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Abstract

We present a new perspective on the popular multi-class algorithmic techniques of one-vs-all and error correcting
output codes. Rather than studying the behavior of these techniques for supervised learning, we establish a connection
between the success of these methods and the existence of label-efficient learning procedures. We show that in both
the realizable and agnostic cases, if output codes are successful at learning from labeled data, they implicitly assume
structure on how the classes are related. By making that structure explicit, we design learning algorithms to recover
the classes with low label complexity. We provide results for the commonly studied cases of one-vs-all learning and
when the codewords of the classes are well separated. We additionally consider the more challenging case where the
codewords are not well separated, but satisfy a boundary features condition that captures the natural intuition that every
bit of the codewords should be significant.

1 Introduction
Motivation: Large scale multi-class learning problems with an abundance of unlabeled data are ubiquitous in modern
machine learning. For example, an in-home assistive robot needs to learn to recognize common household objects,
familiar faces, facial expressions, gestures, and so on in order to be useful. Such a robot can acquire large amounts
of unlabeled training data simply by observing its surroundings, but it would be prohibitively time consuming (and
frustrating) to ask its owner to annotate any significant portion of this raw data. More generally, in many modern
learning problems we often have easy and cheap access to large quantities of unlabeled training data (e.g., on the
internet) but obtaining high-quality labeled examples is relatively expensive. More examples include text understanding,
recommendation systems, or wearable computing [Thrun, 1996, Thrun and Mitchell, 1995b,a, Mitchell et al., 2015]. The
scarcity of labeled data is especially pronounced in problems with many classes, since supervised learning algorithms
typically require labeled examples from every class. In such settings, algorithms should strive to make the best use of
unlabeled data in order to minimize the need for expensive labeled examples.
Overview: We approach label-efficient learning by making the implicit assumptions of popular multi-class learning
algorithms explicit and showing that they can also be exploited when learning from limited labeled data. We focus on
a family of techniques called output codes that work by decomposing a given multi-class problem into a collection
of binary classification tasks [Mohri et al., 2012, Dietterich and Bakiri, 1995, Langford and Beygelzimer, 2005,
Beygelzimer et al., 2009]. The novelty of our results is to show that the existence of various low-error output codes
constrains the distribution of unlabeled data in ways that can be exploited to reduce the label complexity of learning. We
consider both the consistent setting, where the output code achieves zero error, and the agnostic setting, where the goal
is to compete with the best output code. The most well known output code technique is one-vs-all learning, where we
learn one binary classifier for distinguishing each class from the union of the rest. When output codes are successful at
learning from labeled data, it often implies geometric structure in the underlying problem. For example, if it is possible
to learn an accurate one-vs-all classifier with linear separators, it implies that no three classes can be collinear, since
then it would be impossible for a single linear separator to distinguish the middle class from the union of the others.
In this work exploit this implicitly assumed structure to design label-efficient algorithms for the commonly assumed
cases of one-vs-all and error correcting output codes, as well as a novel boundary features condition that captures the
intuition that every bit of the codewords should be significant.
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Our results: Before discussing our results, we briefly review the output code methodology. For a problem with L
classes, a domain expert designs a code matrix C ∈ {±1}L×m where each column partitions the classes into two
meaningful groups. The number of columns m is chosen by the domain expert. For example, when recognizing
household objects we could use the following true/false questions to define the partitions: “is it made of wood?”, “is it
sharp?”, “does it have legs?”, “should I sit on it?”, and so on. Each row of the code matrix describes one of the classes
in terms of these partitions (or semantic features). For example, the class “table” could be described by the vector
(+1,−1,+1,−1), which is called the class’ codeword. Once the code matrix has been designed, we train an output
code by learning a binary classifier for each of the binary partitions (e.g., predicting whether an object is made of wood
or not). To predict the class of a new example, we predict its codeword in {±1}m and output the class with the nearest
codeword under the Hamming distance. Two popular special cases of output codes are one-vs-all learning, where C is
the identity matrix (with -1 in the off-diagonal entries), and error correcting output codes, where the Hamming distance
between the codewords is large.

In each of our results we assume that there exists a consistent or low-error linear output code classifier and we
impose constraints on the code matrix and the distribution that generates the data. We present algorithms and analysis
techniques for a wide range of different conditions on the code matrix and data distribution to showcase the variety
of implicit structures that can be exploited. For the code matrix, we consider the case when the codewords are well
separated (i.e., the output code is error correcting), the case of one-vs-all (where the code matrix is the identity), and
a natural boundary features condition. These conditions can loosely be compared in terms of the Hamming distance
between codewords. In the case of error correcting output codes, the distance between codewords is large (at least d+ 1
when the data is d-dimensional), in one-vs-all the distance is always exactly 2, and finally in the boundary features
condition the distance can be as small as 1. In the latter cases, the lower Hamming distance requirement is balanced by
other structure in the code matrix. For the distribution, we either assume that the data density function satisfies a thick
level set condition or that the density is upper and lower bounded on its support. Both regularity conditions are used to
ensure that the geometric structure implied by the consistent output code will be recoverable based on a sample of data.
Error correcting output codes: We first showcase how to exploit the implicit structure assumed by the commonly
used and natural case of linear output codes where the Hamming distance between codewords is large. In practice,
output codes are designed to have this property in order to be robust to prediction errors for the binary classification
tasks [Dietterich and Bakiri, 1995]. We suppose that the output code makes at most β errors when predicting codewords
and has codewords with Hamming distance at least 2β + d+ 1 in a d-dimensional problem. The key insight is that
when the code words are well separated, this implies that points belonging to different classes must be geometrically
separated as well. This suggests that tight clusters of data will be label-homogeneous, so we should be able to learn an
accurate classifier using only a small number of label queries per cluster. The main technical challenge is to show that
our clustering algorithm will not produce too many clusters (in order to keep the label complexity controlled), and that
with high probability, a new sample from the distribution will have the same label as its nearest cluster. We show that
when the data density satisfies a thick-level set condition (requiring that its level sets do not have bridges or cusps that
are too thin), then a single-linkage clustering algorithm can be used to recover a small number of label-homogeneous
clusters.
One-vs-all: Next, we consider the classic one-vs-all setting for data in the unit ball. This is an interesting setting because
of the popularity of one-vs-all classification and because it significantly relaxes the assumption that the codewords are
well separated (in a one-vs-all classifier, the Hamming distance between codewords is exactly 2). The main challenge
in this setting is that there need not be a margin between classes and a simple single-linkage style clustering might
group multiple classes into the same cluster. To overcome this challenge, we show that the classes are probabilistically
separated in the following sense: after projecting onto the surface of the unit ball, the level sets of the projected density
are label-homogeneous. Equivalently, the high-density regions belonging to different classes must be separated by
low-density regions. We exploit this structure by estimating the connected components of the ε level set using a robust
single-linkage clustering algorithm.
The boundary features condition: Finally, we introduce an interesting and natural condition on the code matrix
capturing the intuition that every binary learning task should be significant. This condition has the weakest separation
requirement, allowing the codewords to have a Hamming distance of only 1. This setting is our most challenging, since
it allows for the classes to be very well connected to one another, which prevents clustering or level set estimation from
being used to find a small number of label-homogeneous clusters. Nevertheless, we show that the implicit geometric
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structure implied by the output code can be exploited to learn using a small number of label queries. In this case, rather
than clustering the unlabeled sample, we apply a novel hyperplane-detection algorithm that uses the absence of data to
learn local information about the boundaries between classes. We then use the implicit structure of the output code to
extend these local boundaries into a globally accurate prediction rule.
Agnostic Setting: Finally, we show that our results for the error correcting, one-vs-all, and boundary features cases
can all be extended to an agnostic learning setting, where we do not assume that there exists a consistent output code
classifier.

Our results show an interesting trend: when linear output codes are able to learn from labeled data, it is possible to
exploit the same underlying structure in the problem to learn using a small number of label requests. Our results hold
under several natural assumptions on the output code and general conditions on the data distribution, and employ both
clustering and hyperplane detection strategies to reduce the label complexity of learning.

2 Related Work
Reduction to binary classification is one of the most widely used techniques in applied machine learning for attacking
multi-class problems. Indeed, the one-vs-all, one-vs-one, and the error correcting output code approaches [Dietterich
and Bakiri, 1995] all follow this structure [Mohri et al., 2012, Langford and Beygelzimer, 2005, Beygelzimer et al.,
2009, Daniely et al., 2012, Allwein et al., 2000].

There is no prior work providing error bounds for output codes using unlabeled data and interaction. There has been
a long line of work for providing provable bounds for semi-supervised learning [Balcan et al., 2004, Balcan and Blum,
2010, Blum and Mitchell, 1998, Chapelle et al., 2010] and active learning [Balcan et al., 2006, Dasgupta, 2011, Balcan
and Urner, 2015, Hanneke, 2014]. These works provide bounds on the benefits of unlabeled data and interaction for
significantly different semi-supervised and active learning methods that are based different assumptions, often focusing
on binary classification, thus the results are largely incomparable. Another line of recent work considers the multi-class
setting and uses unlabeled data to consistently estimate the risk of classifiers when the data is generated from a known
family of models [Donmez et al., 2010, Balasubramanian et al., 2011a,b]. Their results do not immediately imply
learning algorithms and they consider generative assumptions, while in contrast our work explicitly designs learning
algorithms under commonly used discriminative assumptions.

Another work related to ours is that of Balcan et al. [2013], where labels are recovered from unlabeled data. The
main tool that they use, in order to recover the labels, is the assumption that there are multiple views and an underlying
ontology that are known, and restrict the possible labeling. Similarly, Steinhardt and Liang [2016] show how to use the
method of moments to estimate the risk of a model from unlabeled data under the assumption that the data has three
independent views. Our work is more widely applicable, since it applies when we have only a single view.

The output-code formalism is also used by Palatucci et al. [2009] for the purpose of zero shot learning. They
demonstrate that it is possible to exploit the semantic relationships encoded in the code matrix to learn a classifier from
labeled data that can predict accurately even classes that did not appear in the training set. These techniques make
very similar assumptions to our work but require that the code matrix C is known and the problem that they solve is
different.

