| \leq \gamma_{k-1}) \text{Pr}(\left| w_{k-1} \cdot x \right| \leq \gamma_{k-1})$$

Enough to ensure $\text{Pr}(w \text{ errs on } x | \left| w_{k-1} \cdot x \right| \leq \gamma_{k-1}) \leq C$

Need only $m_k = \tilde{O}(d)$ labels in round k.

Key point: localize aggressively, while maintaining correctness.
Margin Based Active-Learning, Agnostic Case

Draw m_1 unlabeled examples, label them, add them to W.

iterate $k=2, \ldots, s$

- find w_{k-1} in $B(w_{k-1}, r_{k-1})$ of small τ_{k-1} hinge loss wrt W.
- Clear working set.
- sample m_k unlabeled samples x satisfying $|w_{k-1} \cdot x| \leq \gamma_{k-1}$;
- label them and add them to W.

end iterate

Analysis, key idea:

- Pick $\tau_k \approx \gamma_k$
- Localization & variance analysis control the gap between hinge loss and 0/1 loss (only a constant).
Improves over Passive Learning too!

<table>
<thead>
<tr>
<th>Passive Learning</th>
<th>Prior Work</th>
<th>Our Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malicious</td>
<td>$\text{err}(w) = O(\eta d^{1/4})$\text{[KKMS'05]}</td>
<td>$\text{err}(w) = O(\eta)$</td>
</tr>
<tr>
<td></td>
<td>$\text{err}(w) = O(\sqrt{\eta \log(d/\eta)})$\text{[KLS’09]}</td>
<td>Info theoretic optimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Awasthi-Balcan-Long’17]</td>
</tr>
<tr>
<td>Agnostic</td>
<td>$\text{err}(w) = O(\eta \sqrt{\log(1/\eta)})$\text{[KKMS’05]}</td>
<td>$\text{err}(w) = O(\eta)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Awasthi-Balcan-Long’17]</td>
</tr>
<tr>
<td>Bounded Noise</td>
<td>NA</td>
<td>$\eta + \epsilon$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Awasthi-Balcan-Haghtalab-Urner’15]</td>
</tr>
<tr>
<td>Active Learning</td>
<td>NA</td>
<td>same as above!</td>
</tr>
<tr>
<td>[agnostic/malicious/bounded]</td>
<td></td>
<td>Info theoretic optimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Awasthi-Balcan-Long’14]</td>
</tr>
</tbody>
</table>

Slightly better results for the uniform distribution case.
Localization both algorithmic and analysis tool!

Useful for active and passive learning!
Discussion, Open Directions

• Active learning: important modern learning paradigm.

• First poly time, label efficient AL algo for agnostic learning in high dimensional cases.

• Also leads to much better noise tolerant algos for passive learning of linear separators!

Open Directions

• More general distributions, other concept spaces.

• Exploit localization insights in other settings (e.g., online convex optimization with adversarial noise).