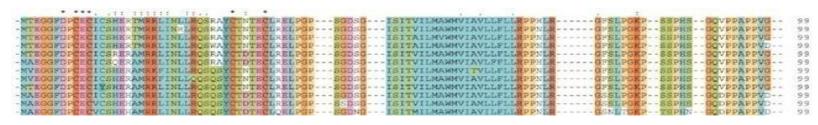
Clustering Perturbation Resilient Instances

Maria-Florina Balcan
Carnegie Mellon University

Clustering Comes Up Everywhere

• Clustering news articles or web pages or search results by topic.

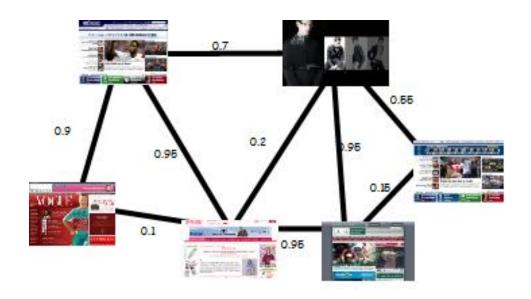
· Clustering protein sequences by function or genes according to expression profile.



Clustering images by whom is in them.

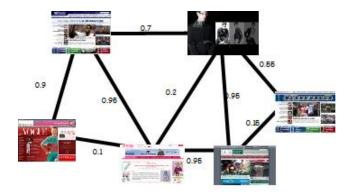
Classic Approach: Objective Based Clustering

- S set of n objects. [documents, web pages]
- Also have a distance/dissimilarity measure.
- View objects as nodes in weighted graph based on distances.

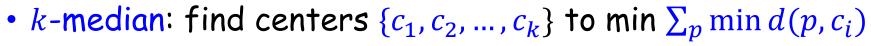


Classic Approach: Objective Based Clustering

View objects as nodes in weighted graph based on distances.



• Pick an objective to optimize (e.g., a classic center based objective)



- k-means: find centers $\{c_1, c_2, ..., c_k\}$ to min $\sum_p \min d^2(p, c_i)$
- k-center: find centers to minimize the maximum radius.

Standard Theoretical Approach in ML, TCS

However many of these problems are provably NP-hard to optimize in poly time in the worst case....

- k-median: NP-hard to approximate within $\left(1+\frac{1}{e}\right)$ can be approximated within a $\left(1+\sqrt{3}+\epsilon\right)$ factor
- K-center: NP-hard to optimize within a factor of 2 can be approximated within a factor of 2
- Asymmetric K-center: NP-hard to optimize within a factor of $\log^* k$ can be approximated within a factor of $\log^* k$

Cool new direction: exploit additional properties of the data to circumvent lower bounds.

α -Perturbation Resilient Instances

Definition

 α -Perturbation: (S, d), d distance function, an α -perturbation is any function d' s.t. $\forall p, q \in S, d(p,q) \leq d'(p,q) \leq \alpha d(p,q)$.

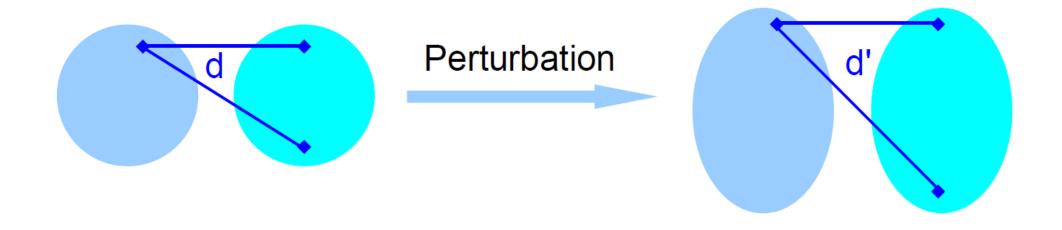
Definition [Bilu and Linial, 2010]:

A clustering instance (S,d) is α -perturbation resilient $(\alpha$ -PR) for objective Φ if for any α -Perturbation d', $OPT_{d'} = OPT_{d}$ (i.e., the optimal clustering for Φ under d', $OPT_{d'}$ is equal to the optimal clustering OPT for Φ under d).