3 Preliminaries
We consider multiclass learning problems over an instance space X ⊂ Rd where each point is labeled by f∗ : X →
{1, . . . , L} to one out of L classes and the probability of observing each outcome x ∈ X is determined by a data
distribution P on X . The density function of P is denoted by p : X → [0,∞). In all of our results we assume that there
exists a consistent (but unknown) linear output-code classifier defined by a code matrix C ∈ {±1}L×m and m linear
separators h1, . . . , hm. We denote class i’s code word by Ci and define h(x) = (sign(h1(x)), . . . , sign(hm(x))) to
be the predicted code word for point x. We let dHam(c, c′) denote the Hamming distance between any codewords
c, c′ ∈ {±1}m. Finally, to simplify notation, we assume that the diameter of X is at most 1.

Our goal is to learn a hypothesis f̂ : X → {1, . . . , L} minimizing errP (f̂) = PrX∼P (f̂(x) 6= f(x)) from an
unlabeled sample drawn from the data distribution P together with a small set of actively queried labeled examples.
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Finally, we use the following notation throughout the paper: For any set A in a metric space (X , d), the σ-interior
of A is the set intσ(A) = {x ∈ A : B(x, σ) ⊂ A}. The notation Õ(·) suppresses logarithmic terms.

4 Error Correcting Output Codes
We first consider the implicit structure when there exists a consistent linear error correcting output code classifier:

Assumption 1. There exists a code matrix C ∈ {±1}L×m and linear functions h1, . . . , hm such that: (1) there exists
β ≥ 0 such that any point x from class y satisfies dHam(h(x), Cy) ≤ β, (2) The Hamming distance between the
codewords of C is at least 2β + d+ 1; and (3) at most d of the separators h1, . . . , hm intersect at any point.

Part (1) of this condition is a bound on the number of linear separators that can make a mistake when the output
code predicts the codeword of a new example, part (2) formalizes the requirement of having well separated codewords,
and part (3) requires that the hyperplanes be in general position, which is a very mild condition that can be satisfied by
adding an arbitrarily small perturbation to the linear separators.

Despite being very natural, Assumption 1 conveniently implies that there exists a distance g > 0 such that any
points that f∗ assigns to different classes must be at least distance g apart. To see this, fix any pair of points x and
x′ with f∗(x) 6= f∗(x′). By the triangle inequality, we have that dHam(h(x), h(x′)) ≥ d+ 1, implying that the line
segment [x, x′] crosses at least d + 1 of the linear separators. Since only d linear separators can intersect at a point,
the line segment must have non-zero length. Applying this argument to the closest pair of points between all pairs of
classes and taking the minimum length gives the result. A formal proof is given Section 9 of the Appendix.

Lemma 1. Under Assumption 1, there exists g > 0 s.t. if points x and x′ belong to different classes, then ‖x− x′‖ > g.

Lemma 1 suggests that we should be able to reduce the label complexity of learning by clustering the data and
querying the label of each cluster, since nearby points must belong to the same class. If we use a single-linkage style
clustering algorithm that merges clusters whenever their distance is smaller than g, we are guaranteed that the clusters
will be label-homogeneous, and therefore we can recover nearly all of the labels by querying one label from the largest
clusters. See Algorithm 1 for pseudocode.

Input: Sample S = {x1, . . . , xn}, radius rc > 0, target error ε > 0
1. Let {Â1}Ni=1 be the connected components of the graph G with vertex set S and an edge between xi and xj if
‖xi − xj‖ ≤ rc.

2. In decreasing order of size, query the label of each Âi until ≤ ε
4n points belong to unlabeled clusters.

3. Output f̂(x) = label of nearest labeled cluster to x.

Algorithm 1: Single-linkage learning.

In order to get a meaningful reduction in label complexity, we need to ensure that when we cluster a sample of
data, most of the samples will belong to a small number of clusters. For this purpose, we borrow the following very
general and interesting thick level set condition from Steinwart [2015]: a density function p has C-thick level sets if
there exists a level λ0 > 0 and a radius σ0 > 0 such that for every level λ ≤ λ0 and radius σ < σ0, (1) the σ-interior
of {p ≥ λ} is non-empty and (2) every point in {p ≥ λ} is at most distance Cσ from the σ-interior. This condition
elegantly characterizes a large family of distributions for which single-linkage style clustering algorithms succeed at
recovering the high-density clusters and only rules out distributions whose level sets have bridges or cusps that are too
thin. The thickness parameter C measures how pointed the boundary of the level sets of p can be. For example, in Rd if
the level set of p is a ball then C = 1, while if the level set is a cube, then C =

√
d.

Using the thick level set condition to guarantee that our clustering algorithm will not subdivide the high-density
clusters of p, we obtain the following result for Algorithm 1
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Theorem 1. Suppose that Assumption 1 holds and that the data distribution has C-thick level sets. For any target error
ε > 0, let N be the number of connected components of {p ≥ ε/(2 Vol(K))}. With probability at least 1− δ, running
Algorithm 1 with parameter rc < g on an unlabeled sample of size n = Õ( 1

ε2 ((4C)2ddd+1/r2dc +N)) will query at
most N labels and output a classifier with error at most ε.

Proof. For convenience, define σ = rc/(4C) and λ = ε/(2 Vol(K)). Using a standard VC-bound [Vapnik and
Chervonenkis, 1971] together with the fact that balls have VC-dimension d + 1, for n = O((4C)2ddd+1/(ε2r2dc ))
guarantees that with probability at least 1− δ/2 the following holds simultaneously for every center x ∈ Rd and radius
r ≥ 0: ∣∣∣∣|B(x, r) ∩ S|/n− P (B(x, r))

∣∣∣∣ ≤
1

2
λσdvd, (1)

where vd denotes the volume of the unit ball in Rd. Assume that this high probability event occurs.
We first show that the sample S forms a 2Cσ-covering of the set {p ≥ λ}; that is, for every x ∈ {p ≥ λ} we

have d(x, S) ≤ 2Cσ. Let x be any point in {p ≥ λ}. Since p has C-thick level sets, we know that there exists a point
y ∈ intσ({p ≥ λ}) such that ‖x− y‖ ≤ Cσ. Moreover, the ball B(y, σ) is contained in {p ≥ λ}, which implies that
it has probability mass at least λσdvd and by (1) we have that |B(y, r) ∩ S|/n ≥ 1

2λσ
dvd > 0, so there must exist a

point z ∈ S ∩ B(y, σ). Now we have that d(x, S) ≤ ‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖ ≤ Cσ + σ ≤ 2Cσ, where the
final inequality follows from the fact that C ≥ 1.

Now let A1, . . . , AN be the N connected components of {p ≥ λ}. We will argue that for each i ∈ [N ], there exists
a unique cluster output by step 1 of the algorithm, say Âi, such that Âi contains Ai ∩ S and for any point x ∈ Ai, the
closest output cluster is Âi.

To see that Âi contains Ai∩S, consider any pair of points x and x′ in Ai∩S. Since Ai is connected, we know there
is a path π : [0, 1] → Ai such that π(0) = x and π(1) = x′. Since the sample set X is a 2Cσ covering of {p ≥ λ},
it is also a 2Cσ-covering of Ai, which implies that we can find a sequence of points y1, . . . , yM ∈ X (possibly with
repetition) such that the path π passes through the balls B(y1, 2Cσ), . . . , B(yM , 2Cσ) in order. Since consecutive
balls must touch at the point that the path π crosses from one ball to the next, we know that ‖yi − yi+1‖ ≤ 4Cσ = rc,
and therefore the path x→ y1 → · · · → yM → x′ is a path in the graph G connecting x and x′.

Now consider any point x ∈ Ai. We argued above that there exists a sample point z ∈ Âi that was within distance
2Cσ from x. Now let z∗ be the closest sample in X to x. Then we know that ‖x − z∗‖ ≤ ‖x − z‖ ≤ 2Cσ. By the
triangle inequality, we have that d‖z − z∗‖ ≤ ‖z − x‖+ ‖x− z∗‖ ≤ 4Cσ ≤ rc, and therefore z and z∗ are connected
in the graph G. Since z belongs to Âi, it follows that z∗ does too, and therefore the closest cluster to x is Âi.

It remains to bound the error of the resulting classification rule. Since there is a margin of width g > 0 separating
the classes, we know that every connected component of {p ≥ λ} must contain points belonging to exactly one class.
Moreover, since we ran the algorithm with connection radius rc < g, we know that the clusters output by step 1 will
contain points belonging to exactly one class. It follows that if we query the label of any point in the cluster Âi then the
algorithm will not error on any test point in Ai. Say that one of the connected components Ai is labeled if we query the
label of the corresponding cluster Âi.

Applying Hoeffding’s inequality and the union bound to all possible 2N unions of the sets A1, . . . , AN , our value
of n guarantees that with probability at least 1 − δ/2, the following holds simultaneously for all subsets of indices
I ⊂ [N ]: ∣∣∣∣

∣∣S ∩
(⋃

i∈I
Ai
)∣∣/n− P (

⋃

i∈I
Ai)

∣∣∣∣ ≤
ε

4
.

Since the algorithm queries labels until at most ε4n points belong to unlabeled clusters, we know that the number of
samples belonging to the unlabeled Ai sets is at most ε4n. By the above uniform convergence, it follows that their total
probability mass is at most ε/2. Finally, since the algorithm only errors on test points in {p ≤ λ}, which has probability
mass at most ε/2 or on unlabeled Ai sets, the error of the resulting classifier is at most ε.

The exponential dependence on the dimension in Theorem 1 is needed to ensure the sample S will be a fine covering
of the level set of p w.h.p, which guarantees that Algorithm 1 will not subdivide its connected components into smaller
clusters. When the data has low intrinsic dimensionality, the unlabeled sample complexity is only exponential in the
intrinsic dimension. The following result shows that under the common assumption that the distribution is a doubling
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measure, then the unlabeled sample complexity is exponential only in the doubling dimension. Recall that a probability
measure P is said to have doubling dimension D if for every point x in the support of P and every radius r > 0, we
have that P (B(x, 2r)) ≤ 2DP (B(x, r)) (see, for example, [Dasgupta and Sinha, 2013]).

