
Efficient Representations for Life-Long Learning and Autoencoding

Maria-Florina Balcan
CMU

ninamf@cs.cmu.edu

Avrim Blum
CMU

avrim@cs.cmu.edu

Santosh Vempala
Georgia Tech

vempala@cc.gatech.edu

December 8, 2014

Abstract

It has been a long-standing goal in machine learning, as well as in AI more generally, to develop life-
long learning systems that learn many different tasks over time, and reuse insights from tasks learned,
“learning to learn” as they do so. In this work we pose and provide efficient algorithms for several natural
theoretical formulations of this goal. Specifically, we consider the problem of learning many different
target functions over time, that share certain commonalities that are initially unknown to the learning
algorithm. Our aim is to learn new internal representations as the algorithm learns new target functions,
that capture this commonality and allow subsequent learning tasks to be solved more efficiently and
from less data. We develop efficient algorithms for two very different kinds of commonalities that target
functions might share: one based on learning common low-dimensional and unions of low-dimensional
subspaces and one based on learning nonlinear Boolean combinations of features. Our algorithms for
learning Boolean feature combinations additionally have a dual interpretation, and can be viewed as
giving an efficient procedure for constructing near-optimal sparse Boolean autoencoders under a natural
“anchor-set” assumption.

ar
X

iv
:1

41
1.

14
90

v2
 [

cs
.L

G
]

 4
 D

ec
 2

01
4

1 Introduction

Machine learning has developed a deep mathematical understanding as well as powerful practical methods
for the problem of learning a single target function from large amounts of labeled data. Yet if we wish to
produce machine learning systems that persist in the world, we need methods for continually learning many
tasks over time and that, like humans [13], improve their ability to learn as they do so, needing less data (per
task) as they learn more. A natural approach for tackling this goal (called “life-long learning” [23, 25] or
“transfer learning” [1, 19] or “learning to learn” [7, 24]) is to use information from previously-learned tasks
to improve the underlying representation used by the learning algorithm, under the hope or belief that some
kinds of commonalities across tasks exist. These commonalities could be a single low-dimensional or sparse
representation, a collection of multiple low-dimensional or sparse representations, or some combination or
hierarchy, such as in Deep Learning [9, 10]. In this paper, we develop algorithms with provable efficiency
and sample size guarantees for several interesting categories of commonalities, considering both linear and
Boolean transfer functions, under natural distributions on the data points.

Specifically, we consider a setting where we are trying to solve a large number of binary classification prob-
lems that arrive one at a time. Each classification problem will individually be learnable from a polynomial-
size sample,1 but our goal will be to learn new internal representations that will allow us to learn new target
functions faster and from less data. We will furthermore aim to do this in a streaming setting in which we
cannot keep the labeled data for problem t in memory when we move on to problem t+ 1, only the learned
hypotheses (which will be required to have a compact description) and the current internal representation.

We start by considering a conceptually simple case that each classification problem is a linear separator, and
that what their associated target vectors share in common is they lie in a low k dimensional subspace of the
ambient space <n (equivalently, there exist a small number of hidden linear metafeatures and each target is
a linear separator over these metafeatures). This case has been considered in the “batch” setting in which
one has data available for all target functions at the same time and therefore can solve a joint optimization
problem [1, 19]. However, for the online setting, a key challenge is that we won’t have perfectly learned
the previous target functions when we set out to learn our next one.2 For this problem we provide a sample-
efficient polynomial time algorithm that, when the underlying data distributions for ourm learning problems
are log-concave, has labeled sample complexity much better than the Ω(nm/ε) sample complexity required
for learning the tasks separately.

We then consider scenarios where the commonalities require a representation with more than one level of
metafeatures and provide efficient algorithms for these settings as well. For linear metafeatures, we provide
a natural framework where two levels of metafeatures can be efficiently extracted and provide substantial
benefit: specifically, we analyze a scenario where the target functions all lie in a k dimensional space and
furthermore within that k-dimensional space, each target lies in one of r different constant dimensional
spaces, where r could be large. This models situations where there are really r different types of learning
problems but they do share some commonalities across types (given by a low k-dimensional subspace).

In Section 4 we develop algorithms for a scenario where the metafeatures are non-linear, in particular where
features are boolean and the metafeatures are products. We give an efficient algorithm for finding the fewest
product-based metafeatures for a given set of target monomials under an “anchor-variable” assumption anal-
ogous to the anchor-word assumption of [2], and prove bounds on its performance for learning a series of
target functions arriving online. We then give an extension that learns an approximately-optimal overcom-
plete sparse representation (we may have more metafeatures than input features, but each target should have
a sparse representation) under a weaker form of assumption we call the “anchor-set” assumption (anchor

1Except in Section 5 where we consider learning multivariate polynomials and allow membership queries.
2In particular, because of this we will need to be particularly careful with which targets we use in constructing our metafeatures,

as well as in controlling the propagation of errors. See, e.g., Lemma 3 and Figure 1.

1

variables no longer make sense in the overcomplete case). These results can be viewed as giving efficient al-
gorithms for a Boolean autoencoding where given a set of black-and-white pixel images (vectors in {0, 1}n)
we want to find either (a) the fewest “basic objects” (also vectors in {0, 1}n) such that each given image can
be reconstructed by superimposing some subset of them (taking their bitwise-OR), or (b) a larger number
of such objects such that each image can be reconstructed by superimposing only a few of them. In the first
case our algorithm finds the optimal solution under the anchor-variable assumption (the problem is NP-hard
in general) and in the second case it finds a bicriteria approximation (for a given sparsity level, approximates
both the number and the sparsity to logarithmic factors) under the weaker anchor-set assumption.

In Section 5 we show how our results can be applied to the case that target functions are polynomials of
low L1 norm whose terms share pieces in common (within and across polynomials), a scenario that can be
expressed via two levels of product-based metafeatures. Interestingly, as opposed to the algorithms for linear
metafeatures, this algorithm periodically re-compactifies its current representation. In particular, whenever
a new polynomial cannot be learned using the current representation and must be learned from scratch, we
then revisit the previously-learned polynomials and optimally “compactify” them into the fewest number of
(possibly overlapping) conjunctive metafeatures that can be used to recreate all their monomials.

1.1 Related Work

Most related work in multi-task or transfer learning considers the case that all target functions are present
simultaneously or that target functions are drawn from some easily learnable distribution. Baxter [7, 6]
developed some of the earliest foundations for transfer learning, by providing sample complexity results for
achieving low average error in such settings. Other related sample complexity results appear in [8].

Recent work of [19, 16] considers the problem of learning multiple linear separators that share a common
low-dimensional subspace in the batch setting where all tasks are given up front. They specifically provide
guarantees for a natural ERM algorithm with trace norm regularization. There has also been work on ap-
plying the Group Lasso method to batch multi-task learning which solves a specific multi-task optimization
problem [20]. By contrast with these results, our setting is more demanding since we aim to achieve small
error on all tasks and to do so online without keeping all training data from past learning tasks in memory.

[11] considers multi-task learning where explicit known relationships among tasks are exploited for faster
learning. In their setting each learning problem is an online problem but the collection of learning problems
are all occurring simultaneously. Discussion in [26] hints toward the type of the algorithms we analyze in
Section 3, but without formal analysis about how the error accumulation could harm the sample complexity
(which, as we will see, is one of the central challenges in this setting).

The problem of trying to learn invariants or other commonalities when faced with a series of learning tasks
arriving over time has a long history in applied machine learning (e.g., [23, 25]). Our work is the first to
give provable efficiency guarantees for learning multi-layer representations in this life-long learning setting.

2 Preliminaries

We assume we have m learning (binary classification) problems that arrive online over time. The learning
problems are all over a common instance space X of dimension n (e.g., we will consider X = <n and
X = {0, 1}n) but each has its own target function and potentially its own distribution Di over X . Formally,
learning problem i is defined by a distribution Pi over X × Y where Y = {−1, 1} is the label space and Di

is the marginal over X of Pi, and the goal of the learning algorithm on problem i is to produce a hypothesis
function hi of small error, where err(hi) = errPi(hi) = P(x,y)∼Pi [hi(x) 6= y].

