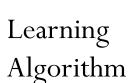
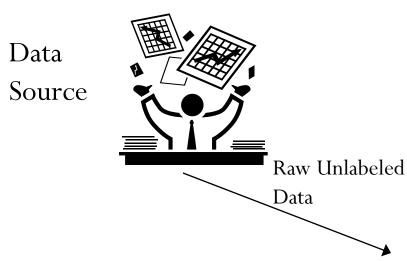
Sample Complexity of Active Learning

Maria Florina Balcan

School of Computer Science Georgia Institute of Technology

Passive Supervised Learning





Labeled examples

Algorithm outputs a classifier

Expert / Oracle

Standard Passive Supervised Learning

- X instance/feature space
- S={(x, l)} set of labeled examples

- labeled examples drawn i.i.d. from distr. D over X and labeled by some target concept c*
 - labels ∈ {-1,1} binary classification
- Do optimization over S, find hypothesis h ∈ C.
- Goal: h has small error over D.

$$err(h)=Pr_{x \in D}(h(x) \neq c^*(x))$$

c* in C, realizable case c* not in C, agnostic case

Sample Complexity: Uniform Convergence Bounds

Infinite Hypothesis Case, Realizable Case

Theorem

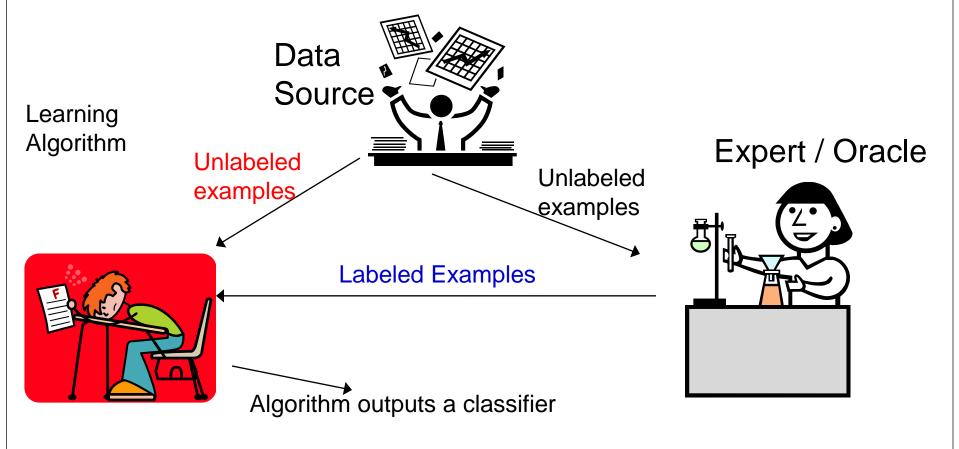
$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(C) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in C$ with $err(h) \ge \varepsilon$ have err(h) > 0.

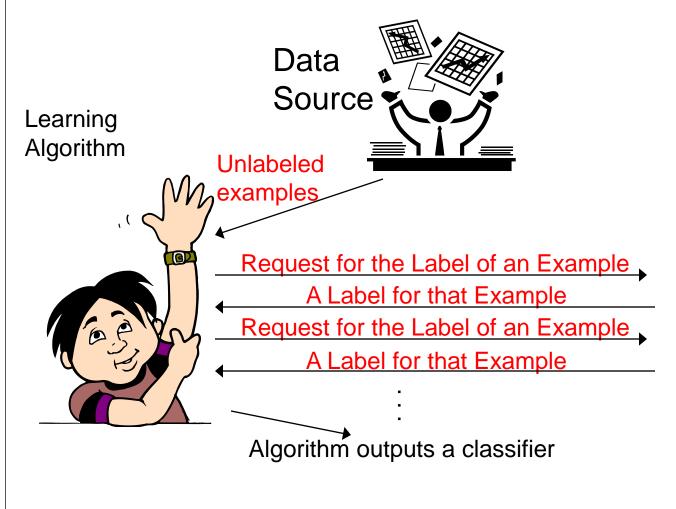
E.g., if C - class of linear separators in R^d , then need $O(d/\epsilon)$ examples to achieve generalization error ϵ .

Non-realizable case – replace ε with ε^2 .

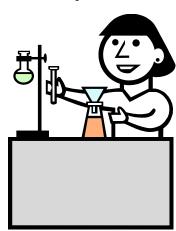
Semi-Supervised Passive Learning



Active Learning



Expert / Oracle



Active Learning

- We get to see unlabeled data first, and there is a charge for every label.
- The learner has the ability to choose specific examples to be labeled.
- The learner works harder, in order to use fewer labeled examples.
 - Do we need fewer examples in this setting than in the passive learning setting?
 - How many labels can we save by querying adaptively?

