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Abstract. There has been growing interest in practice in using unla-
beled data together with labeled data in machine learning, and a number
of different approaches have been developed. However, the assumptions
these methods are based on are often quite distinct and not captured
by standard theoretical models. In this paper we describe a PAC-style
framework that can be used to model many of these assumptions, and
analyze sample-complexity issues in this setting: that is, how much of
each type of data one should expect to need in order to learn well, and
what are the basic quantities that these numbers depend on. Our model
can be viewed as an extension of the standard PAC model, where in ad-
dition to a concept class C, one also proposes a type of compatibility that
one believes the target concept should have with the underlying distribu-
tion. In this view, unlabeled data can be helpful because it allows one to
estimate compatibility over the space of hypotheses, and reduce the size
of the search space to those that, according to one’s assumptions, are a-
priori reasonable with respect to the distribution. We discuss a number of
technical issues that arise in this context, and provide sample-complexity
bounds both for uniform convergence and ǫ-cover based algorithms. We
also consider algorithmic issues, and give an efficient algorithm for a
special case of co-training.

1 Introduction

There has recently been substantial interest in using unlabeled data together
with labeled data for machine learning. The motivation is that unlabeled data
can often be much cheaper and more plentiful than labeled data, and so if useful
information can be extracted from it that reduces the need for labeled examples,
this can be a significant benefit. A number of techniques have been developed
for doing this, along with experimental results on a variety of different learning
problems. These include label propagation for word-sense disambiguation [23];
co-training for classifying web pages [5], parsing [15], improving visual detectors
[17], and document classification [19]; transductive SVM [16] and EM [18] for
text classification; graph-based methods [3, 24] and others.

The difficulty from a theoretical point of view, however, is that standard
discriminative learning models do not really capture how and why unlabeled data
can be of help. In particular, in the PAC model there is a complete disconnect
between the data distribution D and the target function f being learned [6,



21]. The only prior belief is that f belongs to some class C: even if D is known
fully, any function f ∈ C is still possible. For instance, it is perfectly natural
(and common) to talk about the problem of learning a concept class over the
uniform distribution; but clearly in this case unlabeled data is useless — you
can just generate it yourself. For learning over an unknown distribution (the
standard PAC setting), unlabeled data can help somewhat, by allowing one to
use distribution-specific sample-complexity bounds, but this does not seem to
fully capture the power of unlabeled data in practice.

In generative-model settings, one can easily talk theoretically about the use
of unlabeled data, e.g., [9, 10]. However, these results typically make strong as-
sumptions that essentially imply that there is only one natural distinction to be
made for a given (unlabeled) data distribution. For instance, a typical generative-
model setting would be that we assume positive examples are generated by one
Gaussian, and negative examples are generated by another Gaussian. In this
case, given enough unlabeled data, we could recover the Gaussians and would
need labeled data only to tell us which Gaussian is the positive one and which is
the negative one.1 This is too strong an assumption for most real-world settings.
Instead, we would like our model to allow for a distribution over data (e.g., doc-
uments we want to classify) where there are a number of plausible distinctions
we might want to make. In addition, we would like a general framework that can
be used to model many different uses of unlabeled data.

The goal of this paper is to provide a PAC-style framework that bridges be-
tween these positions and captures many of the ways unlabeled data is typically
used. We extend the PAC model in a way that allows one to express relationships
that one hopes the target function and underlying distribution will possess, but
without going so far as is done in generative models. We then analyze sample-
complexity issues in this setting: that is, how much of each type of data one
should expect to need in order to learn well, and also give a few algorithmic
results.

The idea of the proposed model is to augment the notion of a concept class
with a notion of compatibility between a target function and the data distribu-
tion. That is, rather than talking of “learning a concept class C,” we will talk
of “learning a concept class C under compatibility notion χ.” Furthermore, we
require that the degree of compatibility be something that can be estimated
from a finite sample. More specifically, we will require that χ is actually a func-
tion from C × X to [0, 1], where the compatibility of h with D is Ex∈D[χ(h, x)].
The degree of incompatibility is then something we can think of as a kind of
“unlabeled error rate” that measures how a-priori unreasonable we believe some
proposed hypothesis to be. For example,

Example 1 (margins): Suppose examples are points in Rn and C is the class
of linear separators. A natural belief in this setting is that data should be
“well-separated”: not only should the target function separate the positive
and negative examples, but it should do so by some reasonable margin γ

1 Castelli and Cover [9, 10] do not assume Gaussians in particular, but they do assume
the distributions are distinguishable, which from our perspective has the same issue.



