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Extended Abstract

1. Sparse Parzen Window Prediction

We are concerned here with predictors of the form:

f(x) =
n∑

i=1

αiK(x, x′i) (1)

where x′1, . . . , x
′
n ∈ X are landmark instances in our

instance space X and K : X × X → R is a function
encoding the relationship between instances. These
type of predictors are fairly common and natural and
are obtained by various learning rules. Support Vec-
tor Machines (SVM) learn a predictor of the form (1)
(binary labels y′i are often included explicitly in the
predictor, but can also be encoded as the sign of αi)
by minimizing an objective related to a dual large-
margin problem. SVMs enjoy performance guarantees
based on interpreting K(·, ·) as an inner product in an
implicit Hilbert space, and also tend to yield sparse
predictors, i.e. with few non-zero αis. Parzen window
prediction (aka soft nearest neighbor prediction) cor-
responds to a predictor of the form (1), with αi = y′i.
There is no need to interpret K as an inner product
nor to require that it be positive semidefinite—we can
simply think of K as specifying similarity. Still think-
ing of K as encoding similarity, and perhaps also dis-
similarity, we might prefer to learn a sparse predictor,
with αi = 0 for many landmarks x′i as in SVMs, in-
stead of simply fixing αi = y′i. A more direct way of
doing so is by minimizing a loss (here the hinge loss)
with an explicit constraint on the L1-norm of the co-
efficients αi:

minimize
m∑

i=1

[1− yif(xi)]+

s.t.
n∑

j=1

|αj | ≤ M

(2)

where (xi, yi) ∈ X × {±1} are labeled training exam-
ples, which might, or might not, be the same as the
landmarks x′i (note that unlabeled examples can also
be used as landmarks), and [1−yx]+ = max(1−yx, 0)
is the hinge loss. This is a linear program and can be
solved efficiently.

We view K as a similarity function, and provide a
natural condition on K, that does not require K be
positive semidefinite, and justifies the learning rule (2).
Our condition guarantees the success of learning rule
(2) and provides bounds on the required number of
landmarks and training examples.

Furthermore, we show that any similarity function
that is good as a kernel, i.e. can ensure SVM learning,
also satisfies our condition and can thus also ensure
learning using the learning rule (2) (though possibly
with some deterioration of the learning guarantees).
These arguments can be used to justify (2) as an al-
ternative to SVMs.

2. Prior Work

The learning rule (2), usually with the same set of
points both as training examples and landmarks, and
variations of this rule, have been suggested by vari-
ous authors and is fairly common in practice. Such
a learning rule is typically discussed as an alterna-
tive to SVMs: Tipping (2001) suggested the Relevance
Vector Machine (RVM) as a Bayesian alternative to
SVMs. The MAP estimate of the RVM is given by
an optimization problem similar to (2), though with a
loss function different from the hinge loss (the hinge-
loss cannot be obtained as a log-likelihood). Simi-
larly, Singer (2000) suggests Norm-Penalized Leverag-
ing Procedures as a boosting-like approach that mim-
ics SVMs. Again, although the specific loss functions



studied by Singer are different from the hinge-loss, the
method (with a norm exponent of 1, as in Singer’s
experiments) otherwise corresponds to a coordinate-
descent minimization of (2). Other authors do use the
hinge loss and discuss the learning rule (2) as given
here, with the express intent of achieving sparsity more
directly by minimizing the L1 norm of the coefficients
(Bennett & Campbell, 2000; Roth, 2001; Guigue et al.,
2005).

Despite the interest in the learning rule (2), none of the
above works suggest learning guarantees. In the case
of SVMs, we have an established theory that ensures
us that when K is positive semidefinite and is a “good
kernel” for the learning problem (i.e. corresponds to
an implicit Hilbert space where the problem is mostly
separable with large margin), then the SVM learning
rule is guaranteed to find a predictor of the form (1)
with small generalization error. However, to the best
of our knowledge, no such theory has been previously
suggested for the learning rule (2). Even when the
SVM pre-conditions hold, and the SVM learning-rule
would work, we do not know of a previous guarantee
for the alternate learning rule (2). Furthermore, since
the learning rule (2) does not require K to be positive
semidefinite, nor refer to an implied Hilbert space, one
might hope for a more direct condition on K, that does
not require it be positive semidefinite, and is sufficient
to guarantee the success of the learning rule (2).

In fact, in order to enjoy the SVM guarantees while us-
ing L1 regularization to obtain sparsity, some authors
suggest regularizing both the L1 norm ‖α‖1 of the coef-
ficient vector α (as in (2)), and the norm ‖β‖ of the cor-
responding predictor β =

∑
j αjφ(x′j) in the Hilbert

space implied by K, where K(x, x′) = 〈φ(x), φ(x′)〉,
as when using a SVM with K as a kernel (Osuna &
Girosi, 1999; Gunn & Kandola, 2002).