Theorem 2. Suppose that Assumption 1 holds the data distribution P has doubling dimension D, and the support of P
has N connected components. With probability at least 1− δ, running Algorithm 1 with parameter rc < g on a sample
of size n = Õ

(
d/r2Dc +N/ε2

)
will query at most N labels and have error at most ε.

Proof. Let x be any point in the support of P . Since we assumed that the diameter of X is 1, we know that X ⊂ B(x, 1)
and therefore P (B(x, 1)) = 1. Applying the doubling condition lg(r) times, it follows that for any radius r > 0 we
have that P (B(x, r)) ≥ r−D.

As in the proof of Theorem 1, for our choice of n the following holds with probability at least 1− δ/2 uniformly
for every center x in X and radius r ≥ 0:

∣∣|B(x, r) ∩ S|/n− P (B(x, r))
∣∣ ≤ 1

2
r−D.

Assume this high probability event occurs. Since every ball of radius r centered at a point in the support of P has
mass at least r−D, each such ball must contain at least one sample point and it follows that the sample S forms an
r−D-covering of the support of P .

The rest of the proof now follows identically the proof of Theorem 1 with the A1, . . . , AN sets being the connected
components of the support of P , since each connected component must be label-homogeneous.

The unlabeled sample complexity in Theorem 1 depends on the gap g between classes because we must have
rc < g. Such a scale parameter must appear in our results, since Assumption 1 is scale-invariant, yet our algorithm
exploits scale-dependent geometric properties of the problem. If we have a conservatively small estimate ĝ ≤ g, then
the conclusion of Theorem 1 and Theorem 2 continue to hold if the connection radius and unlabeled sample complexity
are set using the estimate ĝ. Nevertheless, in some cases we may not have an estimate of g, making it difficult to to
apply Algorithm 1. The following result shows that if we have an estimate of the number of high-density clusters, and
these clusters have roughly balanced probability mass, then we are still able to take advantage of the geometric structure
even when the distance g is unknown. The idea is to construct a hierarchical clustering of S using single linkage, and
then to use a small number of label queries to find a good pruning.

Input: Sample S = {x1, . . . , xn}, t ∈ N.
1. Let T be the hierarchical clustering of S obtained by single-linkage.
2. Query the labels of a random subset of S of size t.
3. Let {B̂i}Mi=1 be the coarsest pruning of T such that each B̂i contains labels from one class.
4. Output f̂(x) = label of nearest B̂i to x.

Algorithm 2: Hierarchical single-linkage learning.

Theorem 3. Suppose Assumption 1 holds and the density p has C-thick level sets. For any 0 < ε ≤ 1/2, suppose
that {Ai}Ni=1 are the connected components of {p ≥ ε/(2 Vol(K))} and for some α ≥ 1 we have P (Ai) ≤ αP (Aj)

for all i, j. With probability ≥ 1 − δ, running Algorithm 2 with t = Õ(αN) on an unlabeled sample of size
n = Õ( 1

ε2 (C2ddd+1/g2d +N)) will have error ≤ ε.

Proof. Define λ = ε/(2 Vol(K)) and let A1, . . . , AN be the connected components of {p ≥ λ}. Suppose that each Ai
set has probability mass at least γ. Under the assumption that the probability mass of the largest Ai is at most α times
the mass of the smallest, we have that γ ≥ (1− ε)/(αN), but the result holds for any arbitrary lower bound γ.

Since we query the labels of points without replacement, the set of labeled examples is an iid sample from the data
density p. Whenever m ≥ 2

γ ln 2N
δ , with probability at least 1 − δ/2, every set Ai will contain at least one labeled

example, since they each have probability mass at least γ. Assume this high probability event holds.
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Figure 1: An example problem satisfying Assumption 2 and the projected density q when the density p is uniform on K.

Let g be the margin between classes that is guaranteed by Lemma 1. Whenever samples x, x′ ∈ S have ‖x−x′‖ ≤ g,
they must belong to the same cluster B̂i. Applying an identical covering-style argument as in Theorem 1, we have that
with probability at least 1− δ/2, for every Ai set there is a cluster, say B̂i, such that:

1. All samples in Ai ∩ S are contained in B̂i.

2. For every x ∈ Ai, the nearest cluster to x is B̂i.

Since every Ai set contains at least one labeled example, it follows that whenever two of these high-density clusters
belong to different classes, they will contain differently labeled points and therefore will not have been merged by
Algorithm 2. It follows that the label of B̂i must agree with the label of Ai. At this point, the error analysis follows
identically as in Theorem 1.

In Section 7 we describe a meta-argument that can be used to extend our results into the agnostic setting, where we
no longer require that the output code is consistent. Details for the error correcting case are given in Section 9.

In this section we showed that when there exists linear error correcting correcting output code with low error, then it
is possible to reduce the label complexity of learning to the number of high-density clusters, which are the connected
components of {p ≥ ε}. The label complexity of our algorithms is always linear in the number of high density clusters,
while the worst-case unlabeled complexity of our algorithms is exponential in the dimension (or intrinsic dimension).

5 One-Versus-All on the Unit Ball
In this section we show that even when the codewords are not well separated, we can still exploit the implicit structure
of output codes to reduce the label complexity of learning by clustering the data. Specifically, we consider the implicit
structure of a linear one-vs-all classifier over the unit ball:

Assumption 2. The instance space X there exist L linear separators h1, . . . , hL such that: (1) point x belongs to class
i iff hi(x) > 0, and (2) for all i, hi(x) = w>i x− bi with ‖wi‖ = 1 and bi ≥ bmin > 0.

See Figure 1 for an example problem satisfying this condition. Since a one-vs-all classifier is an output code where
the code matrix is the identity, the Hamming distance between any pair of codewords is exactly 2. Therefore, in this
setting we do not have a result similar to Lemma 1 to ensure that the classes are geometrically separated. Instead,
we exploit the one-vs-all structure to show the classes are probabilistically separated and employ a robust clustering
algorithm.

As before, we study this problem under a mild constraint on the data distribution. For each class i denote the set of
points in class i by Ki = {x : ‖x‖ ≤ 1, hi(x) > 0} and K =

⋃L
i=1Ki. In this section, we assume that the density p

is supported on K with upper and lower bounds:

Assumption 3. There exist constants 0 < clb ≤ cub s.t. for x ∈ K we have clb ≤ p(x) ≤ cub and otherwise p(x) = 0.

This distributional constraint is quite general: it only requires that we will not observe examples for which the
one-vs-all classifier would be confused (i.e., where none of its linear separators claim the point) and that the density
does not take extreme values. When K is compact, every continuous density supported on K satisfies Assumption 3.

Our algorithm for this setting first projects the data onto the unit sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1} and then
applies a robust clustering algorithm to the projected data. The projection does not introduce any errors, since the label
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of an example is independent of its distance to the origin. This is because each linear separator carves out a spherical
cap for its class, and no two class caps overlap. Since we assume that no class contains the origin, it follows that an
examples label depends only on its projection to the sphere. We show that projecting to the sphere has the useful
property that the projected density goes to zero at the boundary of the classes, which suggests that we can use a robust
single-linkage style clustering algorithm to find label-homoegeneous clusters. Algorithm 3 gives pseudocode, using the
notation θ(u, v) = arccos(u>v) for the angle between u and v and V d(r) is the probability that a uniformly random
sample from Sd−1 lands in a given spherical cap of angular radius r.

Input: Sample S = {x1, . . . , xn}, radius rc > 0.
1. Define ra = rc/2 and τ = clb

2cub
V d(ra)ε.

2. Let vi = xi

‖xi‖ be the projection of xi to the sphere.
3. Mark vi active if |{vj : θ(vi, vj) ≤ ra}| ≥ τn and inactive otherwise for i ∈ [n].
4. Let Â1, . . . , ÂN be the connected components of the graph G whose vertices are the active vi with an edge

between vi and vj if θ(vi, vj) < rc.
5. In decreasing order of size, query the label of each Âi until ≤ ε

4n points belong to unlabeled clusters.
6. Output f̂(x) = label of nearest cluster to x/‖x‖.

Algorithm 3: Robust single-linkage learning.

Our first result characterizes the density of the projected data (defined relative to the uniform distribution on Sd−1).

Lemma 2. Suppose Assumptions 2 and 3 hold and let q : Sd−1 → [0,∞) be the density function of the data projected
onto the unit sphere. Then qlb(v) ≤ q(v) ≤ qub(v), where

qlb(v) =

{
clbdvd(1− (bi/w

>
i v)d) if v ∈ Ki

0 otherwise,

and qub(v) = cub/clb · qlb(v), where vd is the volume of the unit ball in d dimensions.

Proof. Let X ∼ p be and set V = X/‖X‖2 so that V is a sample from q. For any set A ⊂ Sd−1, we know that
Pr(V ∈ A) = Pr(X ∈ cone(A)), where cone(A) = {rv : r > 0, v ∈ A}, which gives

Pr(V ∈ A) = Pr(X ∈ cone(A)) =

∫

x∈cone(A)

p(x) dx =

∫

v∈A
dvd

∫ ∞

r=0

p(rv)rd−1 dr dµ◦(v),

where the last inequality follows by a change of variables x to (r, v) where r = ‖x‖2 and v = x/‖x‖2. The term rd−1

is the determinant of the Jacobian of the change of variables, and the term dvd, which is the surface area of Sd−1,
appears since µ◦ is normalized so that µ◦(Sd−1) = 1. From this, it follows that the density function q can be written as

q(v) = dvd

∫ ∞

r=0

p(rv)rd−1 dr, (2)

since integrating this function over any set A gives the probability that V will land in A. From our assumptions on p,
we know that

p(rv) ≥
L∑

i=1

I{rv ∈ Ki}clb.
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Moreover, we can rewrite the indicator as I{rv ∈ Ki} = I{ bi
w>i v

< r ≤ 1}. Substituting this into (2) gives

q(v) ≥
L∑

i=1

clbdvd

∫ ∞

r=0

I{[}
]
bi
w>i v

< r ≤ 1rd−1 dr

=

L∑

i=1

I{v ∈ Ki}clbdvd
∫ 1

r=bi/(w>i v)

rd−1 dr

=

L∑

i=1

I{v ∈ Ki}clbdvd(1− bi/(w>i v)d)

= qlb(v)

Note that the indicator I{v ∈ Ki} appears in line 2 because the integral is only non-zero when bi/(w>i v) < 1, which is
exactly the condition that v ∈ Ki. The upper bound on q follows by an identical argument using the upper bound on
p(rv).

