Distributed Machine Learning

Maria-Florina Balcan
Carnegie Mellon University
Machine Learning is Changing the World

“Machine learning is the hot new thing”
(John Hennessy, President, Stanford)

“A breakthrough in machine learning would be worth ten Microsofts” (Bill Gates, Microsoft)

“Web rankings today are mostly a matter of machine learning” (Prabhakar Raghavan, VP Engineering at Google)
The World is Changing Machine Learning

New applications

Explosion of data
Modern ML: New Learning Approaches

Modern applications: **massive amounts** of raw data.

Only a **tiny fraction** can be annotated by human experts.

Protein sequences
Billions of webpages
Images

Interactive learning: best utilize available data, minimize expert/human intervention.
Data inherently distributed: massive amounts of data distributed across multiple locations.
Modern ML: New Learning Approaches

Modern applications: \textit{massive amounts} of data distributed across multiple locations.

E.g.,

- video data
- scientific data

Key new resource \textit{communication}.
The World is Changing Machine Learning

New approaches. E.g.,

- Semi-supervised learning
- Interactive learning
- Distributed learning
- Multi-task/transfer learning
- Deep Learning
- Never ending learning

Many competing resources & constraints. E.g.,

- Computational efficiency (noise tolerant algos)
- Human labeling effort
- Statistical efficiency
- Communication
- Privacy/Incentives
The World is Changing Machine Learning

New approaches. E.g.,

- Semi-supervised learning
- Interactive learning
- Distributed learning
- Multi-task/transfer learning
- Deep Learning
- Never ending learning

Key challenges: how to best utilize the available resources most effectively in these new settings.
This talk: models and algorithms for reasoning about core issues in distributed learning

• Communication Efficient Supervised Learning
 [TseChen-Balcan-Chau’15]

• Clustering, Unsupervised Learning
 [Balcan-Ehrlich-Liang, NIPS 2013]
 [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

• Data Dependent Resource Allocation for DL
 [Balcan-Dick-Li-Pillutla-Smola-White, 2015]
Supervised Learning

- E.g., which emails are spam and which are important.

- E.g., classify objects as chairs vs non chairs.
PAC/Statistical learning model

Data Source

Distribution D on X

Labeled Examples

$(x_1, c^*(x_1)), \ldots, (x_m, c^*(x_m))$

Learning Algorithm

Algorithm outputs

$h : X \rightarrow \{0, 1\}$

$\forall x \in X, c^*(x) \in \{0, 1\}$

Expert / Oracle
• Algo sees \((x_1,c^*(x_1)),\ldots,(x_k,c^*(x_m))\), \(x_i\) i.i.d. from \(D\)

• Do optimization over \(S\), find hypothesis \(h \in C\).

• Goal: \(h\) has small error over \(D\).

\[
\text{err}(h) = \Pr_{x \in D}(h(x) \neq c^*(x))
\]

• \(c^*\) in \(C\), realizable case; else agnostic
Two Main Aspects in Classic Machine Learning

Algorithm Design. How to optimize?
Automatically generate rules that do well on observed data.

E.g., Boosting, SVM, etc.

Generalization Guarantees, Sample Complexity
Confidence for rule effectiveness on future data.

- Realizable: $O \left(\frac{1}{\epsilon} \left(\text{VCdim}(C) \log \left(\frac{1}{\epsilon} \right) + \log \left(\frac{1}{\delta} \right) \right) \right)$
- Agnostic - replace ϵ with ϵ^2.
Distributed Learning

Many ML problems today involve massive amounts of data distributed across multiple locations.

Often would like low error hypothesis wrt the overall distrib.
Distributed Learning

Data distributed across multiple locations.

E.g., medical data
Distributed Learning

Data distributed across multiple locations.

E.g., scientific data
Distributed Learning

• Data distributed across multiple locations.
• Each has a piece of the overall data pie.
• To learn over the combined D, must communicate.

Communication is expensive.

President Obama cites Communication-Avoiding Algorithms in FY 2012 Department of Energy Budget Request to Congress

Important question: how much communication?

Plus, privacy & incentives.
Distributed PAC Learning [Balcan-Blum-Fine-Mansour, COLT 2012]
Runner UP Best Paper

- X - instance space. s players.
- Player i can sample from D_i, samples labeled by c^*.
- Goal: find h that approximates c^* w.r.t. $D = 1/s (D_1 + ... + D_s)$

Goal: learn good h over D, as little communication as possible

Efficient algs for problems when centralized algs exist.