α -Perturbation Resilient Instances

Definition

A clustering instance (S,d) is α -perturbation resilient for objective Φ if for any α -Perturbation d', $OPT_{d'} = OPT_{d}$ (i.e., the optimal clustering for Φ under d', $OPT_{d'}$ is equal to the optimal clustering OPT for Φ under d).



Related Work: Positive Results Exploiting PR

- Poly time algo for finding OPT for α -PR instances of max cut when $\alpha > \sqrt{n}$ [Bilu-Linial, 2010]
- Poly time algo for finding OPT for α -PR for max cut when $\alpha = \widetilde{\Theta}(\sqrt{\log n})$ [Markarychev et al 2013]
- Poly time algo for finding OPT for α -PR for any center based objective when $\alpha > 3$ (e.g., k-median, k-means, k-center)

Our Results: Positive Results Exploiting PR

Center based objectives & Min-sum [Balcan-Liang'12] [Balcan-Liang'14]

- Poly time algo for finding OPT for α -PR for any center based objective when $\alpha > 1 + \sqrt{2}$ (e.g., k-median, k-means, k-center)
- Poly time algo for a generalization (α, ϵ) -PR for k-median.
- Poly time algo for finding OPT for α -PR min-sum instances when $\alpha > 3\frac{\max\limits_{i}|C_{i}|}{\min\limits_{i}|C_{i}|}$

K-center [Balcan-Haghtalab-White'15]

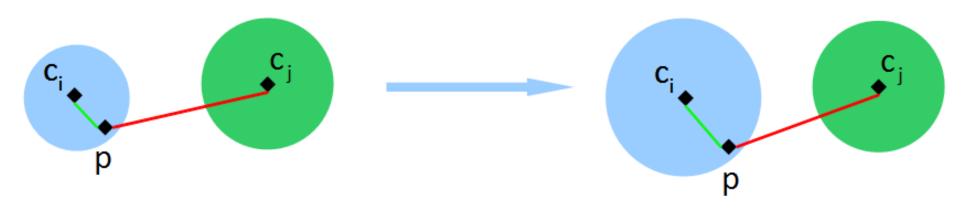
- Tight poly time algo for finding OPT for α -PR for k-center when $\alpha > 2$. This is tight!!!!
- Poly time algo for finding OPT for α -PR for asymmetric k-center, $\alpha > 3$.

Claim For any center based objective, α -PR implies α -center proximity.

I.e., α -PR implies that $\forall p \in C_i$, $\alpha d(p, c_i) < d(p, c_i)$.

Proof

- d': blow up all pairwise distances within the optimal cluster by α
- OPT and centers do not change, so $\forall p \in C_i$, $d'(p, c_i) < d'(p, c_j)$.
- $\alpha d(p, c_i) = d'(p, c_i) < d'(p, c_i) = d(p, c_i)$



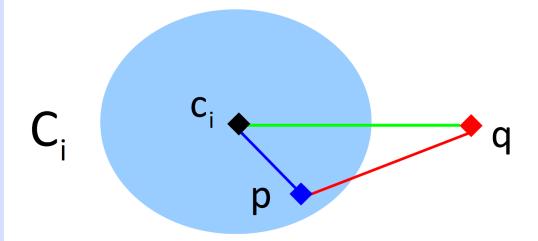
Claim For any center based objective, α -PR implies α -center proximity.

I.e., α -PR implies that $\forall p \in C_i$, $\alpha d(p, c_i) < d(p, c_i)$.