Outline

Standard PAC-style active learning analysis
 e.g., Das04, Das05, DKM05, BBL06, Kaa06, Han07a&b, BBZ07, DHM07

A new analysis framework
 Joint with Steve Hanneke and Jenn Wortman

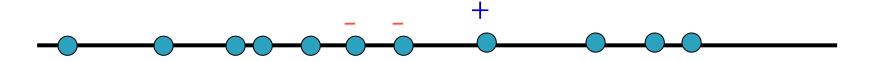
Conclusions & Open Problems

Can adaptive querying help? [CAL92, Dasgupta04]

Consider threshold functions on the real line:

$$h_{w}(x) = 1(x \ge w), \quad C = \{h_{w}: w \in R\}$$

Sample with 1/ε unlabeled examples.



Binary search – need just $O(\log 1/\epsilon)$ labels.

Active setting: $O(\log 1/\epsilon)$ labels to find an ϵ -accurate threshold.

Supervised learning provably needs $\Omega(1/\epsilon)$ labels. [Antos Lugosi, 96]

Exponential improvement in sample complexity ©

Other Examples where Active Learning helps

 C - homogeneous linear separators in R^d, D - uniform distribution over unit sphere.

"Region of disagreement" ([CAL'92]):

Pick a few points at random from the current region of uncertainty, query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

Realizable: need only $d^{3/2} \log (1/\epsilon)$ labeled examples to learn a classifier of error ϵ .

With d^{3/2} labeled examples can halve the region of disagreement.

Other Examples where Active Learning helps

 C - homogeneous linear separators in R^d, D - uniform distribution over unit sphere.

Realizable: only d log (1/ ϵ) labeled examples to learn a classifier of error ϵ [Dasgupta-Kalai-Monteleoni,COLT 2005]

[Balcan-Broder-Zhang, COLT 07]

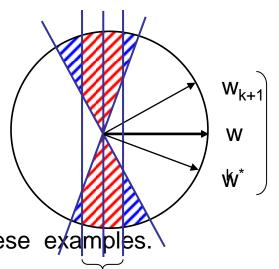
Use O(d) examples to find w_1 of error 1/8.

iterate $k=2, \ldots, \log(1/\epsilon)$

- rejection sample m_k samples x from D satisfying $|\mathbf{w}_{k-1}^T \cdot \mathbf{x}| \leq \gamma_k$;
- label them;
- find $w_k \in B(w_{k-1}, \ 1/2^k)$ consistent with all these examples.

end iterate

[Balcan-Broder-Zhang, COLT 07]



Agnostic Active Learning Results

A² the first algorithm which is robust to noise.

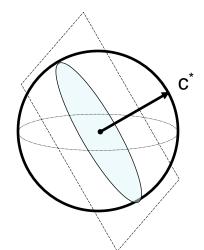
[Balcan, Beygelzimer, Langford, ICML'06] [Balcan, Beygelzimer, Langford, JCSS'08]

"Region of disagreement" style: Pick a few points at random from the current region of uncertainty, query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

(similar to [CAL'92] realizable case)

Guarantees for A²:

- Fall-back & exponential improvements.
- C thresholds, low noise, exponential improvement.
- C homogeneous linear separators in R^d,
 D uniform over unit sphere, low noise, only
 d² log (1/ε) labels to find h with error ε.



Interesting subsequent work. [Hanneke'07, DHM'07]

Active Learning might not help [Dasgupta04]

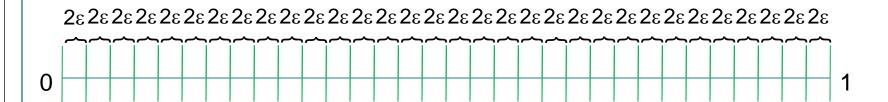
C = {intervals on the line}.

E.g., suppose D is uniform on [0,1]

In this case: learning to accuracy ε requires $1/\varepsilon$ labels...

Intervals on the line

Suppose D is uniform on [0,1]



Suppose the target labels everything "-1"

Need $\Omega(1/\epsilon)$ label requests to guarantee the target isn't one of these.

Active Learning does not help.

Subtle Variation on the traditional model

Non-verifiable and Target Dependent Sample Complexity

budget

Definition: An algorithm $A(n, \delta)$ achieves sample complexity $S(\epsilon, \delta, f)$ for $(\mathbb{C}, \mathcal{D})$ if it outputs a classifier h_n after at most n label requests, and for any target function $f \in \mathbb{C}$, $\epsilon > 0$, $\delta > 0$, for any $n \geq S(\epsilon, \delta, f)$,

target-dependent

$$\mathbb{P}[er(h_n) \le \epsilon] \ge 1 - \delta.$$

Intervals on the line

Algorithm

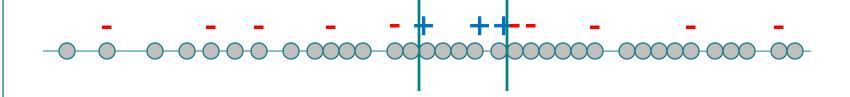
Take a large number of unlabeled examples.