2

3 Life-long Learning of Halfspaces

We consider here the natural case that X = <n and each target function is a linear separator going through
the origin; that is, for all i there exists ai of unit length such that for all (x, y) drawn from Pi we have
sign(ai · x) = y. To begin, we will assume that what the target functions have in common is that they all
lie in some common k-dimensional subspace of <n for k � min(n,m). In particular, let A be a m by n
matrix whose rows are a1, . . . , am; then our assumption is that A has rank k. This implies that there exist
a decomposition A = CW , where W is a k × n matrix and C is a m × k matrix. The rows w1, . . . , wk
of W can be viewed as k linear metafeatures that are sufficient to describe all m learning problems, or
equivalently we can view this as a network with one middle layer of k hidden linear units. In fact, our
algorithms will work under a more robust condition that allows for the ai to be “near” to a low-dimensional
subspace (see Theorem 1).

In this section we analyze the following online algorithm for this setting; note, the algorithm is very natural
but the challenge will be to analyze it and control the propagation of error at reasonable sample sizes. Let
εacc be a quantity to be determined later. For the first learning problem we just learn it to error εacc using
the original input features and let the resulting weight vector be w̃1. Suppose now we have produced weight
vectors w̃1, . . . , w̃k′ and we are considering problem i. We will first see if we can learn problem i well (to
error ε) as a linear combination of the w̃j . If so, then we mark this as a success and go on to problem i+ 1.
If not, then we will learn it to error εacc using the input features and add the hypothesis weight vector as
w̃k′+1. (See Algorithm 1 for formal details). The challenge is how small εacc needs to be for this to succeed.

We show in the following that if theDi are isotropic log-concave (which includes many distributions such as
Gaussian and uniform, see, e.g., [18]), the above procedure will be successful and learn the target functions
with much fewer labeled examples in total than by learning each function separately. We start with some
useful facts and present a lemma (Lemma 3) that is crucial for our analysis.

Given two vectors a and b and a distribution D̃, let dD̃(a, b) = Px∼D̃(sign(u · x) 6= sign(v · x)). Let θ(a, b)
be the angle between two vectors a and b. For a vector a and a subspace V , let θ(a, V) = minb∈V θ(a, b)
be the angle between a and its closest vector in V (in angle). For subspaces U and V , let θ(U, V) =
maxu∈U θ(u, V). That is, θ(U, V) ≤ α iff for all u ∈ U there exists v ∈ V such that θ(u, v) ≤ α.

Lemma 1 Assume D is an isotropic log-concave in Rn. Then there exist constants c and c′ such that for
any two unit vectors u and v in Rd we have cθ(v, u) ≤ dD(u, v) ≤ c′θ(v, u).

Proof: The proof of the lower bound appears in [5]. The proof of the upper bound is implicit in the earlier
work of [27] – we provide it here for completeness. The key idea is to project the region of disagreement
in the space given by the two normal vectors, and then using properties of log-concave distributions in 2-
dimensions. Specifically, consider the plane determined by u and v, and let g be the 2-dimensional marginal
of the density function over this plane. Then g is an isotropic and log-concave density function over R2.

It is known [15] that for some constants k3, k4 we have g(z) ≤ k3e
−k4||z||. Given this fact, we just need to

show that the integral of k3e−k4||z|| over the region {z : u · z ≥ 0, v · z ≤ 0} is at most c′α for some constant
c′, where α is the angle between u and v (the integral over {z : u · z ≤ 0, v · z ≥ 0} is analogous). In
particular, using polar coordinates, we can write the integral as:∫ α

θ=0

∫ ∞
r=0

f(r cos θ, r sin θ) r drdθ ≤
∫ α

θ=0

∫ ∞
r=0

rk3e
−k4rdrdθ.

The inner integral evaluates to a constant and therefore the entire integral is bounded by c′α for some
constant c′ as desired.

3

Figure 1: (a) Even though each w̃i is within angle 0.11 of its corresponding wi (θ(w2, w̃2) = 0, θ(w1, w̃1) ≤
θ(w1, w2) + θ(w2, w̃1) = 0.11), the two subspaces are orthogonal (span(w1, w2) is the x-y plane and
span(w̃1, w̃2) is the x-z plane). (b) For intuition for Lemma 2: now, the two subspaces V, Ṽ are close in
angle, with angle at most π2 times the ratio of θ(b̃, b) = 0.01 to θ(b̃, a1) = 0.1.

Lemma 1 implies that if we learn some target ai to error εacc, then the angle between our learned vector
and the target will be O(εacc). In the other direction, if the target lies in subspace W and we have learned a
subspace W̃ such that θ(W, W̃) is small, then there will exist a low-error weight vector in W̃ . Ideally, we
would therefore like to say that if we construct a subspace W̃ out of vectors w̃i that individually are close to
their associated targets wi, then W̃ is close to the spanW of the wi. Unfortunately, this is not in general true
if the targets are close to each other, e.g., see Figure 1(a). We will address this by using the fact that each
w̃i was not learnable using the span of the previous w̃j . We begin with a helper lemma (Lemma 2), which
can be viewed as addressing the special case that all previous targets have been learned perfectly, and then
present our main lemma (Lemma 3).

Lemma 2 Let U = span{a1, . . . , ak−1}, V = span{a1, a2, . . . , ak−1, b} and Ṽ = span{a1, . . . , ak−1, b̃}
be sets of vectors in <n. Then,

θ(V, Ṽ) ≤ π

2

θ(b̃, b)

θ(b̃, U)
.

Proof: (For intuition, see Figure 1(b).) First, we may assume b, b̃ 6∈ U because if b ∈ U then θ(V, Ṽ) = 0
and if b̃ ∈ U then θ(b̃, U) = 0. Additionally we may assume b and b̃ are unit-length vectors since we are
interested only in angles. Next, let u ∈ V be the unit-length vector in V of farthest angle from Ṽ , i.e.,
θ(u, Ṽ) = θ(V, Ṽ). We can write u as a linear combination of b and some vector u1 ∈ U , and will prove
the lemma by showing there must be some nearby vector in the span of u1 and b̃. Specifically, using the fact
that θ(V, Ṽ) = θ(u, Ṽ) ≤ θ(span(u1, b), span(u1, b̃)) and the fact that θ(b̃, U) ≤ θ(b̃, u1), it is sufficient to
prove that:

θ(span(u1, b), span(u1, b̃)) ≤
π

2

θ(b, b̃)

θ(b̃, u1)
,

which is just a statement about 3-d space. Let α = θ(span(u1, b), span(u1, b̃)) and β = θ(b̃, u1). We can
wlog write u1 = (1, 0, 0) and assume span(u1, b) is the x-y plane. Since span(u1, b̃) has angle α with the
x-y plane and intersects the x-axis, we can write b̃ = cos(β)u1 + sin(β)u2 for u2 = (0, cos(α), sin(α)).
Now, θ(b, b̃) is at least sin−1 of the Euclidean distance of b̃ to the x-y plane, which is sin(α) sin(β). The
lemma then follows from the fact that αβ ≤ π

2 sin−1(sin(α) sin(β)) for 0 ≤ α, β ≤ π
2 .

The key point of the next lemma is that the errors (angles between ai and ãi) only contribute additively
to the overall angle gap between subspaces so long as each new learned vector is sufficiently far from the
previously-learned subspace. In contrast, a difficulty with the usual analysis of perturbation of matrices
is that while we can assume that each new ãi is far from the span of the previous ã1, . . . , ãi−1, we do

4

not have control over its distance to the span of the past and future vectors {ã1, . . . , ãi−1, ãi+1, . . . , ãk}
as in the definition of the height of a matrix (e.g., [22]). Note also that even adding the same vector to
two different subspaces can potentially increase their angle (e.g., in Figure 1(a), θ(w1, w̃1) < 0.11 but
θ(span(w1, w2), span(w̃1, w2) = π/2).

Lemma 3 Let Vk = span{a1, . . . , ak} and Ṽk = span{ã1, . . . , ãk}. Let εacc, γ ≥ 0 and εacc ≤ γ2/(10k).
Assume for i = 2, . . . , k that θ(ãi, Ṽi−1) ≥ γ, and for i = 1, . . . , n, θ(ai, ãi) ≤ εacc. Then

θ(Vk, Ṽk) ≤ 2k
εacc
γ
.

