Data-driven Algorithm Design

Maria-Florina (Nina) Balcan
Carnegie Mellon University
Analysis and Design of Algorithms

Classic algo design: solve a worst case instance.

- Easy domains, have optimal poly time algos.
 E.g., sorting, shortest paths

- Most domains are hard.
 E.g., clustering, partitioning, subset selection, auction design, …

Data driven algo design: use learning & data for algo design.

- Suited when repeatedly solve instances of the same algo problem.
Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

- Different methods work better in different settings.
- Large family of methods - what’s best in our application?

Prior work: largely empirical.

- Artificial Intelligence:
 [Horvitz-Ruan-Gomes-Kautz-Selman-Chickering, UAI 2001]
 [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]
- Computational Biology: E.g., [DeBlasio-Kececioglu, 2018]
- Game Theory: E.g., [Likhodedov and Sandholm, 2004]
Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

- Different methods work better in different settings.
- Large family of methods - what’s best in our application?

Prior work: largely empirical.

Our Work: Data driven algos with formal guarantees.

- Several cases studies of widely used algo families.
- General principles (for distributional & online learning): push boundaries of algorithm design and machine learning.

Related in spirit to Hyperparameter tuning, AutoML, MetaLearning.
Structure of the Talk

• Data driven algo design as batch learning.
 • A formal framework.
 • Case studies: clustering, partitioning pbs, auction pbs.
 • General sample complexity theorem.
• Data driven algo design as online learning.
Example: Clustering Problems

Clustering: Given a set objects organize them into natural groups.

- E.g., cluster news articles, or web pages, or search results by topic.

- Or, cluster customers according to purchase history.

- Or, cluster images by who is in them.

Often need to solve such problems repeatedly.

- E.g., clustering news articles (Google news).
Clustering Problems

Clustering: Given a set objects (news articles, customer surveys, web pages, ...) organize them into natural groups.

Objective based clustering

k-means

Input: Set of objects S, d

Output: centers $\{c_1, c_2, ..., c_k\}$

To minimize $\sum_p \min_i d^2(p, c_i)$

Or minimize distance to ground-truth
Algorithm Design as Distributional Learning

Goal: given large family of algs, sample of typical instances from domain, find an algo that performs well on new instances from same domain.

[Gupea-Roughgarden, ITCS'16 & SICOMP'17]

Large family \(\mathcal{F} \) of algorithms

Sample of i.i.d. typical inputs

Facility location:

Clustering:
Sample Complexity of Algorithm Selection

Goal: given family of algos F, sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Approach: ERM, find \hat{A} near optimal algorithm over the set of samples.

Key Question: Will \hat{A} do well on future instances?

Sample Complexity: How large should our sample of typical instances be in order to guarantee good performance on new instances?
Statistical Learning Approach to AAD

Sample Complexity: How large should our sample of typical instances be in order to guarantee good performance on new instances?

\[m = O(\text{dim}(F)/\epsilon^2) \] instances suffice to ensure generalizability

Challenge: “nearby” algs can have drastically different behavior.
Algorithm Design as Distributional Learning

Our results: New algorithm classes for a wide range of problems.

Clustering: Parametrized Linkage
[Balcan-Nagarajan-Vitercik-White, COLT 2017]
[Balcan-Dick-Lang, 2019]

Parametrized Lloyds
[Balcan-Dick-White, NeurIPS 2018]

Alignment pbs (e.g., string alignment): parametrized dynamic prog.

[Balcan-DeBlasio-Dick-Kingsford-Sandholm-Vitercik, 2019]
Our results: New algorithm classes for a wide range of problems.

- **Partitioning pbs via IQPs:** SDP + Rounding

 [Balcan-Nagarajan-Vitercik-White, COLT 2017]

 E.g., Max-Cut, Max-2SAT, Correlation Clustering

 \[
 \dim(F) = O(\log n)
 \]

- **MIPs:** Branch and Bound Techniques

 [Balcan-Dick-Sandholm-Vitercik, ICML’18]

 \[
 \text{Max } c \cdot x \\
 \text{s.t. } Ax = b \\
 x_i \in \{0,1\}, \forall i \in I
 \]

- **Automated mechanism design for revenue maximization**

 Parametrized VCG auctions, posted prices, lotteries.