[16]. In this case, we could define χ(h, x) = 1 if x is farther than distance
γ from the hyperplane defined by h, and χ(h, x) = 0 otherwise. So, the
incompatibility of h with D is probability mass within distance γ of h ·x = 0.
Or we could define χ(h, x) to be a smooth function of the distance of x to the
separator, if we do not want to commit to a specific γ in advance. (In contrast,
defining compatibility of a hypothesis based on the largest γ such that D has
probability mass exactly zero within distance γ of the separator would not fit
our model: it cannot be written as an expectation over individual examples
and indeed one cannot distinguish “zero” from “exponentially close to zero”
with a small sample.)

Example 2 (Co-training): In co-training [5], we assume examples come as
pairs 〈x1, x2〉, and our goal is to learn a pair of functions 〈h1, h2〉. For in-
stance, if our goal is to classify web pages, x1 might represent the words on
the page itself and x2 the words attached to links pointing to this page from
other pages. The hope that underlies co-training is that the two parts of
the example are consistent, which then allows the co-training algorithm to
bootstrap from unlabeled data.2 In this case, we might naturally define the
incompatibility of some hypothesis 〈h1, h2〉 as Pr〈x1,x2〉∈D[h1(x1) 6= h2(x2)].

Example 3 (Linear separator graph cuts): As a special case of Example 2
above, suppose examples are pairs of points in Rn, C is the class of linear
separators, and we believe the two points in each pair should both be on the
same side of the target function (i.e., like co-training but we are requiring
h1 = h2).

3 Again we can define the incompatibility of some h to be the
probability mass on examples 〈x1, x2〉 such that h(x1) 6= h(x2). One thing
that makes this problem interesting is that we can view examples as edges,
view the data as a graph embedded in Rn, and given a set of labeled and
unlabeled data, view our objective as finding a linear separator minimum s-t
cut.

This setup allows us to analyze the ability of a finite unlabeled sample to reduce
our need for labeled data, as a function of the compatibility of the target function
and various measures of the “helpfulness” of the distribution. In particular, in
our model we find that unlabeled data can help in several distinct ways.

– If the target function is highly compatible with D, then if we have enough
unlabeled data to estimate compatibility over all h ∈ C, we can in principle

2 For example, iterative co-training uses a small amount of labeled data to get some
initial information (e.g., if a link with the words “my advisor” points to a page then
that page is probably a faculty member’s home page) and then when it finds an
unlabeled example where one half is confident (e.g., the link says “my advisor”), it
uses that to label the example for training its hypothesis over the other half.

3 As a motivating example, consider the problem of word-sense disambiguation: given
the text surrounding some target word (like “plant”) we want to determine which
dictionary definition is intended (tree or factory?). Yarowsky [23] uses the fact that
if a word appears twice in the same document, it is probably being used in the same

sense both times.



reduce the size of the search space from C down to just those h ∈ C whose
estimated compatibility is high.

– By providing an estimate of D, unlabeled data can allow us to use a more
refined distribution-specific notion of “hypothesis space size” such as An-
nealed VC-entropy [11] or the size of the smallest ǫ-cover [2], rather than
VC-dimension. In fact, for natural cases (such as those above) we find that
the sense in which unlabeled data reduces the “size” of the search space is
best described in these distribution-specific measures.

– Finally, if the distribution is especially nice, we may find that not only does
the set of compatible h ∈ C have a small ǫ-cover, but also the elements of
the cover are far apart. In that case, if we assume the target function is fully
compatible, we may be able to learn from even fewer labeled examples than
the 1/ǫ needed just to verify a good hypothesis!