Proof: The proof is by induction on k, on the stronger hypothesis that the conclusion holds for Vk =
span{W,a1, . . . , ak} and Ṽk = span{W, ã1, . . . , ãk} for any fixed subspace W . Note that the base case
(k = 1), follows directly from Lemma 2, using W = Ṽk−1 = U , ã1 = b̃, and a1 = b. Now, let V ′k =
span(Vk−1, ãk). Then we have:

θ(Vk, Ṽk) ≤ θ(Vk, V
′
k) + θ(V ′k, Ṽk)

[by triangle inequality]

≤ π

2

θ(ãk, ak)

θ(ãk, Vk−1)
+

2(k − 1)εacc
γ

[the first term is by Lemma 2, and the second term is by induction using W = span(ãk)]

≤ π

2

εacc

θ(ãk, Ṽk−1)− θ(Vk−1, Ṽk−1)
+

2(k − 1)εacc
γ

[by triangle inequality: θ(ãk, Ṽk−1) ≤ θ(ãk, Vk−1) + θ(Vk−1, Ṽk−1)]

≤ π

2

εacc

γ − 2(k−1)εacc
γ

+
2(k − 1)εacc

γ

[by assumption and by induction]

≤ εacc
γ

(
π

2

γ2

γ2 − 2(k − 1)εacc
+ 2(k − 1)

)
≤ 2kεacc/γ,

where the last step comes from using εacc ≤ γ2/(10(k − 1)).

We now put these together to analyze Algorithm 1 when target functions lie on, or close to, a low-dimensional
subspace. Specifically, say that a subsequence of target functions ai1 , ai2 , . . . is γ-separated if each aij has
angle greater than γ from the span of the previous ai1 , . . . , aij−1 . Define the γ-effective dimension of tar-
gets a1, a2, . . . , am as the size of the largest γ-separated subsequence. Our assumption will be that the
γ-effective dimension of the targets is at most k for γ = cε for some absolute constant c > 0, where ε is
our desired error rate per target. Note that for γ = 0, γ-effective dimension equals the dimension of the
subspace spanned, and for γ > 0 this allows the targets to just be “near” to a low-dimensional subspace.

Theorem 1 Assume that all marginals Di are isotropic log-concave. Choose γ = c1ε and εacc s.t. 2k εaccγ +
γ = c2ε for sufficiently small constants c1, c2 > 0. Consider running Algorithm 1 with parameters ε and
εacc on any sequence of targets whose γ-effective dimension is at most k. Then k̃ ≤ k (the rank of Ã is
at most k). Moreover the total number of labeled examples needed to learn all the problems to error ε is
Õ(nk/εacc + km/ε) = Õ(nk2/ε2 + km/ε).

Proof: We divide problems in two types: problems of type (a) are those for which we can learn a classifier
of error at most ε by using the previously learnt problems; the rest are of type (b).

5

Algorithm 1 Life-long learning of halfspaces sharing a common low-dimensional subspace
Input: n,m,k, access to labeled examples for problems i ∈ {1, . . . ,m}, parameters ε and εacc.

1. Learn the first target to error εacc to get an n-dimensional vector α1. Set w̃1 = α1; k̃ = 1 and i1 = 1.

2. For the learning problem i = 2 to m
• Attempt to learn using the representation v → (w̃1 · v, ..., w̃k̃ · v). I.e., check if for learning

problem i there exists a hypothesis sign(αi,1(w̃1 · v) + · · ·+ αi,k̃(w̃k̃ · v)) of error at most ε.

(a) If yes, set c̃i = (αi,1, . . . , αi,k̃, 0, . . . , 0).
(b) If not, learn a classifier αi for problem i of accuracy εacc by using the original features. Set

k̃ = k̃ + 1, ik̃ = i , w̃k̃ = αi, and c̃i = ek̃.

3. Let W̃ be an k̃ × n matrix whose rows are w̃1, . . . , w̃k̃ and let C̃ be the matrix m × k̃ matrix whose
rows are c̃1, . . . , c̃k̃. Compute Ã = C̃W̃ .

Output: m predictors; predictor i is v → sign(Ãi · v)

For problems of type (a) we achieve error ε by design. For each problem i of type (b) we open a new row
in W̃ , and set w̃k̂ = αi, where k̂ is such that ik̂ = i. We also set c̃i = ek̂, so ãi = αi. Since αi has error at
most εacc, we have θ(w̃k̂, aik̂) ≤ εacc/c for some absolute constant c (by Lemma 1).

We next show that k̃ ≤ k. We prove by induction that for each w̃k̂ we create for a problem i = ik̂, we have
both (1) aik̂ is γ-far from span{ai1 , · · · , aik̂−1

} and (2) w̃k̂ is γ-far from span(w̃1, ..., w̃k̂−1).

Step k̂ = 1 follows immediately. For the inductive step k̂ > 1: if we create w̃k̂ for a problem i = ik̂, this
only happens if there is no vector in the span of the previous metafeatures w̃j , j < i that has error less than
ε for problem ik̂.3 That is aik̂ is at least ε/c′-far from the span{w̃1, ..., w̃k̂−1} for some absolute constant c′

(by Lemma 1). We also have θ(w̃k̂, aik̂) ≤ εacc/c, therefore, by triangle-inequality, we obtain

θ(w̃k̂, span(w̃1, ...w̃k̂−1)) ≥ ε/c
′ − εacc/c ≥ γ.

Thus w̃k̂ is γ-far from span{w̃1, ..., w̃k̂−1}. It remains to show that aik̂ is γ-far from the span of {ai1 , · · · , aik̂−1
}.

Suppose for contradiction that θ(aik̂ , {ai1 , · · · , aik̂−1
}) ≤ γ. We will show that this implies there exists

b̃ik̂ ∈ span{w̃1, · · · , w̃k̂−1} with error at most ε, contradicting the fact that no such vector exists.

By construction we have θ(aij , w̃j) ≤ εacc/c for j ∈ {1, . . . , k̂ − 1}; also by induction we have w̃j is γ-far
from the span of {w̃1, · · · , w̃j−1} for j ∈ {1, . . . , k̂ − 1}. By Lemma 3 we obtain that

θ(span{ai1 , · · · , aik̂−1
}, span{w̃1, · · · , w̃k̂−1}) ≤ 2kεacc/(cγ).

These together with triangle inequality imply that

θ(aik̂ , span{w̃1, · · · , w̃k̂−1}) ≤ γ + 2k
εacc
cγ
≤ ε/c′.

So by Lemma 1 there exist b̃ik̂ ∈ span{w̃1, · · · , w̃k̂−1} of error at most ε, which contradicts our assumption.
Therefore, our induction is maintained (by condition (2)) and so we have k̃ ≤ k (by condition (1) and our
assumption on the γ-effective dimension of the targets).

By setting γ = O(ε) and εacc = O(ε2/k) the total number of labeled examples needed to learn all the
problems to error ε is Õ(nk2/ε2 + km/ε), which could be significantly lower than learning each problem
separately. In this case the sample complexity would be Ω(mn/ε) even under log-concave distributions [5].

3Technically, since we are learning over a finite sample, we can only be confident that there is no vector in the span of error at
most ε/2. However, we can absorb these factors of 2 into the constants c, c′.

6

Note 1 As stated, Algorithm 1 is not efficient because it requires finding an optimal linear separator in Step
2, which in general is hard. However, for log-concave distributions, there exist algorithms running in time
poly(k, 1/ε) that find a near-optimal linear separator: in particular, one of error ε under the assumption that
the optimal separator has error η = ε/ log2(1/ε) [4], and with near-optimal sample complexity [14, 28].
Thus, by reducing εacc by an O(log2(1/ε)) factor, one can achieve the bounds of Theorem 1 efficiently.

3.1 Halfspaces with more complex common structure

In this section we consider life-long learning of halfspaces with more complex common structure, corre-
sponding to a multi-layer network of linear metafeatures. It is at first not obvious how multiple levels of
linear nodes could help: if the target vectors span a k-dimensional subspace, then to represent them with a
multi-layer linear network, each layer would need to have at least k nodes. However, the numbers of nodes
in the network do not tell the whole story: sample complexity of learning can also be reduced via sparsity.