Both bounds are defined piece-wise with one piece for each class. Restricted to class i, both the qlb(v) and qub(v)
are decreasing functions of θ(wi, v), which implies that their λ-level sets are spherical caps. Therefore, each class
contributes one large connected component to the level set of q that is roughly a spherical cap centered at the point wi
and the density of q goes to zero at the boundary of each class. Our main result is as follows:

Theorem 4. Suppose Assumptions 2 and 3 hold and that f∗ is consistent. There exists an rc satisfying rc =
Ω(εclb/(c

2
ubbmin)) such that with probability at least 1− δ, running Algorithm 3 with parameter rc on an unlabeled

sample of size n = Õ((c4ubd/(ε
2c2lbb

2
min))d) will query at most L labels and output a classifier with error at most ε.

Note that if the scale parameter bmin is unknown, the conclusion of Theorem 4 continues to hold if the connection
radius rc and unlabeled sample complexity n are set using a conservatively small estimate b̂min satisfying b̂min ≤ bmin.
This comes at the cost of an increased unlabeled sample complexity.

Before proving Theorem 4, we develop some general results for the robust linkage clustering algorithm. More
generally, Algorithm 3 can be applied in any metric space (X , d) by replacing θ with the distance metric d and suitable
settings for the internal parameters ra and τ . For the robust linkage approach to have low error, each class should
have one large connected component in the graph G constructed by the algorithm so that: (1) with high probability
a new point in class i will be nearest to that largest component, and (2) the large components of different classes are
separated. Intuitively, G will have these properties if each positive region Ki has a connected high-density inner region
Ai covering most of its probability mass and when it is rare to observe a point that is close to two or more classes. This
notion is formalized below.

Let S be any set in X . We say that a path π : [0, 1]→ X crosses S if the path starts and ends in different connected
components of the complement of S in X and we say that the width of S is the length of the shortest path that crosses S.

Definition 1. The sets A1, . . . , AL are (rc, ra, τ, γ)-clusterable under probability P if there exists a separating set
S of width at least rc such that: (1) Each Ai is connected; (2) If x ∈ X satisfies d(x,Ai) ≤ rc/3 then PrX∼P (X ∈
B(x, ra)) > τ + γ; (3) If x ∈ Ai then PrX∼P (X ∈ B(x, rc/3)) > γ; (4) Every path from Ai to Aj crosses S; and
(5) If x ∈ S then PrX∼P (X ∈ B(x, ra)) < τ − γ.

Note that typically there must be a gap between the set Ai and the set S in order to satisfy the probability
requirements (i.e., the set S will be smaller than X −⋃Li=1Ai). The first three properties ensure that each set Ai will
have one large connected component and the remaining two properties ensure that these connected components will be
disconnected. Following an analysis similar to that of the cluster tree algorithm of Chaudhuri and Dasgupta [2010]
gives the following result.

Lemma 3. Suppose that the setsA1, . . . ,AN are (rc, ra, τ, γ)-clusterable with respect to distribution P . For any failure
probability δ > 0, let G be the graph constructed by Algorithm 3 run on a sample S of size O( 1

γ2 (D + ln 1
δ ), where D

is the VC-dimension of balls in (X , d), with parameters and rc, ra, and τ . Define Ki = {x ∈ S : d(x,Ai) ≤ rc/3}
for each i ∈ [N ]. With probability at least 1− δ, the graph G has the following properties:
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1. Complete: For each i, all samples in Ki are active and included in the graph G.

2. Separated: For any i 6= j, there is no path in G from Ki to Kj .

3. Connected: For every i, the set Ki is connected in G.

4. Extendible: For any point x ∈ Ai, the nearest connected component of G to x contains Ki.

Proof. The proof technique used here follows a similar argument as Chaudhuri and Dasgupta [2010].
We use a standard VC bound [Vapnik and Chervonenkis, 1971] to relate the probability constraints in the cluster-

ability definition to the empirical measure P̂ . For our value of n we have

Pr
(
sup
x,r

∣∣P̂ (B(x, r))− P (B(x, r))
∣∣ > γ

)
< δ.

This implies that with probability at least 1 − δ for all points x we have: (1) if d(x,Ai) ≤ rc
3 for any i then

P̂ (B(x, ra)) > τ ; (2) if x ∈ S then P̂ (B(x, ra)) < τ ; and (3) if x ∈ Ai for any i then P̂ (B(x, rc3 )) > 0. We now use
these facts to prove that the graph G has the completeness, separation, and connectedness properties.

Completeness follows from the fact that every sample x ∈ K̂i is within distance rc/3 of Ai and therefore
P̂ (B(x, ra)) > τ .

To show separation, first observe that every sample z ∈ S that belongs to S will be marked as inactive, since
P̂ (B(z, ra)) < τ . Now let x ∈ K̂i and x′ ∈ K̂j for i 6= j. Since the graph G does not contain any samples in the set S,
any path in G from x to x′ must have one edge that crosses S. Since the width of S is at least rc, this edge would not be
included in the graph G, and therefore G does not include a path from x to x′.

To show connectedness, let x and x′ be any pair of samples in K̂i and let v and v′ be their nearest points in Ai,
respectively. By definition of K̂i, we know that d(x, v) < rc/3 and d(x′, v′) < rc/3. Since Ai is a connected set, there
is a path π : [0, 1] → Ai in Ai starting at v and ending at v′. Cover the path π with a sequence of points z1, . . . , zk
such that d(zj , zj+1) < rc/3 for all j and the path π is covered by the balls B(zj , rc/3). Further, choose z1 = v and
zk = v′. Since each point zj belongs to Ai, the empirical probability mass of the ball B(zj , rc/3) is non-zero, which
implies that it must contain at least one sample point, say yj ∈ S. We may take y1 = x and yk = x′. Since every
sample y1, . . . , yk is within distance rc/3 of Ai, they are all active and included in the graph G. Moreover, since
d(yj , yj+1) < rc, we have that the path x = y1 → · · · → yk = x′ is a path connecting x and x′ in G, as required.

Finally to show extensibility, let x ∈ Ai be any point. By the uniform convergence for balls, P (x, rc/3) has non-
zero empirical probability mass and therefore contains at least one active sample, say z. Since z is within distance rc/3
of Ai, it belongs to the set Ki. Now let z∗ be the closest active sample to x. We must have d(x, z∗) ≤ d(x, z) ≤ rc/3
and it follows that d(z, z∗) ≤ d(z, x) + d(x, z∗) ≤ 2rc/3 < rc. Therefore, z∗ also belongs to Ki, as required.

We now prove Theorem 4 by combining Lemmas 2 and 3:

Proof of Theorem 4. For each class i ∈ [L], define Ai = {q(i)ub ≥ ε}. We will show that the sets A1, . . . , AL are
(rc, ra, γ, τ)-clusterable for appropriate choices of the parameters. Then Lemma 3 will guarantee that with high
probability, the clustering produced by Algorithm 3 will approximate the connected components of the ε-level of
{qub ≥ ε}.

Recall that for each class i ∈ [L], the sets {q(i)ub ≥ ε} and {q(i)lb ≥ ε} are spherical caps. To simplify notation,
let C(u, r) = {v ∈ Sd−1 : θ(v, u) ≤ r} denote the spherical cap of angular radius r centered at u. Let ρ(i)ub(λ) =

arccos(bi(1 − λ/(cubdvd))−1/d) denote the angular radius of {q(i)ub ≥ ε}, so that {q(i)ub ≥ ε} = C(wi, ρ
(i)
ub(ε)), and

ρ
(i)
lb (λ), defined similarly, be the angular radius of {q(i)lb ≥ ε}. Define ε̃ = clb

cub
ε and suppose for the moment that we can

find an activation radius ra > 0 small enough so that the following inequalities hold for all classes i = 1, . . . , L:

5

3
ra ≤ ρ(i)lb

(3ε̃

4

)
−ρ(i)ub(ε) and 2ra ≤ ρ(i)ub(0)− ρ(i)ub

( ε̃
4

)
.

Given such an activation radius, we will show that the sets A1, . . . , AL are (rc, ra, τ, γ)-clusterable with rc = 2ra,
τ = ε̃V d(ra)

2 , and γ = ε̃V d(rc/3)
4 and the separating set is S = {v ∈ Sd−1 : θ(v, wi) ≥ ρ(i)ub(0)− ra for all i}:
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1. Connection: Each Ai set is a spherical cap and therefore connected.

2. High-density near Ai: Let v ∈ Sd−1 be such that θ(v,Ai) < rc/3 and let u ∈ C(v, ra) be any point in the
spherical cap of angular radius ra about v. By the triangle inequality, we know that θ(wi, u) ≤ θ(wi, v) +

θ(v, u) ≤ ρ
(i)
ub(ε) + 5

3ra ≤ ρ
(i)
lb ( 3ε̃

4 ). This implies that q(u) ≥ 3ε̃
4 for all points in C(v, ra) and therefore

PrV∼q(V ∈ C(v, ra)) ≥ 4ε̃
3 V

d(ra) ≥ τ + γ.

3. High-density inside Ai: Now let v ∈ Ai. Since rc/3 < ra, the above arguments show that q(u) ≥ 4ε̃
3 for all

points u ∈ C(v, rc/3) and therefore PrV∼q(V ∈ C(v, rc/3)) ≥ 4ε̃
3 V

d(rc/3) ≥ γ.