Main Results

- Broadly applicable communication efficient distr. boosting.
- Tight results for interesting cases [intersection closed, parity fns, linear separators over “nice” distrib].
- Privacy guarantees.
Interesting special case to think about

$s=2$. One has the positives and one has the negatives.

- How much communication, e.g., for linear separators?
Generic Results

Baseline $\frac{d}{\epsilon} \log(1/\epsilon)$ examples, 1 round of communication

- Each player sends $\frac{d/\epsilon}{\delta} \log(1/\epsilon)$ examples to player 1.
- Player 1 finds consistent $h \in C$, whp error $\leq \epsilon$ wrt D

Distributed Boosting

Only $O(d \log 1/\epsilon)$ examples of communication
Recap of Adaboost

• Boosting: algorithmic technique for turning a weak learning algorithm into a strong (PAC) learning one.
Recap of Adaboost

- Boosting: turns a weak algo into a strong (PAC) learner.

Input: $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$: weak learner A

- Weak learning algorithm A.
- For $t=1, 2, \ldots, T$
 - Construct D_t on $\{x_1, \ldots, x_m\}$
 - Run A on D_t producing h_t
- Output $H_{\text{final}} = \text{sgn}\left(\sum \alpha_t \ h_t\right)$
Recap of Adaboost

- Weak learning algorithm A.
- For $t=1,2, \ldots, T$
 - Construct D_t on $\{x_1, \ldots, x_m\}$
 - Run A on D_t producing h_t

- D_1 uniform on $\{x_1, \ldots, x_m\}$
- D_{t+1} increases weight on x_i if h_t incorrect on x_i; decreases it on x_i if h_t correct.

Key points:
- $D_{t+1}(x_i)$ depends on $h_1(x_i), \ldots, h_t(x_i)$ and normalization factor that can be communicated efficiently.
- To achieve weak learning it suffices to use $O(d)$ examples.
Distributed Adaboost

- Each player i has a sample S_i from D_i.
- For $t=1,2, \ldots, T$
 - Each player sends player 1, enough data to produce weak hyp h_t.
 [For $t=1$, $O(d/s)$ examples each.]
 - Player 1 broadcasts h_t to other players.
Distributed Adaboost

- Each player i has a sample S_i from D_i.
- For $t=1,2, \ldots, T$
 - Each player sends player 1, enough data to produce weak hyp h_t.
 [For $t=1$, $O(d/s)$ examples each.]
 - Player 1 broadcasts h_t to other players.
 - Each player i reweights its own distribution on S_i using h_t and sends the sum of its weights $w_{i,t}$ to player 1.
 - Player 1 determines the #of samples to request from each i [samples $O(d)$ times from the multinomial given by $w_{i,t}/W_t$].
Distributed Adaboost

Can learn any class C with $O(\log(1/\epsilon))$ rounds using $O(d)$ examples + $O(s \log d)$ bits per round.

[efficient if can efficiently weak-learn from $O(d)$ examples]

Proof:

- As in Adaboost, $O(\log 1/\epsilon)$ rounds to achieve error ϵ.

- Per round: $O(d)$ examples, $O(s \log d)$ extra bits for weights, 1 hypothesis.
Dependence on $1/\varepsilon$, Agnostic learning

Distributed implementation of Robust halving [Balcan-Hanneke’12].

- error $O(\text{OPT}) + \varepsilon$ using only $O(s \log |C| \log(1/\varepsilon))$ examples.

Not computationally efficient in general.

Distributed implementation of Smooth Boosting (access to agnostic weak learner). [TseChen-Balcan-Chau’15]
Interesting class: parity functions

- \(s = 2, X = \{0,1\}^d \), \(C = \text{parity fns} \), \(f(x) = x_{i_1} \oplus x_{i_2} \ldots \oplus x_{i_l} \)
- Generic methods: \(O(d) \) examples, \(O(d^2) \) bits.
- Classic CC lower bound: \(\Omega(d^2) \) bits LB for proper learning.

Improperly learn \(C \) with \(O(d) \) bits of communication!

Key points:

- Can properly PAC-learn \(C \).

 [Given dataset \(S \) of size \(O(d/\epsilon) \), just solve the linear system]

- Can non-properly learn \(C \) in reliable-useful manner [RS’88]

 [if \(x \) in subspace spanned by \(S \), predict accordingly, else say “?”]
Interesting class: parity functions

Improperly learn \(C \) with \(O(d) \) bits of communication!