3. Our Guarantees

We consider learning problems specified by a joint dis-
tribution P over labeled examples (x, y). We consider
learning a predictor based on both labeled examples
drawn from this distribution, as well as unlabeled ex-
amples drawn from the marginal over x. Our goal is
to obtain a predictor with low expected error with re-
spect to P .

Our main condition for a similarity function K is sum-
marized in the following definition:

Definition 1 A similarity function K is an (ε, γ, τ)-
good similarity function for a learning problem P
if there exists a (probabilistic) set R of “reasonable
points” (one may think of R as a random indicator

function) such that the following conditions hold:

1. We have

E(x,y)∼P

[
[1− yg(x)/γ]+

]
≤ ε, (3)

where g(x) = E(x′,y′,R(x′))[y′K(x, x′) | R(x′)].

2. Prx′ [R(x′)] ≥ τ .

That is, we require that at least τ fraction of the
points are “reasonable” (in expectation), and that
most points can be predicted according to the reason-
able points similar, or dis-similar, to them (or rather,
that the expected hinge loss of using this prediction is
low).

If a similarity function is good under Definition 1,
then we can guarantee there is a predictor f(x) of the
form (1) with low L1-norm |α|1 achieving low expected
hinge loss. This in turn yields a learning guarantee for
the learning rule (2):

Theorem 1 Let K be an (ε, γ, τ)-good similarity
function for a learning problem P . For any δ, ε1 > 0,
let x′1, . . . , x

′
n be a (potentially unlabeled) sample of

n =
2
τ

(
log(2/δ) + 16

log(2/δ)
ε21γ

2

)

landmarks drawn from P . Then with probability at
least 1−δ, there exists a predictor of the form (1) with

|α|1 =
n∑

i=1

|αi| ≤ 1/γ

and expected hinge loss

E(x,y)∼P

[
[1− yf(x)]+

]
≤ ε + ε1.

Corollary 1 Let K be an (ε, γ, τ)-good similarity
function for a learning problem P . For any δ, ε1 > 0,
with probability at least 1− δ the predictor obtain from
learning rule (2), with

n = O

(
log(1/δ)
τγ2ε21

)

(unlabeled) landmarks and

m = Õ
(

log n log(1/δ)
γ2ε21

)

labeled training examples, has expected hinge loss at
most ε + ε1.



As discussed earlier, we also establish that if a simi-
larity function is positive semidefinite and “good” in
the traditional kernel sense, then it also satisfies Defi-
nition 1, yielding a learning guarantee on the learning
rule (2). Recall that a function K : X × X is positive
semidefinite iff there exists a mapping φ : X → H into
a Hilbert space H such that K(x, x′) = 〈φ(x), φ(x′)〉.
With this representation of K in mind:

Definition 2 We say that a positive semidefinite K is
an (ε, γ)-good kernel if there exists a vector β ∈ H,
‖β‖ ≤ 1/γ such that

E(x,y)∼P [[1− `〈β, φ(x)〉]+] ≤ ε.

Theorem 2 If a positive semidefinite K is an (ε0, γ)-
good kernel in hinge loss for learning problem P (with
deterministic labels), then for any ε1 > 0 there exists
c > 1 such that K is also a (ε0 + ε1,

cγ2

1+ε0/2ε1
, 2ε1+ε0

c )-
good similarity function in hinge loss.

Corollary 2 Let K be a positive semidefinite (ε, γ)-
good kernel for a learning problem P . For any δ, ε1 >
0, with probability at least 1− δ the predictor obtained
from learning rule (2), with

n = O

(
(1 + ε/ε1)2 log(1/δ)

(ε + ε1)γ4ε21

)

(unlabeled) landmarks and

m = Õ
(

(1 + ε/ε1)2 log n log(1/δ)
γ4ε21

)

labeled training examples, has expected hinge loss at
most ε + ε1.

Note that if ε1 = Ω(ε), e.g. if we aim for a fixed
percentile increase over “optimal” error, or in the
noiseless case ε = 0, the sample sizes simplify to:
n = O

(
log 1/δ
γ4ε31

)
and m = Õ

(
log n log 1/δ

γ4ε21

)
.

Proofs of these theorems (in slightly different forms)
appear in (Balcan et al., 2008), which focuses on gen-
eralizing the theory of learning with kernels to broader
classes of pairwise similarity functions. Here, our focus
is on how this extension can be used to provide formal
guarantees for the common sparsity inducing learning
rule given in equation (2).
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