4. Separation by the set S: For each class i, the set S contains the annulus {v ∈ Sd−1 : ρ
(i)
ub(0)− ra ≤ θ(wi, v) ≤

ρ
(i)
ub(0)} which has width ra. Any path from one Ai to another Aj must cross two such annuli, each of width ra,

so the length of the path crossing S is at least 2ra = rc.

5. Low density inside S: Finally, let v be any point in the set S and let u ∈ C(v, ra). For any class i, the reverse
triangle inequality gives that θ(wi, v) ≥ θ(v, wi)− θ(u,wi) ≥ ρ(i)ub(0)− 2ra ≥ ρ(i)ub( ε̃4 ). Since this is true for all
classes i, we have q(v) ≤ ε̃

4 and therefore PrV∼q(V ∈ C(v, ra)) ≤ ε̃
4V

d(ra) ≤ τ − γ.

It follows that the sets A1, . . . , AL are (rc, ra, τ, γ)-clusterable and it only remains to find an activation radius ra
that satisfies the above inequalities. Since the robust linkage algorithm needs to estimate the probability mass of balls to
within error γ = ε̃V d(2ra/3)

4 , we want this activation radius to be not too small.
Taking the first order Taylor expansion of the ρ(i)lb and ρ(i)ub functions, we have:

ρ
(i)
lb (λ) = arccos(bi)−

bi√
1− b2i

1

clbdvd
λ+O(λ2)

ρ
(i)
ub(λ) = arccos(bi)−

bi√
1− b2i

1

cubdvd
λ+O(λ2),

as λ→ 0. Therefore, we have that

ρ
(i)
lb (3ε̃/4)− ρ(i)ub(ε) =

1

4dvdcub
· bi√

1− b2i
ε+O(ε2)

and
ρ
(i)
ub(0)− ρ(i)ub(ε̃/4) =

clb
4dvdc2ub

· bi√
1− b2i

ε+O(ε2),

which shows that it is sufficient to set ra = 3clb
20dvdc2ub

· bi√
1−b2i

ε+ O(ε2) = Ω( clb
c2ub
bminε) as ε → 0 and it follows that

n = O( 1
γ2 (d+ ln 1

δ ) = Õ((c4ubd/(ε
2c2lbb

2
min))d).

Finally, we show that the algorithm correctly recovers the labels of the large clusters. For n = Õ(L/ε2), we have that
with probability at least 1− δ the following holds simultaneously for all 2L subsets I ⊂ [L]:

∣∣P̂ (AI)− P (AI)
∣∣ ≤ ε/4,

where AI =
⋃
i∈I Ai. Since all samples in AI are marked as active (by Lemma 3), this implies that all but at most ε4n

of the active points will belong to the Ai sets. It follows that if the algorithm queries the labels of the L largest clusters,
they will also contain all but ε4n active samples.

On the other hand, whenever we query the label of one of the Ai sets, we know that we will correctly classify
every test point belonging to Ai, so the error of the resulting classifier is at most the probability mass of {qub ≤ ε}
together with the probability mass of the Ai sets for which we did not query the label. Since the unqueried Ai sets
have empirical probability mass at most ε/4 and we have uniform convergence for all unions of Ai sets to within error
ε/4, it follows that the total probability mass of the unlabeled Ai sets is at most ε/2 and it follows that the error of the
resulting classifier is at most ε.
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There are two main differences between the sample complexity of Theorem 4 and the results from Section 4. First,
the unlabeled sample complexity now has an ε−2d dependence, rather than only ε−2. This is because the distance
between the connected components of {p ≥ ε} goes to zero (in the worst case) as ε→ 0, so our algorithm must be able
to detect low-density regions of small width. In contrast, Lemma 1 allowed us to establish a non-diminishing gap g > 0
between the classes when the codewords were well separated. On the other hand, the label complexity in this setting
is better, scaling with L instead of N , since we are able to establish that each class will have one very large cluster
containing nearly all of its data.

Theorem 7 in the appendix gives an analysis of Algorithm 3 in the agnostic setting of Section 7.

6 The Boundary Features Condition
Finally, in this section we introduce a novel condition on the code matrix called the boundary features condition that
captures the intuition that every binary classification task should be significant. Assumption 4 formalizes this intuition.

Assumption 4. There exists a code matrix C ∈ {±1}L×m, linear functions h1, . . . , hm, and a scale parameter R > 0
so that: (1) for any point x in class y, we have h(x) = Cy; (2) for each hj , there exists a class i such that negating the
jth entry of Ci produces a codeword C ′i not in C and there exists a point x on the hyperplane hj = 0 such that every
point in B(x,R) has either code word Ci or C ′i; and (3) any pair of points x, x′ ∈ X such that h(x) and h(x′) are not
codewords in C and h(x) 6= h(x′) must have ‖x− x′‖ ≥ R.

Part (1) of this assumption requires that the output code classifier is consistent, part (2) is a condition that guarantees
every linear separator hj separates at least one class i from a region of space that does not belong to any class, and
part (3) requires that points with codewords not in the code matrix must either have the same codeword or be separated
by distance R. Part (3) allows us to simplify our algorithm and analysis and is trivially satisfied in cases where all
points in X that do not belong to any class have the same codeword, as is the case for one-vs-all classification and the
problem in Figure 2.

Problems in this setting are more challenging than those of the previous sections because they may not be amenable
to clustering-based learning strategies. Whenever the Hamming distance between a pair of codewords is only 1, this
implies that one of the linear separators hj forms a shared boundary between the classes, and therefore these classes
may be connected by a large and high-density region. Instead, Assumption 4 guarantees that for every linear separator
hj , there is some ball B(x,R) centered on hj that is half-contained in the set of points belonging to some class i and
the other half belongs to the set of points that do not belong to any class. Therefore, by looking for hyperplanes that
locally separate sample data from empty regions of space, we can recover the linear separator hj from the local absence
of data. Define Ki = {x ∈ X : h(x) = Ci} to be the set of points that belong to class i and K =

⋃L
i=1Ki. Under the

condition that the density p is supported on K and is upper and lower bounded, we exploit this structure in an algorithm
that directly learns the linear separators h1, . . . , hm.

Our hyperplane detection algorithm works by searching for balls of radius r whose centers are sample points
such that one half of the ball contains very few samples. If a half-ball contains very few sample points then it must
be mostly disjoint from the set K. But since its center point belongs to the set K, this means that the hyperplane
defining the half-ball is a good approximation to at least one of the true hyperplanes. See Figure 3 for examples of
half-balls that would pass and fail this test. The collection H of hyperplanes produced in this way partition the space
into cells. Our algorithm queries the labels of the cells containing the most sample points and classifies test points

h1

h2h3

K1 K2

K3

K4

C =

2
664

+1 �1 �1
+1 +1 �1
�1 +1 �1
�1 �1 +1

3
775

Figure 2: An example of the boundary features problem. The arrows indicate the positive side of the linear functions.
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Input: Sample S = {x1, . . . , xn}, r > 0, τ > 0.
1. Initialize set of candidate hyperplanes H = ∅.
2. For all samples x̂ ∈ S with B(x̂, r) ⊂ X :

(a) Let ŵ = argminw∈Sd−1 |B1/2(x̂, r, w) ∩ S|.
(b) If |B1/2(x̂, r, ŵ)∩S|/n < τ , add (x̂, ŵ) to H .

3. Let {Ĉi}Ni=1 be the partitioning of X induced by H .
4. Query the label of the L cells with the most samples.
5. Output f̂(x) = label of Ci containing x.

Algorithm 4: Plane-detection algorithm. Figure 3: Examples of half-balls that would be included
(green) or excluded (red) by the plane detection algorithm.

based on the label of their cell in the partition (and if the label is unknown, we output a random label). Pseudocode is
given in Algorithm 4 using the following notation: for any center x ∈ X , radius r ≥ 0, and direction w ∈ Sd−1, let
B1/2(x, r, w) = {y ∈ B(x, r) : w>(y − x) > 0} and define p1/2(r) = 1

2clbr
dvd.

Each candidate hyperplane produced by Algorithm 4 is associated with a half-ball that caused it to be included in H .
In fact, we can think of the pairs (x̂, ŵ) in H as either encoding the linear function ĥ(x) = w>(x− x̂) or the half-ball
B1/2(x̂, r, ŵ), where r is the scale parameter of the algorithm. Most of our arguments will deal with the half-balls
directly, so we adopt the second interpretation. The analysis of Algorithm 4 has two main steps. First, we show that the
face of every half-ball in the set H is a good approximation to at least one of the true hyperplanes, and that every true
hyperplane is well approximated by the face of at least one half-ball in H . Second, using the fact that the half-balls in
H are good approximations to the true hyperplanes, we argue that the output classifier will only be inconsistent with the
true classification rule in a small margin around each of the true linear separators. Then the error of the classification
rule is easily bounded by bounding the probability mass of these margins.

To measure the approximation quality, we say that the half-ball B1/2 = B1/2(x̂, r, ŵ) is an α-approximation to the
linear function h if PrX∼B1/2(sign(h(X)) = sign(h(x̂))) ≤ α, where PrX∼B1/2 denotes the probability when X is
sampled uniformly from the half-ball B1/2. The motivation for this definition is as follows: given any point x̂ ∈ X , the
half-ball B1/2(x̂, r, ŵ) will be an α-approximation to hi only if x̂ is on one side of the decision surface of hi and all
but an α-fraction of the half-ball’s volume is on the other side. Intuitively, this means that the face of the half-ball must
approximate the decision surface of the function hi.

The following Lemma shows that when Algorithm 4 is run with appropriate parameters and on a large enough
sample drawn from the data distribution, then with high probability the algorithm will include at least one half-ball
in H α-approximating each true hyperplane hi and every half-ball in H will be an α-approximation to at least one
true hyperplane. Recall that p1/2(r) = 1

2clbr
dvd is a lower bound on the probability mass of a half-ball of radius r

contained in the set K.