Implication For any center based objective

If $\alpha > 1 + \sqrt{2}$, then for any $p \in C_i$, $q \notin C_i$,

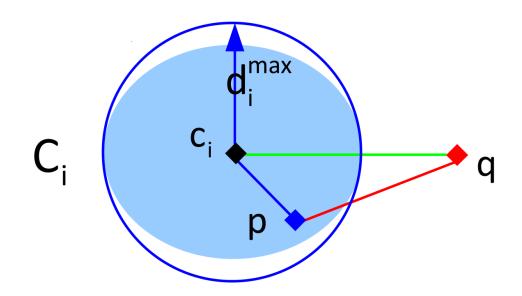
- $d(c_i, p) < d(c_i, q)$
- $d(p, c_i) < d(p, q)$



Implication: For any center based objective

If $\alpha > 1 + \sqrt{2}$, then for any $p \in C_i$, $q \notin C_i$,

- $d(c_i, p) < d(c_i, q)$
- $d(p,c_i) < d(p,q)$



```
Let d_i^{max} = \max_{p \in C_i} d(p, c_i). Construct ball B = B(c_i, d_i^{max}).
```

- The ball covers exactly C_i
- Points inside are closer to the center than to points outside: for any points $p \in B$, $q \notin B$, $d(p, c_i) < d(p, q)$

Algorithm for Clustering $1 + \sqrt{2}$ -PR instances

Step 1: Closure Linkage

- Begin with each point being a cluster
- Repeat until one cluster remains: merge the two clusters with minimum closure distance

sports fashion

soccer tennis Gucci acoste

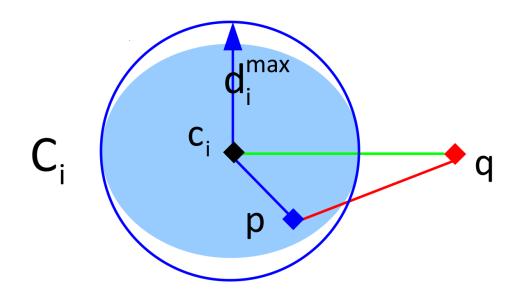
Step 2: Apply dynamic programming to extract the minimum k-cost clustering.

Fact: If $\alpha \ge 1 + \sqrt{2}$, the tree output contains OPT as a pruning.

Implication For any center based objective

If $\alpha > 1 + \sqrt{2}$, then for any $p \in C_i$, $q \notin C_i$,

- $d(c_i, p) < d(c_i, q)$
- $d(p,c_i) < d(p,q)$



Let $d_i^{max} = \max_{p \in C_i} d(p, c_i)$. Construct a ball $B = B(c_i, d_i^{max})$.

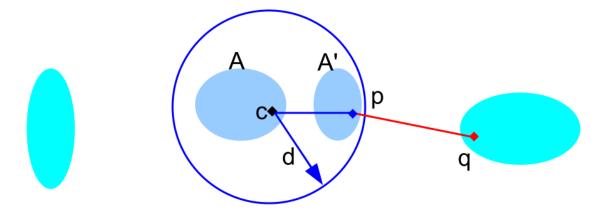
- The ball covers exactly C_i
- Points inside are closer to the center than to points outside: for any points $p \in B$, $q \notin B$, $d(p, c_i) < d(p, q)$

Closure Distance

Closure distance between 2 sets: radius of the minimum ball that covers the sets and has some margin outside the sets.

Definition: The closure distance $d_S(A, A')$ between A and A' is the minimum d, s. t. $\exists c \in A \cup A'$ satisfying:

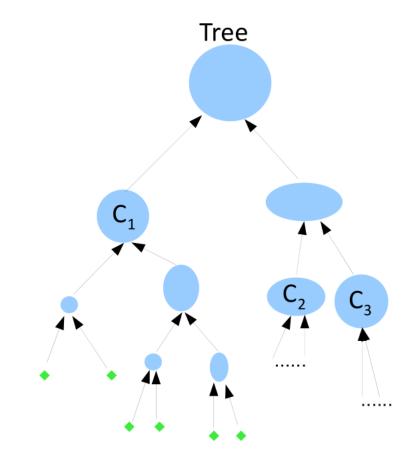
- Coverage: the ball B(c,d) covers $A \cup A'$
- Margin: pts inside are closer to the center than to pts outside, i.e., $\forall p \in B(c,d), q \notin B(c,d), d(p,c) < d(p,q)$



Closure Linkage Algorithm

- Begin with each point being a cluster
- Repeat until one cluster remains: merge the two clusters with minimum closure distance
- Output the tree obtained

Theorem: If $\alpha \ge 1 + \sqrt{2}$, the tree output contains *OPT* as a pruning.