Algorithm:

- Player \(i \) properly PAC-learns over \(D_i \) to get parity \(h_i \). Also improperly R-U learns to get rule \(g_i \). Sends \(h_i \) to player \(j \).
- Player \(i \) uses rule \(R_i \): “if \(g_i \) predicts, use it; else use \(h_j \)”

Key point: low error under \(D_j \) because \(h_j \) has low error under \(D_j \) and since \(g_i \) never makes a mistake putting it in front does not hurt.
Distributed PAC learning: Summary

- First time consider communication as a fundamental resource.
 - Broadly applicable communication efficient distributed boosting.
 - Improved bounds for special classes (intersection-closed, parity fns, and linear separators over nice distributions).
- Analysis of privacy guarantees achievable.
- Lots of follow-up work analyzing communication aspects in ML.

[Zhang, Duchi, Jordan, Wainwright NIPS 13], [Shamir NIPS 14], [Garg Nguyen NIPS 14], [Kannan, Vempala, Woodruff, COLT’14], …
Distributed Clustering

[Balcan-Ehrlich-Liang, NIPS 2013]
[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]
Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

k-median: find center pts c_1, c_2, \ldots, c_k to minimize $\sum_x \min_i d(x,c_i)$

k-means: find center pts c_1, c_2, \ldots, c_k to minimize $\sum_x \min_i d^2(x,c_i)$

Distributed Clustering

- Dataset S distributed across s locations.
- Each has a piece of the overall data pie.

Goal: cluster the data, as little communication as possible
Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

- Data distributed across s locations.
- Each has a piece of the overall data pie.

Goal: cluster the data, *as little communication as possible*

Key idea: use coresets, short summaries capturing relevant info w.r.t. all clusterings.

- By combining local coresets, get a global coreset; the size goes up multiplicatively by s.

- We show a two round procedure with communication only the true size of a global coreset of dataset S.
Def: An ϵ-coreset for a set of pts S is a set of points \tilde{S} and weights $w: \tilde{S} \rightarrow \mathbb{R}$ s.t. for any sets of centers c:

$$(1 - \epsilon) \text{cost}(S, c) \leq \sum_{p \in \tilde{S}} w_p \text{cost}(p, c) \leq (1 + \epsilon) \text{cost}(S, c)$$
Centralized Coresets of size $O(kd/\epsilon^2)$ [Feldman-Langberg’11]

1. Find a constant factor approx. B, add its centers to coreset
2. Sample $O(kd/\epsilon^2)$ pts according to their contribution to the cost of that approximate clustering B. Add them in too.

Key idea (proof reinterpreted):

- Can view B as rough coreset, with $b \in B$ weighted by size of Voronoi cell.

- If p has closest pt $b_p \in B$, then for any center c, $|\text{cost}(p, c) - \text{cost}(b_p, c)| \leq \|p - b_p\|$ by triangle inequality.

- So, penalty $f(p) = \text{cost}(p, c) - \text{cost}(b_p, c)$ for p satisfies $f(p) \in [-\text{cost}(p, b_p), \text{cost}(p, b_p)]$.

- Motivates sampling according to $\text{cost}(p, b_p)$.
Distributed Clustering

Key fact: \tilde{S}_i is coreset for S_i, then $U_i\tilde{S}_i$ is coreset for U_iS_i.

1. Each player finds coreset of size $O(kd/\epsilon^2)$ on their own data using centralized method.

2. Then they all send local coresets to the center.

For s players, total communication is $O(skd/\epsilon^2)$.

Can we do better?
Distributed Coresets [Balcan-Ehrlich-Liang, NIPS 2013]

Key idea: in distributed case, show how to do this using only local constant factor approx.

1. Each player i, finds a local constant factor approx. B_i and sends $\text{cost}(B_i, P_i)$ and the centers to the center.

2. Center samples $n = O(\frac{kd}{\epsilon^2})$ times
 $n = n_1 + \cdots + n_s$ from multinomial given by these costs. Sends n_i to player i.

3. Each player i sends n_i points from P_i sampled according to their contribution to the local approx.

For s players, total communication is only $O(\frac{kd}{\epsilon^2} + sk)$.
Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

k-means: find center pts c_1, c_2, \ldots, c_k to minimize $\sum_x \min_i d^2(x, c_i)$

Color Histogram, $k=10$
68040 points in R^{32}
[the color features extracted from an image collection]

YearPredictionMSD, $k=50$
515345 points in R^{90}
[the timbre audio features from a music collection]
Open questions (Learning and Clustering)

• Efficient algorithms in noisy settings; handle failures, delays.

• Even better dependence on $1/\epsilon$ for communication efficiency for clustering via boosting style ideas.

 • Can use distributed dimensionality reduction to reduce dependence on d. [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

• More refined trade-offs between communication complexity, computational complexity, and sample complexity.