Phase 1: Query random examples until we find a +1 example.

(if use all n label requests before finding a +1 example, return the empty interval)

Phase 2: Do binary searches to the left and right of the +1 point.

After n total label requests, return the smallest consistent h∈C.



Intervals on the line

Algorithm

Take a large number of unlabeled examples.

Phase 1: Query random examples until we find a +1 example.

(if use all n label requests before finding a +1 example, return the empty interval)

Phase 2: Do binary searches to the left and right of the +1 point.

After n total label requests, return any consistent h∈C.

Asymptotic analysis:

Case 1: If the target f has $\mathbb{P}[f(X) = +1] = w > 0$,

we find a +1 after $\propto \frac{1}{w} \log \frac{1}{\delta}$ requests.

The binary searches need only $O(\log \frac{1}{\epsilon})$ to approximate the boundaries.

Sample Complexity: $S(\epsilon, \delta, f) \propto \frac{1}{w} \log \frac{1}{\delta} + \log \frac{1}{\epsilon} = O(\log \frac{1}{\epsilon}).$

Case 2: If $\mathbb{P}[f(X) = +1] = 0$,

we will return an h with er(h) = 0 for any $n \ge 0$.

Sample Complexity: $S(\epsilon, \delta, f) = 0$

Subtle Variation on the traditional model

Non-verifiable and Target Dependent Sample Complexity

budget

Definition: An algorithm $A(n, \delta)$ achieves sample complexity $S(\epsilon, \delta, f)$ for $(\mathbb{C}, \mathcal{D})$ if it outputs a classifier h_n after at most n label requests, and for any target function $f \in \mathbb{C}$, $\epsilon > 0$, $\delta > 0$, for any $n \geq S(\epsilon, \delta, f)$,

target-dependent

$$\mathbb{P}[er(h_n) \le \epsilon] \ge 1 - \delta.$$

Can Active Learning Always Help?

Active Learning Always Helps!

Theorem: For any pair $(\mathbb{C}, \mathcal{D})$, and any passive learning sample complexity $S_p(\epsilon, \delta, f)$ for $(\mathbb{C}, \mathcal{D})$, there exists an active learning algorithm achieving a sample complexity $S_a(\epsilon, \delta, f)$ s.t., for all targets $f \in \mathbb{C}$ for which $S_p(\epsilon, \delta, f) = \omega(1)$,

$$S_a(\epsilon, \delta, f) = o(S_p(\epsilon/4, \delta, f)).$$

Corollary: For any pair $(\mathbb{C}, \mathcal{D})$, there is an active learning algorithm that achieves a sample complexity $S_a(\epsilon, \delta, f)$ such that

$$\forall f \in \mathbb{C}, S_a(\epsilon, \delta, f) = o(1/\epsilon).$$

Proof Outline

• Claim 1: The result is certainly true for "threshold-esc" problems — where the problem gets easier the longer we work at it (based on [Hanneke07], "disagreement coefficient" analysis)

• Claim 2: Any C can be partitioned into C_1, C_2, C_3, \ldots with this property.

• Claim 3: There is an aggregation algorithm that uses all of $C_1, C_2, C_3, ...$ but is never much worse than using just the C_i that contains the target f.

Exponential Improvements

It is often possible to achieve *polylogarithmic* sample complexity for all targets.

$$S(\epsilon, \delta, f) = \gamma_f \cdot polylog(1/(\epsilon \delta)),$$

For example:

- linear separators, under uniform distributions on an r-sphere
- Axis-aligned rectangles, under uniform distributions on [0,1]^r
- Finite unions of intervals on the real line (arbitrary distributions)

Can also preserve polylog sample complexities under some transformations:

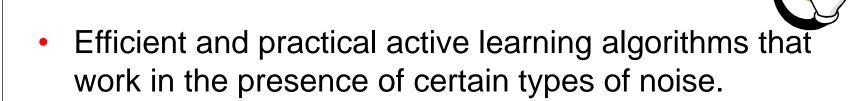
• Unions, "close" distributions, mixtures of distributions

Conclusions

• Lots of exciting work recently.

• [BHW]: Active learning can always achieve a strictly superior asymptotic sample complexity compared to passive learning.

Big Open Directions



 Incorporate other type of interaction in the learning process.

Thank You