Our framework also allows us to address the issue of how much unlabeled
data we should expect to need. Roughly, the “VCdim/ǫ2” form of standard PAC
sample complexity bounds now becomes a bound on the number of unlabeled
examples we need. However, technically, the set whose VC-dimension we now
care about is not C but rather a set defined by both C and χ: that is, the
overall complexity depends both on the complexity of C and the complexity of
the notion of compatibility (see Section 4).

Relationship to the luckiness framework. There is a strong connection between
our approach and the luckiness framework [20]. In both cases, the idea is to de-
fine an ordering of hypotheses that depends on the data, in the hope that we will
be “lucky” and find that not too many other functions are as compatible as the
target. There are two main differences, however. The first is that the luckiness
framework uses labeled data both for estimating compatibility and for learning:
this is a more difficult task, and as a result our bounds on labeled data can be
significantly better. For instance, in Example 3 above, for any non-degenerate
distribution, a dataset of n/2 pairs can with probability 1 be completely shat-
tered by fully-compatible hypotheses, so the luckiness framework does not help.
In contrast, with a larger (unlabeled) sample, one can potentially reduce the
space of compatible functions quite significantly depending on the distribution
– see Section 5 and 6. Secondly, the luckiness framework talks about compati-
bility between a hypothesis and a sample, whereas we define compatibility with
respect to a distribution. This allows us to talk about the amount of unlabeled
data needed to estimate true compatibility. There are also a number of differ-
ences at the technical level of the definitions.

Outline of results. We begin by describing our formal framework, and then in
Section 3 we give the simplest version of our sample-complexity bounds, for the
case of finite hypothesis spaces. In Section 4 we give uniform-convergence bounds
for infinite hypothesis spaces. To achieve tighter bounds, in Section 5 we consider
ǫ-cover size, and give bounds that hold for algorithms that first use the unlabeled
data to choose a small set of “representative” hypotheses (every compatible h ∈ C



is close to at least one of them), and then choose among the representatives
based on the labeled data. In Section 6, we give our algorithmic results. We
begin with a particularly simple C and χ for illustration, and then give our main
algorithmic result: an efficient algorithm for learning linear separators in the
Co-training model using just a single labeled example, under the assumption
that the distribution satisfies independence given the label. In the process, we
simplify the noisy halfspace learning algorithm of [4] somewhat.

2 A Formal Framework

We assume that examples (both labeled and unlabeled) come according to a
fixed unknown distribution D over an instance space X , and they are labeled
by some unknown target function c∗. As in the standard PAC model, a concept
class or hypothesis space is a set of functions over the instance space X , and we
will often make the assumption (the “realizable case”) that the target function
belongs to a given class C. For a given hypothesis h, the (true) error rate of h
is defined as err(h) = errD(h) = Prx∈D[h(x) 6= c∗(x)]. For any two hypotheses
h1, h2 ∈ C, the distance with respect to D between h1 and h2 is defined as
d(h1, h2) = dD(h1, h2) = Prx∈D[h1(x) 6= h2(x)]. We will use êrr(h) to denote

the empirical error rate of h on a given labeled sample and d̂(h1, h2) to denote
the empirical distance between h1 and h2 on a given unlabeled sample.

We define a notion of compatibility to be a mapping from a hypothesis h and
a distribution D to [0, 1] indicating how “compatible” h is with D. In order for
this to be estimable from a finite sample, we require that compatibility be an
expectation over individual examples.4 Specifically, we define:

Definition 1. A legal notion of compatibility is a function χ : C × X → [0, 1]
where we (overloading notation) define χ(h, D) = Ex∈D[χ(h, x)]. Given a sample
S, we define χ(h, S) to be the empirical average over the sample.

Definition 2. Given compatibility notion χ, the incompatibility of h with D is
1−χ(h, D). We will also call this its unlabeled error rate, errunl(h), when χ and
D are clear from context. For a given sample S, we use êrrunl(h) to denote the
empirical average over S.

Finally, we need a notation for the set of functions whose incompatibility is
at most some given value τ .