Specifically, we assume now that the target functions all lie in a k dimensional space and that furthermore
within that k-dimensional space, each target lies in one of r different τ -dimensional spaces. This naturally
models settings where there are really r different types of learning problems but they share some common-
ality across type (given by the common k-dimensional subspace).4 We can view this as a network with two
hidden layers: the first layer given by vectors w1, w2, . . . , wk, and the second layer given by r τ -tuples of
vectors, u11, . . . , u

τ
1 , ..., u1r , . . . , u

τ
r , where u1i , . . . , u

τ
i span one of τ -dimensional spaces. In other words, the

first hidden layer captures the overall low dimensionality and the second hidden layer captures sparsity. We
assume r � m and k � n and that τ is a constant.

Algorithmically, given a new problem we first try to learn well via a sparse linear combination of only τ
second level metafeatures If we fail, we try to learn based on the first level metafeatures and if successful
we add a new second level metafeature corresponding to this target. If that fails, we learn using the input
features and then we add both a first and second level metafeature corresponding to this target. For log-
concave distributions, by using the subspace lemma and an error analysis similar to that for Theorem 1 we
can show we have k̃ ≤ k and r̃ ≤ τr. Formally:

Theorem 2 Assume all marginals Di are isotropic log-concave and the target functions satisfy the above
conditions. Consider γ̃ ≤ cε, ε̃acc ≤ c γ̃ετ , γ ≤ cε̃acc, and εacc ≤ cγε̃acck for (sufficiently small) constant
c > 0. Consider running Algorithm 2 (see appendix) with parameters ε, εacc, and ε̃acc. Then k̃ ≤ k and
r̃ ≤ τr. Moreover the total number of examples needed to learn all the problems to error ε is Õ(nk/εacc +
kr/ε̃acc +m log(r)/ε).

(Proof in appendix). By setting γ̃ = ε/2, ε̃acc = Θ(ε2/τ), γ = Θ(ε2/τ), εacc = Θ(ε4/τ2k) we get
that the total number of labeled examples needed to learn all the problems to error ε is Õ(nk2τ2/ε4 +
krτ2/ε2 + mτ log(r)/ε). This could be significantly lower than learning each problem separately or by
learning the problems together but only using one layer of metafeatures. Specifically, if we used one layer of
metafeatures as in Theorem 1 (corresponding to the k-dimensional subspace) the sample complexity would
be O(nk2/ε2 + mk/ε). Alternatively we could have just one middle layer of size rτ and learn sparsely
within that, but this would also give worse bounds if r is large. As a concrete example, if ε is constant,

4For instance, imagine a job-placement company whose goal is to decide which people would do well in which job. In this
setting, we can measure a large number of features for each person (e.g., based on how well they do on various tests). There
are then k “intrinsic qualities” that are linear combinations of these features. E.g., “quantitative reasoning” might be one linear
combination, “people skills” and “time management” might be others, etc., and really what is important about each person is
where they sit in this k-dimensional subspace. Then, different jobs might belong in different low-dimensional spaces within this
k-dimensional space, based on what is important for that job. I.e., there are r “kinds” of jobs, each of which has a τ -dimensional
subspace that is relevant for it.

7

k =
√
n, r = n2 and m = n2.5, we get that the two-layer algorithm requires only O(τ2/ε2 + τ log(r)/ε)

examples per target. On the other hand, the other two options require at least O(k/ε) examples per target,
which could be much worse.

4 Life-long Learning of Monomials

We now consider a nonlinear case where the metafeatures will be products and combined via products.
Specifically, we assume that the instance space is X = {0, 1}n, that the m target functions are conjunctions
(i.e., products) of features, and that there exist k monomial metafeatures such that all the target functions
can be expressed as conjunctions (products) over them. Our goal will be to learn them efficiently.

If the metafeatures do not overlap, then this can be viewed as an instance of the linear case. Each target
function can be described by an indicator vector with coefficients in {0, 1} (plus a threshold that can be
converted to an integer weight for a dummy variable x0). More importantly, if the metafeatures do not
overlap, then the indicator vectors for all the targets are in a space of rank k with basis given by the indicator
vectors of the metafeatures. If furthermore the underlying distribution is one for which, when learning from
scratch, we can learn the target functions exactly (e.g., a product distribution where each variable is set to 0
some non-negligible fraction of the time) then we can directly apply the analysis for linear case. In fact, the
overall analysis is much simpler since we have the targets exactly that were learned from scratch.

So, the interesting case is when metafeatures may overlap (it is easy to construct examples where this
produces a space of dimension Θ(2k)). Unfortunately, without any additional assumptions, even just the
consistency problem is now NP-hard. That is, given a collection of conjunctions, it is NP-hard to determine
whether there exist k monomials such that each can be written as a product of subsets of those monomials (it
is called the “set-basis problem” [12]). For this reason, we will make a natural anchor-variable assumption
that each metafeature mi has at least one variable (call it yi) that is not in any other metafeature mj . So this
is a generalization of the disjoint case where every variable in mi is not inside any other mj . We can think
of yi as an “anchor variable” for metafeature mi.

We now show how with this assumption we can efficiently solve the consistency problem (and find the
smallest set of monomials for which one can reconstruct each target). Using this as a subroutine, we then
show how to solve an abstract online learning problem where at each stage we must propose a set of at most
k monomial metafeatures and then pay a cost of 1 if the next target cannot be written as a product over them.
This can then be applied to give efficient life-long learning of related conjunctions over product distributions.
In Section 4.4 we give an application to constructing Boolean superimposition-based autoencoders. We
then relax the anchor-variable assumption and show how under this relaxed condition we can solve for
near-optimal sparse autoencoders as well as life-long learning of conjunctions under relaxed conditions. In
Section 5, we build on some of these results to give an algorithm for life-long learning of polynomials.

4.1 Solving the Consistency Problem

We now show that we can use Algorithm 3 (below) for solving the consistency problem under the anchor
variable assumption. That is, given a collection of conjunctions, the goal is to find the fewest monomial
metafeatures needed to reconstruct all of them as products of subsets of the metafeatures. Given a conjunc-
tion T we denote by vars(T) the variables appearing in T . Given a variable z and a set of conjunctions TS
we denote by N(TS, z) the set of conjunctions in TS that contain z.

Lemma 4 Let TS be a set of conjunctions such that each of them is a conjunction of some subset of metafea-
tures m1, . . . ,mk satisfying the anchor variable condition. We can use Algorithm 3 to find m̃1, . . . , m̃i,

8

Algorithm 3 Consistency problem for monomial metafeatures with anchor variables
Input: set TS = {T1, . . . , Tr} of conjunctions.

1. Let i = 0.
2. Let h(T) denote the conjunction of all metafeatures m̃j produced so far that are fully contained in T .

I.e., vars(h(T)) = ∪{vars(m̃j) : vars(m̃j) ⊆ vars(T)}.
3. While there exists T ∈ TS s.t. vars(T) 6= vars(h(T)) do:

(1) Let T be the target of least index in TS s.t. vars(T) 6= vars(h(T)).

(2) Choose zi+1 to be a minimal variable in vars(T) \ vars(h(T)); that is, there is no other variable
z′ ∈ vars(T) \ vars(h(T)) s.t. N(TS, z′) ⊂ N(TS, z). If there are multiple options, choose
zi+1 to be the option of least index.

(3) Let vars(m̃i+1) be the intersection of vars(T) for all T in TS that contain zi+1. That is
vars(m̃i+1) =

⋂
T∈TS,zi+1∈vars(T)

vars(T).

(4) i=i+1

Output: Conjunctions m̃1, . . . , m̃i s.t. each Tj is a conjunction of a subset of them.

i ≤ k s.t. each Tj ∈ TS is a conjunction of a subset of them. Moreover each m̃i is associated to a
metafeature mti s.t. the following conditions are satisfied:

(a) vars(mti) ⊆ vars(m̃i); that is, m̃i is more specific than mti .
(b) For all targets T in TS such that vars(mti) ⊆ vars(T) we have vars(m̃i) ⊆ vars(T); that is, m̃i is

not too specific.
(c) For any j, if yj ∈ vars(m̃i) then vars(mj) ⊆ vars(m̃i).

Proof: Note that for any i for any T ∈ TS we have vars(h(T)) = ∪{vars(m̃j) : j ≤ i, vars(m̃j) ⊆
vars(T)}; that is, vars(h(T)) represents all variables from T that are already used by the previous hypoth-
esized metafeatures m̃j whose relevant variables are contained in T .