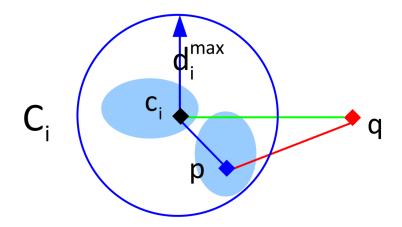
If $\alpha \ge 1 + \sqrt{2}$, the tree output by closure linkage contains OPT as a pruning.

Proof idea: induction, show that current clustering is laminar w.r.t. OPT

Show that algo will not merge a strict subset A in C_i with a subset A' outside C_i .

- Pick $B \subset C_i \setminus A$ such that $c_i \in A \cup B$
- Then $d_S(A, B) \le d_i^{max} = \max_{p \in C_i} d(p, c_i)$

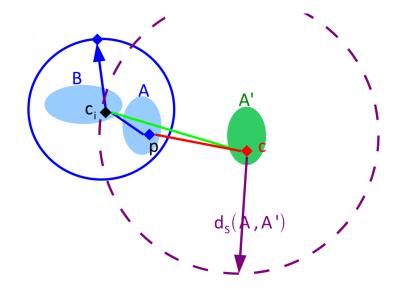
since the two conditions of closure distance are satisfied



If $\alpha \geq 1 + \sqrt{2}$, the tree output by closure linkage contains OPT as a pruning.

Proof idea: induction, show that current clustering is laminar w.r.t. OPT

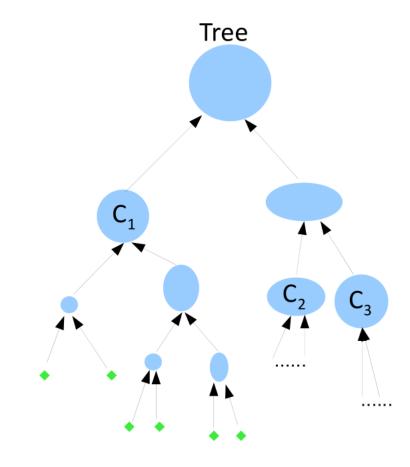
- $d_S(A, A') > d_i^{max}$
- Suppose center c for the ball defining $d_S(A,A')$ is from A'
- Since $c \notin C_i$, $d(c_i, p) < d(p, c)$ for any $p \in C_i$. By margin, $c_i \in B(c, d_S(A, A'))$, so $d_S(A, A') \ge d(c_i, c)$
- Since $c \notin C_i$, $d(c_i, c) > d_i^{max}$
- A similar argument holds for the case $c \in A$



Closure Linkage Algorithm

- Begin with each point being a cluster
- Repeat until one cluster remains: merge the two clusters with minimum closure distance
- Output the tree obtained

Theorem: If $\alpha \ge 1 + \sqrt{2}$, the tree output contains *OPT* as a pruning.



(α, ϵ) -Perturbation Resilience

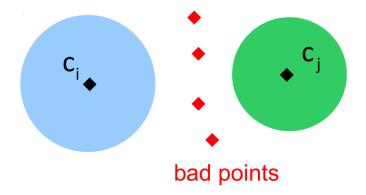
- α -PR imposes a strong restriction: OPT does not change after perturbation
- · We propose a realistic relaxation of this condition.

Definition:

A clustering instance (S,d) is (α,ϵ) -perturbation resilient to a given objective function Φ if for any α -Perturbation d', the optimal clustering $OPT_{d'}$ is ϵ -close to the optimal clustering $OPT_{d'}$.

Structural Property of (α, ϵ) -PR k-median

Theorem: Assume $\min_{i} |C_i| = O(\epsilon n)$. Except for at most ϵn bad points, any other point is α times closer to its own center than to other centers.