 [Balcan-Sandholm-Vitercik, EC 2018]
Clustering: Linkage + Post-processing

Family of poly time 2-stage algorithms:

1. Greedy linkage-based algo to get hierarchy (tree) of clusters.

2. Fixed algo (e.g., DP or last k-merges) to select a good pruning.
Linkage Procedures for Hierarchical Clustering

Bottom-Up (agglomerative)

- Start with every point in its own cluster.
- Repeatedly merge the “closest” two clusters.

Different defs of “closest” give different algorithms.
Linkage Procedures for Hierarchical Clustering

Have a **distance** measure on pairs of objects.

\[d(x, y) - \text{distance between } x \text{ and } y \]

E.g., # keywords in common, edit distance, etc

- **Single linkage**: \(\text{dist}(A, B) = \min_{x \in A, x' \in B} \text{dist}(x, x') \)

- **Complete linkage**: \(\text{dist}(A, B) = \max_{x \in A, x' \in B} \text{dist}(x, x') \)

- **Parametrized family, \(\alpha \)-weighted linkage**:

\[
\text{dist}_\alpha(A, B) = (1 - \alpha) \min_{x \in A, x' \in B} d(x, x') + \alpha \max_{x \in A, x' \in B} d(x, x')
\]
Clustering: Linkage + Dynamic Programming

Our Results: \(\alpha\)-weighted linkage + Post-processing

- Pseudo-dimension is \(O(\log n)\), so small sample complexity.
- Given sample \(S\), find best algo from this family in poly time.

Key Technical Challenge: small changes to the parameters of the algo can lead to radical changes in the tree or clustering produced.

Problem: a single change to an early decision by the linkage algo, can snowball and produce large changes later on.
Claim: Pseudo-dim of α-weighted linkage + Post-process is $O(\log n)$.

Key fact: If we fix a clustering instance of n pts and vary α, at most $O(n^8)$ switching points where behavior on that instance changes.

So, the cost function is piecewise-constant with at most $O(n^8)$ pieces.
Claim: Pseudo-dim of α-weighted linkage + Post-process is $O(\log n)$.

Key fact: If we fix a clustering instance of n pts and vary α, at most $O(n^8)$ switching points where behavior on that instance changes.

Key idea:

- For a given α, which will merge first, N_1 and N_2, or N_3 and N_4?
- Depends on which of $\alpha d(p, q) + (1 - \alpha)d(p', q')$ or $\alpha d(r, s) + (1 - \alpha)d(r', s')$ is smaller.
- An interval boundary an equality for 8 points, so $O(n^8)$ interval boundaries.
Claim: Pseudo-dim of α-weighted linkage + Post-process is $O(\log n)$.

Key idea: For m clustering instances of n points, $O(mn^8)$ patterns.

- Pseudo-dim largest m for which 2^m patterns achievable.
- So, solve for $2^m \leq m n^8$. Pseudo-dimension is $O(\log n)$.
Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dimension of \(\alpha \)-weighted linkage + DP is \(O(\log n) \), so small sample complexity.

For \(N = O(\log n / \varepsilon^2) \), w.h.p. expected performance cost of best \(\alpha \) over the sample is \(\varepsilon \)-close to optimal over the distribution.

Algorithm

- Solve for all \(\alpha \) intervals over the sample
 \[\alpha \in \mathbb{R} \]
- Find the \(\alpha \) interval with the smallest empirical cost

Claim: Given sample \(S \), can find best algo from this family in poly time.
Learning Both Distance and Linkage Criteria

[Balcan-Dick-Lang, 2019]

- Often different types of distance metrics.
 - Captioned images, d_0 image info, d_1 caption info.
 - Handwritten images: d_0 pixel info (CNN embeddings), d_1 stroke info.
- Family of Metrics: Given d_0 and d_1, define
 \[
 d_\beta(x, x') = (1 - \beta) \cdot d_0(x, x') + \beta \cdot d_1(x, x')
 \]

Parametrized (α, β)-weighted linkage (α interpolation between single and complete linkage and β interpolation between two metrics):

\[
\text{dist}_\alpha(A, B; d_\beta) = (1 - \alpha) \min_{x \in A, x' \in B} d_\beta(x, x') + \alpha \max_{x \in A, x' \in B} d_\beta(x, x')
\]
Learning Both Distance and Linkage Criteria

Claim: Pseudo-dim. of \((\alpha, \beta)\)-weighted linkage is \(O(\log n)\).