Lemma 4. Fix any α > 0 and confidence parameter δ > 0. Let H be the set of half-balls produced by Algorithm 4
when run with parameters r = R/2 and τ = 1

2αp
1/2(r) on a sample of size n = O( 1

γ2 (ln2 d
γ + ln 1

δ )) where
γ = 2

5τ = 1
5αp

1/2(r). Then with probability at least 1− δ, every half-ball in H will be an α-approximation to at least
one true hyperplane hi, and every true hyperplane hi will be α-approximated by at least one half-ball in H .

Proof. Since the VC-dimension of both balls and half-spaces in Rd is d+1, the VC-dimension of the set of intersections
of balls and up to two half-spaces is O(d ln d). Therefore, by a standard VC-bound [Vapnik and Chervonenkis, 1971], if
we see an iid sample S of size n = O( 1

γ2 (ln2 d
γ + ln 1

δ )), then with probability at least 1− δ the empirical measure of
any ball intersected with up to two half-spaces will be within γ of its true probability mass. In other words, the fraction
of the sample set S that lands in any ball intersected with up to two half-spaces will be within γ of the probability that a
sample X drawn from P will land in the same set. For the remainder of the proof, assume that this high-probabilty
event holds.

First, we show that every half-ball in the set H is an α-approximation to at least one true hyperplane. Suppose
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otherwise, then there is a half-ball B1/2 = B1/2(x̂, r, ŵ) with (x̂, ŵ) ∈ H that is not an α approximation to any true
hyperplane hi. The center x̂ of the half-ball must belong to the positive region K, since it is one of the sample points. If
the half-ball B1/2 is contained entirely in the set K, then the probability that a new sample X drawn from P will land in
the half-ball B1/2 is p1/2(r) and therefore the fraction of samples that landed in the half-ball is at least p1/2(R/2)− γ.
But since p1/2(r) − γ ≥ 4

5αp
1/2(r) > τ , this contradicts the half-ball being included in the set H . Otherwise, the

half-ball contains at least one point y that does not belong to the set K (i.e., it does not belong to any class). Since
x̂ is in the set K, there is at least one true hyperplane hi that separates x̂ from y. Since r = R/2 < R, every other
point y′ in the half-ball that does not belong to any class must have the same code word as y (since, by assumption,
points outside of K that do not belong to any class must have the same code word when they are closer than R), and
therefore must be on the same side of hi as y. It follows that all points in the half-ball on the same side of hi as x̂ (i.e.,
those points for which the sign of hi matches the sign of hi(x̂)) belong to the set K. But, since the half-ball is not
an α-approximation to hi, this implies that at least an α fraction of the half-ball’s volume must belong to the set K.
Therefore, the probability that a new sample x drawn from the data distribution p belongs to the half-ball can be lower
bounded as follows:

Pr
x∼p

(x ∈ B1/2) ≥ clb Vol(B1/2 ∩K) = clb Vol(B1/2)
Vol(B1/2 ∩K)

Vol(B1/2)
≥ αp1/2(r).

By the uniform convergence argument, the fraction of the samples in S contained in the half-ball B1/2 is at least
αp1/2(r)− γ > τ , which contradicts the half-ball being in H . In either case we arrived at a contradiction and it follows
that every half-ball in H is an α-approximation to at least one true hyperplane hi.

Finally, we show that the set H will contain at least one half-ball that is an α-approximation to each true hyperplane
hi. Fix any true hyperplane hi. By assumption, there is a class ` and a point x0 on the decision surface of hi so that
one half-ball of B(x0, R) with face hi is is contained in K` ⊂ K and the other half-ball is disjoint from K. Suppose
WLOG that the half-ball on the negative side of hi is contained in K (the case when the half-ball on the positive side
is contained in K is identical). Define ρ > 0 to be the width such that the probability that a new sample X from P
lands in the slice of the ball S = {x ∈ B(x̂0, r) : hi(x) ∈ [−ρ, 0]} is equal to τ − γ. Note that, since the half-ball on
the negative side of hi is a subset of K and τ − γ = 3

10αp
1/2(r) < p1/2(r), such a value of ρ always exists. Since

τ − γ > γ, the uniform convergence argument guarantees that there will be at least one sample point in the slice,
say x̂ ∈ S. Since x̂ is within distance r = R/2 of the point x0, the ball B(x̂, r) is contained in B(x0, R). Therefore,
the ball of radius r centered at x̂ only contains points that either belong to class ` or no class, since only the linear
separator hi passes through this ball. By construction, the half-ball B1/2(x̂, r, wi) (where wi is the coefficient vector
defining hi(x) = w>i x− bi) with face parallel to hi intersects the set K in a slice of width at most ρ and therefore has
probability mass at at most τ − γ. It follows that the direction ŵ that minimizes the number of samples in the half-ball
B1/2(x̂, r, ŵ) will result in the half-ball containing at most a τ fraction of the sample set, and therefore the pair (x̂, ŵ)
will be included in H , and this will be an α-approximation to hi.

Naturally, if a half-ball B1/2(x̂, r, ŵ) is an α-approximation to the linear function h, we expect that the decision
surface of ĥ(x) = ŵ>(x− x̂) is similar to the decision surface of h. In turn, this suggests that either ĥ(x) or −ĥ(x)
should take similar function values to h(x) (since the coefficient vectors are normalized). We first give a simple
probability lemma that bounds the fraction of a ball contained between two parallel hyperplanes, one passing through
the ball’s center. The proof of Lemma 5 is in Section 11 of the appendix.

Lemma 5. Let r > 0 be any radius and X be a random sample drawn uniformly from the ball of radius r centered at
the origin. For any width 0 ≤ ρ ≤ r/

√
2, the probability that the first coordinate of X lands in [0, ρ] can be bounded

as follows: √
d

2dπ

ρ

r
≤ Pr
X∼B(r,0)

(X1 ∈ [0, ρ]) ≤
√
d+ 1

2π

ρ

r
.

Using Lemma 5, we show the following:
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Lemma 6. Let the half-ballB1/2(x̂, r, ŵ) be an α-approximation to the linear function h(x) = w>x−b with ‖w‖ = 1,
x̂ ∈ X , and α < 1

2 . Let D be the diameter of X . If h(x̂) < 0 then for all x ∈ X we have

|h(x)− ĥ(x)| ≤
(

2D +

√
2dπ

d

r

2

)√
α,

where ĥ(x) = ŵ>(x− x̂). Otherwise, if h(x̂) > 0 then the same upper bound holds for |h(x) + ĥ(x)|.
Proof. Suppose that h(x̂) < 0 and let X be a uniformly random sample from the half-ball B1/2 = B1/2(x̂, r, ŵ). By
assumption, we know that Pr(h(X) < 0) ≤ α.

First we show that ‖w − ŵ‖ is small. Since α < 1/2 we have that w>ŵ > 0. To see this, notice that we
must have h(x̂ + rŵ) ≥ 0, since otherwise at least half of the half-ball would be on the negative side of h. Define
g(x) = w>(x− x̂) to be the linear function whose decision surface runs parallel to that of h but passes through the
point x̂. Since h(x) = g(x) + h(x̂) ≤ g(x), we have that α > Pr(h(X) < 0) ≥ Pr(g(X) < 0). Moreover, since the
decision surface of g passes through the center of the half-ball B1/2 and the uniform distribution on the half-ball is
radially symmetric about the point x̂, we have that Pr(g(X) < 0) = θ(w,ŵ)

π . It follows that θ(w, ŵ) ≤ πα. Using this
fact, we can bound ‖w − ŵ‖ as follows:

‖w − ŵ‖2 = ‖w‖2 + ‖ŵ‖2 − 2w>ŵ = 2(1− w>ŵ).

Since w>ŵ = cos(θ(w, ŵ)) and on the interval [0, π/2], the cos(θ) function is decreasing and lower bounded by
1− 2

π θ, we have that 2(1− w>ŵ) ≤ 4α. Taking the square root gives that ‖w − ŵ‖ ≤ 2
√
α.

Next we show that |h(x̂)| (the distance from x̂ to the decision surface of h) is not too large. The half-ball
B1/2(x̂, r, w), whose directionw matches the coefficient vector of h is one half-ball centered at x̂ of radius r minimizing
the fraction of its volume contained on the same side of h as x̂. This is because every point in the ball B(x̂, r) not on
the same side as x̂ is contained in B1/2(x̂, r, w). Let Y be uniformly sampled from B1/2(x̂, r, w). By construction of
the half-ball Y is sampled from, we have that Pr(h(X) < 0) ≥ Pr(h(Y ) < 0), which gives

α ≥ Pr
X∼B1/2(x̂,r,ŵ)

(
h(X) < 0

)
≥ Pr
Y∼B1/2(x̂,r,w)

(
h(Y ) < 0

)
≥
√

d

2dπ

2|h(x̂)|
r

,

which implies that

|h(x̂)| ≤
√

2dπ

d

rα

2
.

Finally, let x′ be any point on the decision surface of h, so that h(x) = w>(x − x′). Combining the above
calculations we have

|h(x)− ĥ(x)| = |w>(x− x′)− ŵ>(x− x̂)|
= |w>(x− x̂) + w>(x̂− x′)− ŵ>(x− x̂)|
= |(w − ŵ)(x− x̂) + w>(x̂− x′)|
≤ ‖w − ŵ‖‖x− x̂‖+ |h(x̂)|

≤ 2
√
αD +

√
2dπ

d

rα

2

≤ (2D +

√
2dπ

d

r

2
)
√
α,

as required. The proof of the case when h(x) > 0 follows by applying the above arguments to the function −h.