Proof sketch:

- Carefully construct a perturbation that forces all the bad points move
- By (α, ϵ) -PR, there could be at most ϵn bad points

Structural Property of (α, ϵ) -PR k-median

• Assume more than $\epsilon n + 1$ bad points; select ϵn of them.

Perturbation: blow up all pairwise distances by α , except

- between selected bad points and their second nearest centers
- between the other points and their own centers

Intuition: ideally, after the perturbation,

- selected bad points assigned to their second nearest centers
- all the other points stay

(α, ϵ) -PR k-median

Theorem: If $\min_{i} |C_{i}| = \Omega(\epsilon n)$, $\alpha > 4$, then the tree output contains a pruning that is ϵ -close to the optimal clustering. Moreover, the cost of this pruning is $1 + O(\epsilon/\rho)$ -approximation where $\rho = \min_{i} |C_{i}|/n$.

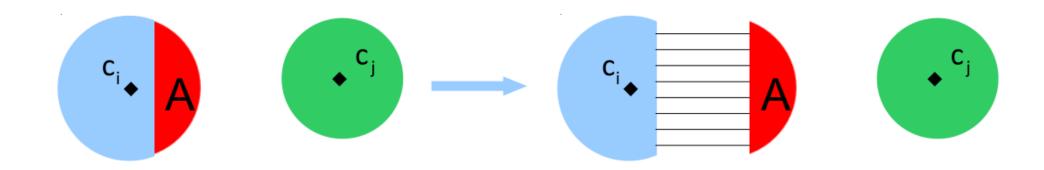
Idea:

- If $\alpha > 4$ except for the bad points we have strict separation, each good point is closer to points in its own cluster than to any other cluster.
- Run a robust version of single linkage. Guaranteed to have a pruning that is a good approximation.

Structural Property of α -PR Min-Sum

Claim: α -PR implies that for any $A \subseteq C_i$, $\alpha d(A, C_i \setminus A) < d(A, C_i)$.

Proof: blow up the distances between A and $C_i \setminus A$ by α .



Structural Property of a-PR Min-Sum

Claim: α -PR implies that for any $A \subseteq C_i$, $\alpha d(A, C_i \setminus A) < d(A, C_j)$.

Implications when
$$\alpha > 3 \frac{\max\limits_{i} |C_{i}|}{\min\limits_{i} |C_{i}|}$$

- (1) For any point, its $\min_i |C_i|/2$ nearest neighbors are from the same optimal cluster
- (2) Any strict subset of an optimal cluster has smaller average distance to the other points in the same cluster than to those in other clusters

Algorithm for α -PR Min-Sum

- Connect each point with its $\min_{i} |C_i|/2$ nearest neighbors
- Perform average linkage on the components

Theorem: If $\alpha > 3 \frac{\max\limits_{i} |C_{i}|}{\min\limits_{i} |C_{i}|}$, then the tree contains OPT as a pruning.

- Implication (1) guarantees that the components are pure
- Implication (2) guarantees that no strict subset of an optimal cluster will be merged with a subset outside the cluster

Our Results: Positive Results Exploiting PR

Center based objectives & Min-sum [Balcan-Liang'12] [Balcan-Liang'14]

- Poly time algo for finding OPT for α -PR for any center based objective when $\alpha > 1 + \sqrt{2}$ (e.g., k-median, k-means, k-center)
- Poly time algo for a generalization (α, ϵ) -PR for k-median.
- Poly time algo for finding OPT for α -PR min-sum instances when $\alpha > 3\frac{\max\limits_{i}|C_{i}|}{\min\limits_{i}|C_{i}|}$

K-center [Balcan-Haghtalab-White'15]

- Tight poly time algo for finding OPT for α -PR for k-center when $\alpha > 2$. This is tight!!!!
- Poly time algo for finding OPT for α -PR for asymmetric k-center, $\alpha > 3$.

Great Research Direction

Exploit additional properties of the data to circumvent computational hardness lower bounds.

- Polynomial time algorithm for finding (nearly) optimal solutions for perturbation resilient instances.
- Also consider a more realistic relaxation (α, ϵ) -PR