Key fact: Fix instance of \(n\) pts; vary \(\alpha, \beta\), partition space with \(O(n^8)\) linear, quadratic equations s.t. within each region, get same cluster tree.

Key Idea:

1. \(O(n^4)\) linear sep. s.t. all \(\beta_1, \beta_2\) in same region, \(d_{\beta_1}\) and \(d_{\beta_2}\) agree on order of distances between all \(n\) pts.

 \[
 \text{Given } \beta, \text{ decision whether } d_{\beta}(a, b) \text{ greater than } d_{\beta}(a', b') \text{ depends on which } (1 - \beta)d_0(a, b) + \beta d_1(a, b) \text{ or } (1 - \beta)d_0(a', b') + \beta d_1(a', b') \text{ is greater}
 \]

2. Fix region, for sets \(A, B\), all \(\beta\) agree on \(a_1, b_1 = \arg\min_{a \in A, b \in B} d_{\beta}(a, b), a_2, b_2 = \arg\max_{a \in A, b \in B} d_{\beta}(a, b)\).

 So, \(\text{dist}_{\alpha}(A, B; d_{\beta})\) is a quadratic fn of \(\alpha, \beta\):

 \[
 \text{dist}_{\alpha}(A, B; d_{\beta}) = (1 - \alpha)[(1 - \beta)d_0(a_1, b_1) + \beta d_1(a_1, b_1)] + \alpha[(1 - \beta)d_0(a_2, b_2) + \beta d_1(a_2, b_2)]
 \]

 \(\text{Given } \alpha, \text{ decision to merge } A, B \text{ or } A', B' \text{ quadratic boundary, defined by } 8 \text{ pts.}\)
Clustering Subsets of Omniglot

Graph showing the relationship between Hamming Cost and Stroke Distance with MNIST Features. The graph indicates that

- For \(\beta = 1 \), Error = 42.1%
- For the optimal value \(\beta^* = 0.514 \), Error = 33.0%

Improvement of 9.1% is observed.

\(\beta \) values and corresponding Error percentages are marked on the graph.
Partitioning Problems via IQPs

Our Results: SDP + s-linear rounding

Pseudo-dimension is $O(\log n)$, so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic in $\frac{1}{s}$ with n boundaries.
Data-driven Mechanism Design

- **Similar ideas** for sample complex. of data-driven mechanism design for revenue maximization. [Balcan-Sandholm-Vitercik, EC’18]

- Pseudo-dim of \(\{\text{revenue}_M: M \in \mathcal{M}\}\) for multi-item multi-buyer settings:
 - Many families: second-price auctions with reserves, posted pricing, two-part tariffs, parametrized VCG auctions, etc.

- **Key insight:** dual function sufficiently structured.
 - For a fixed set of bids, revenue is piecewise linear fnc of parameters.

2nd-price auction with reserve

Posted price mechanisms

![Graph showing revenue for 2nd highest bid and highest bid with reserve](image)

![Graph showing revenue for posted price mechanisms with Price](image)
Want to prove that for all algorithm parameters α:

$$\frac{1}{|S|} \sum_{I \in S} \text{cost}_\alpha(I) \text{ close to } \mathbb{E}[\text{cost}_\alpha(I)].$$

Function class whose complexity want to control: $\{\text{cost}_\alpha: \text{parameter } \alpha\}$.

Proof takes advantage of structure of dual class $\{\text{cost}_I: \text{instances } I\}$.

Theorem: Suppose for each $\text{cost}_I(\alpha)$ there are $\leq N$ boundary fns $f_1, f_2, \ldots \in F$ s. t. within each region defined by them, $\exists g \in G$ s. t. $\text{cost}_I(\alpha) = g(\alpha)$.

$$\text{Pdim}(\{\text{cost}_\alpha(I)\}) = O((d_F^* + d_G^*) \log (d_F^* + d_G^*) + d_F^* \log N)$$

$d_F^* = \text{VCdim of dual of } F$, $d_G^* = \text{Pdim of dual of } G$.
Theorem: Suppose for each \(\text{cost}_1(\alpha) \) there are \(\leq N \) boundary fns \(f_1, f_2, \ldots \in F \) s.t. within each region defined by them, \(\exists g \in G \) s.t. \(\text{cost}_1(\alpha) = g(\alpha) \).

\[
P\text{dim}(\{\text{cost}_\alpha(I)\}) = O((d_{F^*} + d_{G^*}) \log(d_{F^*} + d_{G^*}) + d_{F^*} \log N)
\]