We prove the desired statement by induction. Assume inductively that m̃1, . . . , m̃i satisfy conditions
(a),(b),(c). We show that m̃i+1 satisfies these conditions as well.

Consider the target T we choose in step 3(1) in round i+ 1. We know zi+1 ∈ vars(T)\vars(h(T)) and that
T is a conjunction of the true metafeatures. So zi+1 belongs to some metafeature mti+1 s.t. vars(mti+1) ⊆
vars(T) . From the induction hypothesis, by conditions (a),(b) we know that mti+1 6= mti′ for i′ ≤ i. To
see this assume by contradiction that mti+1 = mti′ for i′ ≤ i; so zi+1 ∈ mti′ . By condition (a) we know
vars(mti′) ⊆ vars(m̃ti′) and since vars(mti′) ⊆ vars(T) by condition (b) we have vars(m̃ti′) ⊆ vars(T),
so zi+1 ∈ vars(h(T)), contradiction.

Consider T ∈ TS such that vars(mti+1) ⊆ vars(T). Since zi+1 ∈ vars(mti+1) and we create m̃i+1

by intersecting the variables in every target T containing zi+1, we clearly have vars(m̃i+1) ⊆ vars(T),
satisfying condition (b). Also if any target T contains an anchor variable yj , then it must contain mj , so
condition (c) is satisfied as well.

We now show that (a) is satisfied, namely that vars(mti+1) ⊆ vars(m̃i+1). This could only fail if zi+1 is
not an anchor for mti+1 , so in step 2 of the algorithm we intersected some target T that contains zi+1 but
does not contain mti+1 . This can only happen if zi+1 also belongs to some other mj . But then zi+1 is not
minimal since yti+1 (the true anchor variable for mti+1 , which is also contained in vars(T) \ vars(h(T)) by
(c)) satisfies N(TS, yti+1) ⊂ N(TS, zi+1), and so would have been chosen instead of zi+1 in step 3(1).

9

4.2 An Abstract Online Problem

Building on Algorithm 3 and Lemma 4, we now describe an algorithm for the following abstract online
setting. At each time-step r we propose a set M̃ of at most k hypothesized metafeatures and are provided
with a target conjunction Tr. If Tr can be written as a conjunction of metafeatures in M̃ then we pay 0. If
not, then we pay 1 and may update our set M̃ using Tr (this corresponds to the case of learning Tr from
scratch). Our goal is to bound our total cost, under the assumption that there exists a set of k metafeatures
for all targets. To do so we need to argue that each time we pay 1, we can use Tr to make progress.

Algorithm 4 Lifelong Learning of Conjunctions with Monomial Metafeatures
Input: Targets T1, T2, . . . , Tm provided online.

1. Initialize TS = ∅ and M̃ = ∅.
2. For r = 1 to m do:

• If we cannot represent Tr as conjunction of hypothesized metafeatures M̃ then

• Add Tr to TS.
• Run Algorithm 3 with input TS to produce hypothesized metafeatures M̃ .

Output: Hypothesized metafeatures M̃ .

Theorem 3 The number of targets that need to be learned from scratch in in Algorithm 4 is at most n2 + k.

Proof: For any given set of targets TS learnt from scratch, we define a directed graph GTS on the variables,
by adding an edge (xi, xj) if every target in TS that has xi also has xj . Note that if TS ⊆ T̃S we have
E(GTS) ⊆ E(GT̃S). We start with the complete directed graph (corresponding to TS = ∅), and then we
argue that each time we are forced to learn a new target from scratch and increase TS we either delete at
least one edge from the graph or we increment the number of hypothesized metafeatures by 1.

Suppose the new target Tr cannot be represented using the current hypothesis metafeatures. So we add Tr
into TS and re-run Algorithm 3 . Let us look at the first time the new run differs from the old run. There are
three possibilities for this difference.

(1) It could be that we choose a different zi+1 in step 3(2) of Algorithm 3. There are two ways this can
happen: (a) the old zi+1 is not minimal any more or (b) it could be some z′ (of lower index than the old
zi+1) was not minimal before but is minimal now. In case (a) we have some z′ is now in a strict subset of
the targets in TS that contain zi+1 but this was not the case before adding Tr. This means the new target Tr
must contain the old zi+1 but not z′, and all previous targets that contained either z′ or zi+1 contained both
of them. That means we cut the edge (zi+1, z

′). In case (b), some z′ (of lower index than the old zi+1) was
not minimal before but is minimal now. This means that before there was some z′′ that was in a strict subset
of the targets as z′, but it is not anymore. Now, z′ is minimal, z′′ is no longer in a strict subset of the targets
containing z′; so the new target contains z′′ but not z′. So we cut the edge (z′′, z′).

(2) It could be that we get the same zi+1 but different m̃i+1 in step 3(3); this means vars(m̃i+1) is smaller.
Thus we cut the edges between zi+1 and all the variables in the old m̃i+1 that are not in the new m̃i+1.

(3) It could be that we use the new target Tr in step 3(1). Since we go through the targets in order, the
only way that the first difference can be when the new target is used in 3(1) is if every previous metafeature
is created the same as before. Therefore, in this case we create a new metafeature. So, the number of
metafeatures is increasing and we make progress as desired.

10

4.3 Applications

As one immediate application of the above abstract online problem, since conjunctions over {0, 1}n can be
exactly learned in the Equivalence Query model with at most n equivalence queries (and conjunctions over
{0, 1}k can be learned from at most k equivalence queries), we immediately have the following:

Corollary 1 Let TS be a sequence of m conjunctions such that each is a conjunction of some subset of
metafeatures m1, . . . ,mk satisfying the anchor variable condition. Then this sequence can be learned
using only O(mk + n3) equivalence queries total.

As another application of the above abstract online problem, we now show we can learn with good sample
complexity over any product distribution D.

Theorem 4 Assume that all Dr = D which is a product distribution, that the metafeatures mi satisfy
the anchor variable assumption and all the target functions cr are balanced. We can learn hypothe-
ses h1, . . . , hm of error at most ε by using Algorithm 5 with parameters s1(n, ε, δ) = O(n/ε log(n/δ)),
s2(n, ε, δ) = k/ε log(m/δ), and s3(n, ε, δ) = n/ε log(nk/δ). The total number of labeled examples needed
is Õ((n2 + k)n/ε log(n/δ) + km/ε).

Proof: Let us call a variable i insignificant if over a sample of size Θ((n/ε) log(n/δ)) appears set to 0 less
than ε/4n fraction of the time. Let I be the set of insignificant variables and let S be the set of significant
variables. Let DS be the distribution D restricted to examples that are set to 1 on all variables in I . We can
show that error at most ε/2 over DS implies error at most ε over D. This is true, since by Chernoff bounds
for every variable i we have Px∼D[xi = 0] ≤ ε/2n if i appears set to 0 less than ε/4n fraction of the time
over a sample of size Θ(n log(n)/δ) . So, by union bound Px∼D[∃i ∈ I, xi = 0] ≤ ε/2.

It remains to show that hypotheses h1, . . . , hm have error at most ε/2 over DS . First note that for any label
r if xi /∈ cr and i ∈ S, then Px∼DS [xi = 0|cr(x) = 1] = Px∼DS [xi = 0]. This follows from two facts. First,
since the target cr is a conjunction we have Px∼DS [xi = 0|cr(x) = 1] = Px∼DS [xi = 0|xj = 1∀xj ∈ cr].
Second, because D is a product distribution and DS be the distribution D restricted to examples that are set
to 1 on all variables in I , we have Px∼DS [xi = 0|xj = 1∀xj ∈ cr] = Px∼DS [xi = 0]. Furthermore since cr
is balanced over D and so over DS we get Px∼DS [xi = 0, cr(x) = 1] ≥ cε/n.

Note that every time we learn we learn a problem from scratch (by using the original variables), we get
n/ε log(n/δ) labeled examples from DS . Therefore significant variables that are not in the target will
appear set to 0 in at least one positive example. Therefore for every problem i learned based on the original
features (via case 1 or 3(b)), we learn the target, that is hi = ci.

These together with the argument in the Theorem 3 gives the desired result.