Recall that for any hyperplane h(x) = w>x− b with ‖w‖2 = 1, the distance from point x to the decision surface
of h is |h(x)|. The above lemma implies that if B1/2(x̂, r, ŵ) is an α-approximation to h, then either ĥ or −ĥ will
have the same sign as h for all points in X except those in a margin of width O(

√
α) around h. Under the uniform

distribution on K, the probability mass of the margins surrounding the true hyperplanes isn’t large, which results in low
error for the classification rule.
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Theorem 5. Suppose Assumptions 3 and 4 hold. For any desired error ε > 0, with probability at least 1 − δ,
running Algorithm 4 with parameters r ≤ R/2 and τ = αp1/2(r)/2 for a known constant α on on a sample of size
n = Õ(dm2c2ubR

d/(c2lbε
4)) will have error at most ε.

Proof. By Lemma 4, for the parameter settings τ and r and the given sample size, with probability at least 1− δ every
half-ball included in the set H will be an α-approximation to some true hyperplane hi, and every true hyperplane hi is
α-approximated by at least one half-ball in H . Assume that this high probability event occurs.

Let H = {(x̂1, ŵ1), . . . , (x̂M , ŵM )} be the set of of half-balls produced by the algorithm and define ĥi(x) =
ŵ>i (x− x̂i) for i = 1, . . . ,M to be the corresponding linear functions. Algorithm 4 uses these hyperplanes to partition
the space X into a collection of polygonal regions and assigns a unique class label to each cell in the partition. Notice
that negating any of the ĥi functions does not change the partitioning of the space. Therefore, negating any subset of
the ĥi will not change the permutation-invariant error of the resulting classifier.

Let I1, . . . , Im be a partition of the set of indices {1, . . . ,M} such that for all j ∈ Ii, we have that B1/2(x̂j , ŵj , r)

is an α-approximation to hi. By Lemma 6, we know that for at least one g ∈ {ĥj ,−ĥj}, we have that

|hi(x)− g(x)| ≤
(

2D +

√
2dπ

d

r

2

)
√
α

Since negating any of the functions ĥj does not change the error of the resulting classifier, assume WLOG that the
above holds for g = ĥj .

This implies that whenever |hi(x)| > c
√
α, where c = 2D+

√
2dπ
d

R
4 , then for every j ∈ Ii, the sign of ĥj(x) is the

same as the sign of hi(x). It follows that for points that are not within a margin of c
√
α of any of the true hyperplanes,

every ĥj function with j ∈ Ii will have the same sign as hi for all i = 1, . . . ,m. It follows that the classifier can only
error on points that are within a c

√
α margin of one of the true hyperplanes.

Using Lemma 5 we can bound the probability that a sample X drawn uniformly from K lands in the c
√
α-margin

of hyperplane hi as follows:

Pr(X in c
√
α-margin of hi) ≤ 2

√
d+ 1

2π

c
√
α

D
Ddvdcub,

where D is the diameter of X . We can make this upper bound equal to ε/m by setting

α =
π

2(d+ 1)

(
εD

mcDdvdclb

)2

= Ω

(
ε2

m22dR2D2dv2dc
2
lb

)

Applying the union bound to the m hyperplanes h1, . . . , hm shows that the error of f̂ is at most ε.

Note that if the scale parameter R is unknown, the conclusions of Theorem 5 continue to hold when the parameter r
and the unlabeled sample complexity n are set using a conservatively small estimate R̂ satisfying R̂ ≤ R.

Theorem 8 in the appendix extends the above result to the agnostic setting considered in Section 7.

7 Extensions to the Agnostic Setting
The majority of our algorithms have two phases: first, we extract a partitioning of the unlabeled data into groups that
are likely label-homogeneous, and second, we query the label of the largest groups. We can extend our results for these
algorithms to the agnostic setting by querying multiple labels from each group and using the majority label.

Specifically, suppose that the data is generated according to a distribution P over X × [L] and there exists a labeling
function f∗ such that Pr(x,y)∼P (f∗(x) 6= y) ≤ η and our assumptions hold when the unlabeled data is drawn from the
marginal PX but the labels are assigned by f∗. That is, the true distribution over class labels disagrees with a function
f∗ satisfying our assumptions with probability at most η. In this setting, the first phase of our algorithms, which deals
with only unlabeled data, behaves exactly as in the realizable setting. The only difference is that we will need to query
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multiple labels from each group of data to ensure that the majority label is the label predicted by f∗. Suppose that the
training data is (x1, y1), . . . , (xn, yn) drawn from P (where the labels yi are initially unobserved). For n = Õ(1/η2),
we are guaranteed that on at most 2ηn of the training points we have that yi 6= f∗(xi). Moreover, if we only need to
guess the label of large groups of samples, say those containing at least 8ηn points, then we are guaranteed that within
each group at least 1/4 of the sample points will have labels that agree with f∗. Therefore, after querying O(log(1/δ))
labeled examples from each group, the majority label will agree with f∗. If we use these labels in the second phase of
the algorithm, we would be guaranteed that the error of our algorithm would be at most ε had the labels been produced
by f∗, and therefore the error under the distribution P is at most η + ε. The appendix contains agnostic versions of
Theorems 1, 4, and 5.

Similarly, modifying Algorithm 2 to require that the each cluster in the pruning have a majority label that accounts
for at least 3/4 of the cluster’s data can be used to extend the corresponding results to the agnostic setting.

8 Conclusion and Discussion
In this work we showed how to exploit the implicit geometric assumptions made by output code techniques under the
well studied cases of one-vs-all and well separated codewords, and for a novel boundary features condition that captures
the intuition that every binary learning task should be significant. We provide label-efficient learning algorithms for
both the consistent and agnostic learning settings with guarantees when the data density has thick level sets or upper
and lower bounds. In all cases, our algorithms show that the implicit assumptions of output code learning can be used
to learn from very limited labeled data.

In this work we focused on linear output codes, which have been in several practical works. For example Palatucci
et al. [2009] use linear output codes for neural decoding of thoughts from fMRI data, Berger [1999] used them
successfully for text classification, and Crammer and Singer [2000] show that they perform well on MNIST and several
UCI datasets. Many other works use non-linear output codes, and it is a very interesting research direction to extend our
work to such cases.

The unlabeled sample complexity of our algorithms is exponential in the dimension because our algorithms require
the samples to cover high-density regions. It is common for semi-supervised algorithms to require exponentially more
unlabeled data than labeled, e.g. [Singh et al., 2008, Castelli and Cover, 1995]. Our results also show that the unlabeled
sample complexity only scales exponentially with the intrinsic dimension, which may be significantly lower than the
ambient dimension for real-world problems. An interesting direction for future work is to determine further conditions
under which the unlabeled sample complexity can be drastically reduced.
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9 Appendix for Error Correcting Output Codes
First, we show that the line segment [x, y] crosses the decision surface of the linear separator hk if and only if h(x) and
h(y) differ on the kth entry.

Lemma 7. Let i 6= j be any pair of classes whose codewords disagree on the kth bit. Then for any points x ∈ Ki and
y ∈ Kj , the line segment [x, y] intersects with the line hk = 0.

Proof. Without loss of generality, suppose that Cik = 1 and Cjk = −1. Then, from the definition of Ki and
Kj , we have that hk(x) > 0 and hk(y) < 0. The function f(t) = hk((1 − t)x + ty) is continuous and satisfies
f(0) = hk(x) > 0 and f(1) = hk(y) < 0. It follows that there must be some t0 ∈ (0, 1) such that f(t0) = 0. But this
implies that the point z = (1− t0)x+ t0y ∈ [x, y] satisfies hk(z) = 0 and it follows that hk = 0 intersects with [x, y]
at the point z.

Next, we show that when the consistent linear output code makes at most β errors when predicting the code word of
a new example and the Hamming distance of the code words is at least 2β + d+ 1, then there must be a minimum gap
g > 0 between any pair of points belonging to different classes.

Lemma 1. Under Assumption 1, there exists g > 0 s.t. if points x and x′ belong to different classes, then ‖x− x′‖ > g.

Proof. For sets A and B, let d(A,B) = mina∈A,b∈B ‖a− b‖ denote the distance between them and recall that for each
i = 1, . . . , L, we defined Ki = {x ∈ X : dHam(h(x), Ci) ≤ β} to be the set of points that belong to class i.

Fix any pair of classes i and j and suppose for contradiction that d(Ki,Kj) = 0. This implies that there
are two code words c, c′ ∈ {±1}m such that dHam(c, Ci) ≤ β, dHam(c′, Cj) ≤ β, and the distance between
A = {x ∈ X : h(x) = c} and B = {x ∈ X : h(x) = c′} is 0. First, we construct a point x that belongs to A ∩ B,
where A and B denote the closure of A and B, respectively. Since d(A,B) = 0, there exists a sequence of points
x1, x2, . . . ∈ A such that d(xn, B)→ 0 as n→∞. But, since A is bounded, so is the sequence (xn), and therefore by
the Bolzano-Weierstrass theorem, (xn) has a convergent subsequence. Without loss of generality, suppose that (xn)
itself converges to the point x. Then x is a limit point of A and therefore belongs to the closure of A. On the other hand,
since the function z 7→ d(z,B) is continuous, it follows that d(x,B) = limn→∞ d(xn, B) = 0 and therefore x is also
in the closure of B.

Now let k be any index such that the code words c and c′ differ on the kth entry. Next, we show that hk(x) = 0.
For each integer n > 0, let Cn = B(x, 1/n) be the ball of radius 1/n centered at x. Since x belongs to the closure of
A and Cn is a neighborhood of x, we can find some point, say xn that belongs to the intersection A ∩ Cn. Similarly,
we can find a point yn belonging to B ∩ Cn. Since the line segment [xn, yn] passes from A to B, Lemma 7 guarantees
that there is a point zn ∈ [xn, yn] ⊂ Cn such that hk(zn) = 0. But, by construction, the sequence zn is converging to x
and, since linear functions are continuous, it follows that hk(x) = limn→∞ hk(zn) = 0.

But this leads to a contradiction: since the codewords c and c′ must disagree on at least d + 1 entries, at least
d+ 1 of the linear separators h1, . . . , hm intersect at the point x, which contradicts our assumption that at most d lines
intersect at any point x ∈ X . Therefore, we must have d(Ki,Kj) > 0. Since there are finitely many classes, taking
g = mini,j d(Ki,Kj) completes the proof.