\(d_{F^*} = \text{VCdim of dual of } F, \quad d_{G^*} = \text{Pdim of dual of } G. \)
General Sample Complexity via Dual Classes

Theorem: Suppose for each $\text{cost}_1(\alpha)$ there are $\leq N$ boundary fns $f_1, f_2, \ldots \in F$ s.t. within each region defined by them, $\exists g \in G$ s.t.
$\text{cost}_1(\alpha) = g(\alpha)$.

$$\text{Pdim}(\{\text{cost}_\alpha(I)\}) = O((d_{F^*} + d_{G^*}) \log(d_{F^*} + d_{G^*}) + d_{F^*} \log N)$$

$d_{F^*} = \text{VCdim of dual of F}$, $d_{G^*} = \text{Pdim of dual of G}$.

VCdim(F): fix N pts. Bound # of labelings of these pts by $f \in F$ via Sauer’s lemma in terms of VCdim(F).

VCdim(F*): fix N fns, look at # regions. In the dual, a point labels a function, so direct correspondence between the shattering coefficient of the dual and the number of regions induced by these fns. Just use Sauer’s lemma in terms of VCdim(F*).
General Sample Complexity via Dual Classes

Theorem: Suppose for each \(\text{cost}_i(\alpha) \) there are \(\leq N \) boundary fns \(f_1, f_2, \ldots \in F \) s.t. within each region defined by them, \(\exists g \in G \) s.t. \(\text{cost}_i(\alpha) = g(\alpha) \).

\[
Pdim(\{\text{cost}_\alpha(I)\}) = O((d_F^* + d_G^*) \log(d_F^* + d_G^*) + d_F^* \log N)
\]

\[d_F^* = \text{VCdim of dual of } F, \quad d_G^* = Pdim \text{ of dual of } G.
\]

Proof:

- Fix \(D \) instances \(I_1, \ldots, I_D \) and \(D \) thresholds \(z_1, \ldots, z_D \). Bound \# sign patterns \((\text{cost}_\alpha(I_1), \ldots, \text{cost}_\alpha(I_D)) \) ranging over all \(\alpha \). Equivalently, \((\text{cost}_{I_1}(\alpha), \ldots, \text{cost}_{I_D}(\alpha)) \).

- Use VCdim of \(F^* \), bound \# of regions induced by \(\text{cost}_{I_1}(\alpha), \ldots, \text{cost}_{I_D}(\alpha) : (eND)^{d_F^*} \).

- On a region, exist \(g_{I_1}, \ldots, g_{I_D} \) s.t., \((\text{cost}_{I_1}(\alpha), \ldots, \text{cost}_{I_D}(\alpha)) = (g_{I_1}(\alpha), \ldots, g_{I_D}(\alpha)), \) which equals \((\alpha(g_{I_1}), \ldots, \alpha(g_{I_D})) \). These are fns in dual class of \(G \). Sauer's lemma on \(G^* \), bounds \# of sign patterns in that region by \((eD)^{d_G^*} \).

- Combining, total of \((eND)^{d_F^*}(eD)^{d_G^*} \). Set to \(2^D \) and solve.
Online Algorithm Selection

- So far, batch setting: collection of typical instances given upfront.

- **Challenge**: scoring fns non-convex, with lots of discontinuities.

 Cannot use known techniques.

- Identify general properties (piecewise Lipschitz fns with dispersed discontinuities) sufficient for strong bounds.

 - Show these properties hold for many alg. selection pbs.
Dispersion, Sufficient Condition for No-Regret

\{u_1(\cdot), \ldots, u_T(\cdot)\} is \((w, k)\)-dispersed if any ball of radius \(w\) contains boundaries for at most \(k\) of the \(u_i\).
Summary and Discussion

- **Strong performance guarantees for data driven algorithm selection for combinatorial problems.**

- **Provide and exploit structural properties of dual class for good sample complexity and regret bounds.**

- **Learning theory: techniques of independent interest beyond algorithm selection.**
Discussion, Open Problems

- Analyze other widely used classes of algorithmic paradigms.
- Other learning models (e.g., one shot, domain adaptation, RL).
- Explore connections to program synthesis; automated algo design.
- Explore connections to Hyperparameter tuning, AutoML, MetaLearning.

Use our insights for pbs studied in these settings (e.g., tuning hyper-parameters in deep nets)