4.4 Sparse Boolean Autoencoders and Relaxing the Anchor-Variable Assumption

The above results (and in particular, Lemma 4) have an interesting interpretation as constructing a minimal
feature space for Boolean, or superimposition-based, autoencoding.

Specifically, consider a collection of black-and-while pixel images {Tr} where each Tr ∈ {0, 1}n. Our goal
is to contruct a 2-level auto-encoder A (for each r, we want A(Tr) = Tr) with as few nodes in the middle
(hidden) level as possible, such that nodes in the hidden level compute the AND of their inputs, and nodes
in the output level compute the OR of their inputs. We can view each hidden node in such a network as
representing a “piece” of an image, with the autoencoding property requiring that each Tr should be equal
to the bitwise-OR of all pieces contained within it (i.e., superimposing them together). Formally, for each

11

Algorithm 5 Transfer Learning of Conjunctions with Monomial Metafeatures
Input: parameters n,m,k, ε, δ; s1(n, ε, δ), s2(n, ε, δ), s3(n, ε, δ), access to unlabeled examples fromDi and
label oracles for problems r ∈ {1, . . . ,m}, .

1. Draw s1(n, ε, δ) unlabeled examples and identify the set of variables I that are set to 0 less than ε/4n
fraction of the times.

2. Draw a set S1 of s1(n, ε, δ) examples from D1, remove from S1 those examples for which not all
features in I are set to 1. Label S1 according to problem 1. Find a conjunction h1 consistent with S1.
Initialize TS = {h1}.

3. Run Algorithm 3 with input TS to produce hypothesized metafeatures M̃ .

4. For the learning problem r = 2 to m

• Draw a set Sr of s2(n, ε, δ), examples from Dr, remove from Sr those examples in Sr for which
not all features in I is set to 1; re-represent each example in Sr using meta-features in M̃ and
check if we can find a conjunction consistent with Sr,

(a) If yes, let hr be its representation over the original features and record it.
(b) If not, draw a set Sr of s3(n, ε, δ), examples from Dr, remove from Sr those examples for

which a feature in I is set to 1; find a conjunction mhr consistent with Sr.
• Add hr to TS.
• Run Algorithm 3 with input TS to produce hypothesized metafeatures M̃ .

Output: Conjunctions h1, . . . , hm.

hidden node j, let mj ∈ {0, 1}n denote the indicator vector for the set of inputs to that node (which without
loss of generality will also be the set of outputs of that node), and say that mj � Tr if each bit set to 1 in
mj is also set to 1 in Tr; we then require Tr to be the bitwise-OR of all mj � Tr. Lemma 4 then shows
that given a collection of images {Tr}, Algorithm 3 finds the smallest number of hidden nodes needed to
perform this autoencoding, under the assumption that each metafeature mj contains some anchor-variable
(some pixel set to 1 that no other metafeature sets to 1).

We now consider the problem of sparse Boolean autoencoding. That is, given a set TS = {Tr}, with each
Tr ∈ {0, 1}n, our goal is to find a collection of metafeatures m̃j (perhaps more than n of them) such that
each Tr ∈ TS can be written as the bitwise-OR of at most k of the m̃j (where k � n). Clearly this is trivial
by having one metafeature m̃j for each Tr, so our goal will be to have the (approximately) fewest of them
subject to this condition. Additionally, because we want sparse reconstruction, we want for each Tr that
|{j : m̃j � Tr}| should be small as well.

This problem has two motivations. From the perspective of autoencoding, this corresponds to finding a
sparse autoencoder (viewing the Tr as pixel images). From the perspective of life-long learning, if this can
be done online then (viewing the Tr as conjunctions) it will allow for fast learning, since conjunctions of k
out of N variables can be learned with sample complexity (or equivalence queries) only O(k logN); in this
case we would actually not need the additional “sparse reconstruction” property above.

To solve this problem, we make a relaxed version of the anchor-variable assumption (anchor-variables no
longer make sense once the number of metafeatures exceeds the number of input features n) which is that
each metafeature should have a set of ≤ c variables (for some constant c) such that any Tr containing
that set should have the metafeature as one of its k “relevant metafeatures”. We call this the c-anchor-set

12

assumption. Note that metafeatures satisfying the anchor-variable assumption will also satisfy the c-anchor-
set assumption for c = 1. Note also that in general the c-anchor-set assumption is a requirement on both the
metafeatures and on the set TS. Formally, we make the following definition:

Definition 1 A set of metafeatures M = {mj} and set of targets TS = {Tr} satisfy the c-anchor-set
assumption at sparsity level k if

1. for each Tr ∈ TS there exists a set Rr of at most k “relevant” metafeatures in M such that Tr is the
bitwise-OR of the metafeatures in Rr, and

2. For each mj ∈ M there exists yj � mj of Hamming weight at most c such that for all r, if yj � Tr
then mj ∈ Rr. Note that in particular this implies that |{j : mj � Tr}| ≤ k.

We now prove that under this assumption, we can solve for a near-optimal set of metafeatures {m̃j}.

Theorem 5 Given a set of targets TS = {Tr} in {0, 1}n, suppose there exists a set of metafeatures M
satisfying the c-anchor-set assumption at sparsity level k. Then in time poly(nc) we can:

1. Find a set of O(nc) metafeatures such that each Tr ∈ TS can be written as the bitwise-OR of at most
k of them, and

2. Find a set of O(|M | log(n|TS|)) metafeatures that satisfy the c-anchor-set assumption with respect
to TS at sparsity level O(k log(n|TS|)).

Proof: Item (1) is the easier of the two. For each y ∈ {0, 1}n of Hamming weight at most c, define m̃y to
be the bitwise-AND of all Tr ∈ TS such that y � Tr. By definition of the anchor-set assumption, for each
mj ∈ M there exists yj � mj of Hamming weight at most c such that for all r, if yj � Tr then mj ∈ Rr.
Therefore we have both (a) mj � m̃yj and (b) m̃yj � Tr for all r such that mj ∈ Rr. Therefore each Tr is
the bitwise-OR of the (at most k) metafeatures m̃yj such that mj ∈ Rr.

For item (2), we begin by creating O(nc) metafeatures m̃y as above. We next set up a linear program to
find an optimal fractional subset of these metafeatures, and then round this fractional solution to a set of
metafeatures M̃ satisfying (2). Specifically, the LP has one variable Zy for each m̃y with objective

Minimize:
∑
y

Zy,

Subject to : (1) for all y: 0 ≤ Zy ≤ 1

(2) for all r, i:
∑

y:ei�m̃y�Tr Zy ≥ 1 (ei is the unit vector in coordinate i)

(3) for all r:
∑

y:m̃y�Tr Zy ≤ k

Here, constraint (2) ensures that each Tr is fractionally covered by all the metafeatures contained inside it,
and constraint (3) ensures that each Tr fractionally contains at most k metafeatures. Note also that setting
Zyj = 1 for each mj ∈M (and setting all other Zy = 0) satisfies all constraints at objective value |M |.

We now produce our output set of metafeatures M̃ by independently rounding each Zy to 1 with probability
min[1, Zy ln(n2|TS|)]. Clearly E[|M̃ |] = O(|M | log(n|TS|)) so the key issue is the coverage of each Tr
and the size of the set R̃r = {m̃y ∈ M̃ : m̃y � Tr}. Note that item (2) of Definition 1 will be satisfied
by how the m̃y were constructed (taking the bitwise-AND of all Tr such that y � Tr). First, for coverage,
for each r and i such that variable i is set to 1 by Tr, the probability that M̃ does not contain some m̃y

such that ei � m̃y � Tr is maximized when constraint (2) is satisfied at equality and all associated Zy
are equal (by concavity). This in turn is at most limε→0(1 − ε ln(n2|TS|))1/ε = 1/(n2|TS|). Thus, by
the union bound, the probability that any Tr fails to be completely covered by R̃r is at most 1/n. Now, to

13

address the size of the sets R̃r, the expected size of each R̃r by constraint (3) and the rounding step is at most
k ln(n2|TS|) ≤ max[k, 3] ln(n2|TS|). By Chernoff bounds, the probability any given R̃r has size more than
twice this value is at most e−max[k,3] ln(n2|TS|)/3 ≤ 1/(n2|TS|). So, by the union bound, the probability that
any R̃r is too large is at most 1/n2.