Next, we prove a similar result to Theorem 1 that holds in the agnostic setting of Section 7.

Theorem 6. Assume Assumption 1, errP (f∗) ≤ η, and p has C-thick level sets. For 0 < ε ≤ η, suppose {p ≥
ε/(2 Vol(K))} has N connected components, each with probability at least 7η. With probability at least 1− δ, running
Algorithm 1 with parameter rc < g on an unlabeled sample of size n = Õ( 1

ε2 ((4C)2ddd+1/r2cd+N)) and querying
t = O(lnN/δ) labels per cluster will have error at most η + ε after querying at most Nt labels.

Proof. Define λ = ε/(2 Vol(K)) and let A1, . . . , AN be the connected components of {p ≥ λ}. Since Assumption 1
holds, Lemma 1 guarantees that there is a distance g > 0 such that whenever f∗(x) 6= f∗(x′), we must have
‖x− x′‖ ≥ g. This implies that for any λ′ > 0, f∗ must be constant on the connected components of {p ≥ λ′}, since
otherwise we could construct a pair of points closer than g with f∗(x) 6= f∗(x′). In particular, we know that f∗ is
constant on each of the Ai sets.
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Since the clustering produced by Algorithm 1 does not see the labeled examples, an identical covering argument
to the one in the proof of Theorem 1 shows that for n = O((4C)2ddd+1/(ε2r2dc )) with probability at least 1− δ, for
each set Ai there is a unique cluster, say Âi, such that Âi contains S ∩Ai, the closest cluster to every point in Ai is Âi.
Assume this high probability event occurs.

Similarly to the proof of Theorem 1, for n = O(Nε2 ln 1
δ ), we have that with probability at least 1− δ, for any subset

of indices I ⊂ [N ], we have that ∣∣|S ∩AI |/n− PX (AI)
∣∣ ≤ ε,

where AI =
⋃
i∈I Ai. Assume this high probability event occurs.

Now let y1, . . . , yn be the (unobserved) labels corresponding to the unlabeled sample x1, . . . , xn. Since
Pr(x,y)∼P (f∗(x) 6= y) ≤ η, if n = O( 1

η2 ln 1
δ ), then with probability at least 1 − δ, we have that f∗(xi) 6= yi

for at most 2ηn of the sample points.
Now, for any connected component Ai, let Âi be the cluster containing Ai ∩S. Since we have uniform convergence

for all unions of the Ai sets, and PX (Ai) ≥ 7η, we know that the set Ai contains at least 6ηn sample points. Therefore,
even if every point whose label yi disagrees with f∗ belongs to Âi, we know that at most a 2ηn/(6ηn) = 1/3
fraction of the points belonging to the cluster Âi will have labels other than f∗(Ai). If we query the label of
t = 32 ln 2N

δ = O(ln N
δ ) points belonging to cluster Âi, then with probability at least 1− δ/N the majority label will

agree with f∗ on Ai. Applying the union bound over the connected components A1, . . . , AN gives the same guarantee
for all connected components with probability at least 1− δ.

Let f̂ be the classifier output by Algorithm 1 and Q ⊂ [N ] be the indices of the Ai sets for which the algorithm
queried the label of the corresponding cluster Âi. The above arguments show that with probability at least 1− 4δ, we
have that f̂(x) = f∗(x) for any x ∈ ∪i∈QAi and, as in Theorem 1, we know that PX (

⋃
i 6∈QAi) ≤ ε/2. This gives the

following bound on the error of f̂ : Let (x, y) ∼ P , then

Pr(f̂(x) 6= y) = Pr(f̂(x) 6= y, x ∈ {p < λ})
+ Pr(f̂(x) 6= y, x ∈

⋃

i∈Q
Ai)

+ Pr(f̂(x) 6= y, x ∈
⋃

i 6∈Q

Ai)

≤ Pr(x ∈ {p < λ})
+ Pr(f∗(x) 6= y)

+ Pr(x ∈
⋃

i 6∈Q

Ai).

By our choice of λ, the first term is at most ε/2, by assumption the second term is at most η, and the last term is at most
ε/2, giving the final error bound of η + ε.

10 Appendix For One-vs-all on the Unit Ball
The following result is similar to Theorem 4 and shows that Algorithm 3 continues to work in the agnostic setting of
Section 7.

Theorem 7. Suppose the data is drawn from distribution P over X × [L] and that there exists a labeling function
f∗ such that Pr(x,y)∼P (f∗(x) 6= y) ≤ η and Assumptions 2 and 3 hold when labels are assigned by f∗. Assume
that Prx∼PX (f∗(x) = i) ≥ 19η for all classes i. For any excess error ε, There exists an rc satisfying rc =
Ω(εclb/(c

2
ubbmin)) such that with probability at least 1− δ, running Algorithm 3 with parameter rc on an unlabeled

sample of size n = Õ((c4ubd/(ε
2c2lbb

2
min))d) and querying t = O(ln N

δ ) labels from each cluster will output a classifier
with error at most η + ε and query at most tL labels.

Proof. For small enough ε, we know that at least half of the probability mass of the points assigned to class i will
belong to the ε-level set of {q(i)ub ≥ ε} (in the notation of Theorem 4). Therefore, the probability mass of each of the sets
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A1, . . . , AL in the proof of Theorem 4 is at least 9η. It follows that if we see an unlabeled set of size n = Õ( 1
η2 ), then

with probability at least 1− δ every Ai set will contain at least 8ηn points. Since these points belong to Ai, we know
that they will be active, included in the graph G, and connected to the cluster that contains samples belonging to Ai.
Moreover, under the same high probability event, we know that there are at most 2ηn points whose labels disagree with
f∗. Therefore, the cluster that contains samples from Ai must have at least 8ηn points, at most 2ηn of which can have
labels that disagree with f∗, so the label assigned by f∗ will account for at least a 3/4 fraction of the points belonging
to the cluster containing Ai. It follows that if we query O(log(L/δ)) labels from each Ai set then with probability at
least 1− δ, we will output a classification rule that agrees with f∗ except with probability ε. It follows that the error
with respect to P at most η + ε.

11 Appendix for Boundary Features Condition
We begin by proving the probability bounds for slices of a d-dimensional ball under the uniform distribution.

Lemma 5. Let r > 0 be any radius and X be a random sample drawn uniformly from the ball of radius r centered at
the origin. For any width 0 ≤ ρ ≤ r/

√
2, the probability that the first coordinate of X lands in [0, ρ] can be bounded

as follows: √
d

2dπ

ρ

r
≤ Pr
X∼B(r,0)

(X1 ∈ [0, ρ]) ≤
√
d+ 1

2π

ρ

r
.

Proof. Let B be the ball of radius r centered at the origin and S = {x ∈ B : x1 ∈ [0, ρ]} be the slice of B for which
the first coordinate is in the interval [0, ρ]. The probability that a uniformly random sample from B lands in the subset
S is given by Vol(S)/Vol(B), where Vol denotes the (Lebesgue) volume of a set.

We bound the volume of the set S by writing the volume as a double integral over the first coordinate x1 and the
remaining d− 1 coordinates xR.

Vol(S) =

∫ ρ

0

∫

Rd−1

I{‖xR‖22 ≤ r2 − x21} dxR dx1

Noticing that the inner integral is actually the volume of a d− 1 dimensional ball of radius
√
r2 − x21, and using the

fact that for any d, the volume of a d-dimensional ball of radius r is rdvd, where vd is the volume of the d-dimensional
unit ball, we have

Vol(S) = vd−1

∫ ρ

0

(r2 − x21)(d−1)/2 dx1.

Upper bounding the integrand by rd−1 gives that Vol(S) ≤ vd−1ρr
d−1. Lower bounding the integrand by (r2 −

ρ2)(d−1)/2 and using the fact that ρ ≤ r√
2

we have that Vol(S) ≥ vd−1 1√
2d−1

ρrd−1. Dividing both inequalities by the

volume of B, which is rdvd, and using the fact that for all d we have vd−1

vd
∈ [
√

d
2π ,
√

d+1
2π ] gives

√
d

2dπ

ρ

r
≤ Pr
X∼B

(X ∈ S) ≤
√
d+ 1

2π

ρ

r
,

as required.

The following is an extension of Theorem 5 to the agnostic setting described in Section 7.

Theorem 8. Suppose the data is drawn from distribution P over X × [L] and that there exists a labeling function
f∗ such that Pr(x,y)∼P (f∗(x) 6= y) ≤ η and Assumptions 3 and 4 hold when labels are assigned by f∗. Moreover,
assume that Prx∼PX (f∗(x) = i) ≥ 10η for all classes i. For any excess error 0 < ε ≤ η, with probability at least
1− δ, running Algorithm 4 with parameters r ≤ R/2 and τ = αp1/2(r)/2 for a known constant α on on a sample of
size n = Õ(dm2c2ubR

d/(c2lbε
4)) and querying t = O(ln(N/δ)) labels from the L largest clusters will have error at

most η + ε.
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Proof. In the proof of Theorem 5 we argued that with the set of hyperplanes produced by Algorithm 4 will be good
approximations to the true hyperplanes. We additionally showed that the set of hyperplanes approximating one of the
linear separators hi defining the output code will agree with high probability with hi except in a small margin and we
bounded the probability mass of these margins around each hi by ε. It follows that for each class i, the probability
mass of the set of points in that class not contained in these margins is at least 10η − ε ≥ 9η, and it follows that if our
unlabeled sample is of size at least Õ( 1

η2 ) that with probability at least 1− δ, we will see at least 8ηn points from each
class which are not contained in the small margins. Under the same high probability event, we know that at most 2ηn
of the labels we query can disagree with f∗, which implies that the majority label within the L largest cells will be the
label predicted by f∗ on these cells. It follows that if we query the labels of O(lnN/δ) labels from each class, then
with probability at least 1− δ the resulting classifier will predict labels that disagree with f∗ with probability at most ε.
It follows that the error of the classifier with respect to the distribution P is at most η + ε.
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