Theorem 5 shows that we can efficiently find a near-optimal sparse autoencoder for any set of targets in
{0, 1}n having an optimal encoder satisfying the c-anchor-set assumption for constant c. Theorem 5 also
has the following corollary for online learning from equivalence queries, similar to Corollary 1.

Corollary 2 Let TS be a sequence ofm conjunctions for which there exists a setM of conjunctive metafea-
tures satisfying the c-anchor-set assumption at sparsity-level k for some constant c. Then this sequence can
be efficiently learned using only O(mk log(n) + n2|M |) equivalence queries total.

Proof: We instantiate O(nc) metafeatures m̃y, one for each y ∈ {0, 1}n of Hamming weight at most c,
setting each m̃y initially to the conjunction of all variables. Given a new target Tr, we try to learn it as
a conjunction of at most k of these metafeatures using at most O(k log nc) equivalence queries using the
Winnow algorithm. If we are unsuccessful, we learn Tr from scratch using at most n equivalence queries.
We then (viewing Tr and the m̃y as their indicator vectors) let m̃y ← m̃y & Tr (where “&” denotes bitwise-
AND) for all m̃y such that y � Tr. This maintains the invariant that for each mj ∈M , we have mj � m̃yj ,
which implies that each time we learn some Tr from scratch we shrink at least one m̃yj by at least one
variable. This can happen at most n|M | times.

5 Life-long Learning of Polynomials

We now show an application of the results in Section 4 to the case where the target functions are polynomials
from {0, 1}n to R, whose terms “share” a not too large number of pieces. Specifically, we assume there
exist k distinguished monomials (which might overlap) such that each monomial in each target polynomial
can be written as a product of some subset of them. For example, if our distinguished monomials are
{x1x2x3, x3x4x5, x5x6x7, x7x8x1} then we might have polynomials such as 4x3x4x5x6x7−2x5x6x7x8x1
and 3x1x2x3x4x5 + 3x1x2x3x7x8. If the target polynomials use r distinct monomials in total, then viewed
as a network we have k nodes in a first hidden layer, where each is a product of some of the inputs, r nodes
in a second hidden layer, where each is a product of outputs of the first hidden layer, and then the final
outputs (our target functions) are weighted linear functions of the second hidden layer. Efficiently learning
polynomials requires membership queries (under the assumption that juntas are hard to learn) in addition to
equivalence queries or random examples even in the single task setting [21]. So we will assume access to
membership queries as well. However, our goal will be to use these sparingly, only when we need to learn a
new function from scratch. When learning from scratch we use an algorithm of Schapire and Sellie [21] that
learns polynomials exactly. Any function from {0, 1}n to R has a unique representation as a polynomial over
{0, 1}n, so learning exactly means learning the exact functional form of the target function as a polynomial.

As a warmup, let’s first consider a simple case. Assume that the target functions are polynomials that simply
use at most k distinct monomials in total. This corresponds to a network with with only one hidden layer
of k nodes. In this case, there is a very simple algorithm that exploits the structure of the problem. Let M̃
be the set of hypothesized monomials. Given a new target function, we try to learn a linear function over
the monomials in M̃ . If we succeed, we are done and move on to the next problem. If not, we learn from
scratch using queries; we will clearly get at least one new monomial we have not seen, and add it to the set
M̃ . So, we only need to learn k problems from scratch.

We now provide an algorithm for the general, more interesting case. Our theoretical guarantees are under
the assumptions that each polynomial in our family has L1 norm bounded by B and the number of terms in

14

each is bounded by t. If the target function has an L1 norm bounded by B and its monomials can indeed
be written as products of our metafeatures, then by considering all products of metafeatures and running an
L1-based algorithm for learning linear functions [17], we can achieve low mean squared error using only
O(B2 log(2k)) = O(B2k) examples.

Algorithm 6 Multi-task learning for polynomial target functions
Input: n,m.

1. Let M̃ = ∅. M̃ is the set of hypothesized metafeatures for the first hidden layer.
Let TS = ∅. TS is the set of terms used to create the hypothesized metafeatures in M̃ .

2. For the learning problem r = 1 to m

(a) Create the set conj(M̃) of terms obtained by taking all possible conjunctions of the hypothesized
metafeatures in M̃ .

(b) Attempt to learn problem r as a linear function over the terms in conj(M̃) to low mean squared
error (quadratic loss) using O(B2k) examples.

• If we succeed, record the hypothesis.
• Otherwise, run the algorithm of Schapire and Sellie [21] to learn the target Tr for problem

r exactly based on the original feature representation with equivalence and membership
queries.

i. Expand TS by adding any term in Tr that was not in TS.
ii. Run Algorithm 3 with input TS to “compactify” it into the fewest number of (possibly

overlapping) conjunctive metafeatures that can be used to recreate all the terms in TS.
Let M̃ be the resulting metafeatures.

Output: Hypothesis functions of low error for each learning task.

Theorem 6 Assume that the monomials corresponding to the first network layer satisfy the anchor assump-
tion and the L1 norm of the target polynomials is bounded byB. Consider running Algorithm 6. The number
of targets needed to learn from scratch is n2 + k. Furthermore the number of hypothesized metafeatures
satisfies |M̃ | ≤ k at any time, thus the sample complexity of learning problems in Step 2(b) is O(B2k) per
problem.

Proof: In Algorithm 6, M̃ represents the set of hypothesized metafeatures for the first hidden layer – they
are learned using Algorithm 3; let k′ = |M̃ |. Let conj(M̃)=all possible conjunctions of hypothesized
metafeatures in M̃ ; so TS ⊆ conj(M̃), |conj(M̃)| = 2k

′
.

We know that in the true underlying network the metafeatures in the first middle layer are monomials satisfy-
ing the anchor assumption and the metafeatures in the second middle layer are monomials of meta-features
in the first layer. Note that every time we fail to learn in Step 2(b) we know that at least one of the mono-
mials that can make up the target polynomial (which is a metafeature second level of the true network)
cannot be written as a conjunction of hypothesized first level metafeatures M̃ . Since we create M̃ by us-
ing Algorithm 3, by Theorem 3 we only need to learn at most n2 + k problems from from scratch (that is
|TS| ≤ n2 + k), and furthermore, k′ ≤ k.

Note that while the sample complexity of Algorithm 6 is linear in k for problems learned from scratch, its
running time is exponential in k, due to the work in creating the set conj(M̃). However, a poly(k) bound
seems unachievable because it would require solving the junta learning problem. In particular, the problem
of learning polynomials over k metafeatures is at least as hard as learning polynomials over {0, 1}k (because

15

even if the true metafeatures were given to us in advance, one possibility is that the targets could be arbitrary
polynomials over x1, . . . , xk). Thus, for this problem one should think of k as small.

6 Discussion and Open Problems

In this work we present algorithms for learning new internal representations when presented with a series
of learning problems arriving online that share different types of commonalities. For the case of linear
threshold functions sharing linear subspaces, we require log-concave distributions to ensure that error can be
both upper-bounded and lower-bounded by some “nice” function of angle: the lower bound helps to ensure
that the span of accurate hypotheses is close to the span of their corresponding true targets (though one must
be careful with error accumulation), and the upper-bound ensures that a sufficiently-close approximation to
the span of the true targets is nearly as good as the span itself. It is an interesting question whether one can
extend these results to distributions that do not have such properties while still maintaining the streaming
nature of the algorithms (i.e., remembering only the learned rules and not the data from which they were
generated). For the case of product metafeatures, our results have natural interpretations as autoencoders,
which interestingly do not require assumptions such as the problem matrix being incoherent or a generative
model, only the anchor-variable or anchor-set assumption. It would be interesting to see whether an analog
of the anchor-set assumption could be applied to dictionary learning problems such as in [3].

Acknowledgements This work was supported in part by NSF grants CCF-0953192, CCF-1451177, CCF-
1422910, IIS-1065251, ONR grant N00014-09-1-0751, AFOSR grant FA9550-09-1-0538, and a Microsoft
Research Faculty Fellowship.

References

[1] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning
Journal, 2008.

[2] Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models - going beyond SVD. In 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 1–10, 2012.

[3] Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcomplete
dictionaries. In Proceedings of The 27th Conference on Learning Theory (COLT), pages 779–806,
2014.

[4] Pranjal Awasthi, Maria-Florina Balcan, and Philip M. Long. The power of localization for efficiently
learning linear separators with noise. In Symposium on Theory of Computing (STOC), pages 449–458,
2014.

[5] M.-F. Balcan and P. M. Long. Active and passive learning of linear separators under log-concave
distributions. In Proceedings of the 26th Annual Conference on Learning Theory, 2013.

[6] J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 2000.

[7] Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multiple task sam-
pling. Machine Learning, 28(1):7–39, 1997.

[8] S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In COLT, 2003.

16

[9] Y. Bengio. Deep learning of representations: Looking forward, 2013. arXiv report 1305.0445.

[10] Y. Bengio and O. Delalleau. On the expressive power of deep architectures. In ALT, 2011.

[11] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear algorithms for online multitask classification.
Journal of Machine Learning Research, 2010.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[13] A. Gopnik, A. Meltzoff, and P. Kuhl. How babies think. Orion, 2001.

[14] S. Hanneke. Personal communication. 2013.

[15] A. R. Klivans, P. M. Long, and A. Tang. Baum’s algorithm learns intersections of halfspaces with
respect to log-concave distributions. In RANDOM, 2009.

[16] A. Kumar and H. Daume III. Learning task grouping and overlap in multi-task learning. In NIPS,
2012.

[17] Nick Littlestone, Philip M. Long, and Manfred K. Warmuth. On-line learning of linear functions.
Computational Complexity, 5(1):1–23, 1995.

[18] László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling algorithms.
Random Structures & Algorithms, 30(3):307–358, 2007.

[19] A. Maurer and M. Pontil. Excess risk bounds for multitask learning with trace norm regularization. In
Proceedings of the 26th Annual Conference on Learning Theory, 2013.

[20] Volker Roth and Julia E Vogt. A complete analysis of the l 1, p group-lasso. In Proceedings of the
29th International Conference on Machine Learning (ICML-12), pages 185–192, 2012.

[21] R. E. Schapire and L. M. Sellie. Learning sparse multivariate polynomials over a field with queries and
counterexamples. In Proceedings of the 6th Annual Conference on Computational Learning Theory,
1993.

[22] D. Spielman. Lecture notes for 18.409: The behavior of algorithms in practice. Lecture 2: On the
condition number. 2002.

[23] S. Thrun. Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Kluwer
Academic Publishers, Boston, MA, 1996.

[24] S. Thrun and L.Y. Pratt, editors. Learning To Learn. Kluwer Academic Publishers, Boston, MA, 1997.

[25] Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics and Autonomous Systems,
15(1-2):25–46, 1995.

[26] L. G. Valiant. A neuroidal architecture for cognitive computation. Journal of the ACM, 2000.

[27] S. Vempala. A random-sampling-based algorithm for learning intersections of halfspaces. JACM,
57(6), 2010.

[28] L. Yang. Mathematical Theories of Interaction with Oracles. PhD thesis, CMU Dept. Machine Learn-
ing, 2013.

17

Algorithm 2 Life-long Learning with two levels of linear shared metafeatures
Input: n,m,k, access to labeled examples for problems i ∈ {1, . . . ,m}, parameters ε, εacc, ε̃acc.

1. Learn the first target to error εacc to get an n-dimensional vector α1.
2. Set w̃1 = α1, k̃ = 1, ũ1 = (1), r̃ = 1, c̃1 = (1), and i1 = 1.
3. For the learning problem i = 2 to m

• Try to learn τ -sparsely by using the r̃ dimensional representation given by the second level
meta-features v → ŨW̃ v. I.e., check whether for the learning problem i there exists a τ -sparse
hypothesis sign(αi,1(ũ1W̃v) + · · ·+ αi,r̃(ũr̃W̃v)) of error at most ε.

(a) If yes, set c̃i = (αi,1, . . . , αi,k̃).

(b) Otherwise, check whether for learning problem i there exists a hypothesis in the k̃ dimen-
sional representation given by the first level meta-features v → W̃v of error at most ε̃acc,
i.e., a hypothesis sign(αi,1(w̃1 · v) + · · ·+ αi,k̃(w̃k̃ · v)) of error ≤ ε̃acc.
(a) If yes, set r̃ = r̃+ 1, ũr̃ = (αi,1, . . . , αi,k̃), jr̃ = i. Extend all rows of C̃ with one zero,

set c̃i = er̃.
(b) If not, learn a classifier αi for problem i of accuracy εacc by using the original features.

Set k̃ = k̃ + 1, ik̃ = i , w̃k̃ = αi. Extend all rows of Ũ by one zero, set r̃ = r̃ + 1,
ũr̃ = ek̃. Extend all rows of C̃ with one zero, set c̃i = er̃, jr̃ = i.

4. Let W̃ be an k̃ × n matrix whose rows are w̃1, . . . , w̃k̃; let Ũ be an r̃ × k̃ matrix whose rows are
ũ1, . . . , ũr̃; and let C̃ be the matrix m× k̃ matrix whose rows are c̃1, . . . , c̃k̃. Compute Ã = C̃ŨW̃ .

Output: m predictors; predictor i is v → sign(Ãi · v)

A Proofs for halfspaces with more complex common structure

We now provide the algorithm and proof for Theorem 2.

Theorem 2 Assume all marginals Di are isotropic log-concave and the target functions satisfy the above
conditions. Consider γ̃ ≤ cε, ε̃acc ≤ c γ̃ετ , γ ≤ cε̃acc, and εacc ≤ cγε̃acck for (sufficiently small) constant c >
0. Consider running Algorithm 2 with parameters ε, εacc, and ε̃acc. Then k̃ ≤ k and r̃ ≤ τr. Moreover the
total number of examples needed to learn all the problems to error ε is Õ(nk/εacc+kr/ε̃acc+m log(r)/ε).

Proof: We divide problems in two types: problems of type (a) are those for which we can learn a classifier
of desired error at most ε by using the previously learnt metafeatures at the second middle level; the rest are
of type (b).

For problems of type (a) we achieve error at most ε by design. For each problem i of type (b) we have either
opened a new row in Ũ , and we have set w̃r̂ = αi, where r̂ is such that jr̂ = i or we have opened both a
new row in r̂ in Ũ and a new row k̂ in W̃ , and set jr̂ = i and ik̂ = i. In both cases, by design and Lemma
1 (and the fact that εacc ≤ ε̃acc) we have θ(ũr̂W̃ , ajr̂) = O(ε̃acc); furthermore since c̃i = er̂ we also have
θ(ãi, ai) = O(ε̃acc). Furthermore, for each ũr̂ we create for a problem jr̂ we have that ũr̂W̃ is γ̃-far from
the span of those vectors in {ũ1, ..., ũjr̂−1

} whose corresponding targets lie in space Us, where Us is one of
the r τ -dimensional subspaces that ajr̂ belongs to. (Otherwise if ũr̂ is γ̃-close we would have been able to
learn sparsely to error ε based on the second level metafeatures.)

Using this together with the fact that ε̃acc = O(γ̃ετ), we obtain (by Lemma 3) that once we have τ second
level meta-features ũjl1 , . . . , ũjlτ whose corresponding targets al1 , . . . , alτ lie in the same τ -dimensional

18

space Us, we have
θ(Us, span(ũjl1W̃ , . . . , ũjlτ W̃)) = O(τ ε̃acc/γ̃) ≤ ε.

Therefore we will be able to learn based on second level metafeatures any future target belonging to that
subspace. This implies r̃ ≤ τr.

Using the fact that εacc ≤ cγε̃acck , as in the proof of Theorem 1, we can prove by induction that for each
w̃k̂ we create for a problem ik̂, we have aik̂ is γ-far from span{ai1 , · · · , aik̂−1

} and w̃k̂ is γ-far from

span(w̃1, ..., w̃k̂−1); this implies k̃ ≤ k.

19

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Life-long Learning of Halfspaces
	3.1 Halfspaces with more complex common structure

	4 Life-long Learning of Monomials
	4.1 Solving the Consistency Problem
	4.2 An Abstract Online Problem
	4.3 Applications
	4.4 Sparse Boolean Autoencoders and Relaxing the Anchor-Variable Assumption

	5 Life-long Learning of Polynomials
	6 Discussion and Open Problems
	A Proofs for halfspaces with more complex common structure