Definition 3. Given threshold τ , we define CD,χ(τ) = {h ∈ C : errunl(h) ≤ τ}.
So, e.g., CD,χ(1) = C. Similarly, for a sample S, we define CS,χ(τ) = {h ∈ C :
êrrunl(h) ≤ τ}

3 Finite hypothesis spaces

We now illustrate how unlabeled data, together with a suitable compatibility
notion, can reduce the need for labeled examples. We begin with the case of

4 Though one could imagine more general notions with this property as well.



finite hypothesis spaces where we measure the “size” of a set of functions by
just the number of functions in it. In the standard PAC model, one typically
talks of either the realizable case, where we assume that c∗ ∈ C, or the agnostic
case where we do not. In our setting, we have the additional issue of unlabeled
error rate, and can either make an a-priori assumption that the target function’s
unlabeled error is low, or else aim for a more “Occam-style” bound in which we
have a stream of labeled examples and halt once they are sufficient to justify the
hypothesis produced. We first give a bound for the “doubly realizable” case.

Theorem 1. If we see mu unlabeled examples and ml labeled examples, where

mu ≥
1

ǫ

[
ln |C| + ln

2

δ

]
and ml ≥

1

ǫ

[
ln |CD,χ(ǫ)| + ln

2

δ

]
,

then with probability 1 − δ, all h ∈ C with êrr(h) = 0 and êrrunl(h) = 0 have
err(h) ≤ ǫ.

Proof. Notice that the probability that a given hypothesis h with errunl(h) > ǫ
has êrrunl(h) = 0 is at most (1 − ǫ)mu < δ/(2|C|) for the given value of mu.
Therefore, by the union bound, the number of unlabeled examples is sufficient to
ensure that with probability 1−δ/2, only hypotheses in CD,χ(ǫ) have êrrunl(h) =
0. The number of labeled examples then similarly ensures that with probability
1− δ/2, none of those whose true error is at least ǫ have an empirical error of 0,
yielding the theorem. ⊓⊔

So, if the target function indeed is perfectly correct and compatible, Theorem
1 gives sufficient conditions on the number of examples needed to ensure that
an algorithm that optimizes both quantities over the observed data will, in fact,
achieve a PAC guarantee. To emphasize this, we will say that an algorithm
efficiently PACunl-learns the pair (C, χ) if it is able to achieve a PAC guarantee
using time and sample sizes polynomial in the bounds of Theorem 1.

We can think of Theorem 1 as bounding the number of labeled examples we
need as a function of the “helpfulness” of the distribution D with respect to our
notion of compatibility. That is, in our context, a helpful distribution is one in
which CD,χ(ǫ) is small, and so we do not need much labeled data to identify a
good function among them. We can get a similar bound in the situation when
the target function is not fully compatible:

Theorem 2. Given t ∈ [0, 1], if we see mu unlabeled examples and ml labeled
examples, where

mu ≥
2

ǫ2

[
ln |C| + ln

4

δ

]
and ml ≥

1

ǫ

[
ln |CD,χ(t + 2ǫ)| + ln

2

δ

]
,

then with probability 1− δ, all h ∈ C with êrr(h) = 0 and êrrunl(h) ≤ t + ǫ have
err(h) ≤ ǫ, and furthermore all h ∈ C with errunl(h) ≤ t have êrrunl(h) ≤ t + ǫ.

In particular, this implies that if errunl(c
∗) ≤ t and err(c∗) = 0 then with high

probability the h ∈ C that optimizes êrr(h) and êrrunl(h) has err(h) ≤ ǫ.



Proof. Same as Theorem 1 except apply Hoeffding bounds to the unlabeled error
rates. ⊓⊔

Finally, we give a simple Occam/luckiness type of bound for this setting.
Given a sample S, let us define descS(h) = ln |CS,χ(êrrunl(h))|. That is, descS(h)
is the description length of h (in “nats”) if we sort hypotheses by their empir-
ical compatibility and output the index of h in this ordering. Similarly, define
ǫ-descD(h) = ln |CD,χ(errunl(h) + ǫ)|. This is an upper-bound on the descrip-
tion length of h if we sort hypotheses by an ǫ-approximation to the their true
compatibility.

Theorem 3. For any set S of unlabeled data, given ml labeled examples, with
probability 1 − δ, all h ∈ C satisfying êrr(h) = 0 and descS(h) ≤ ǫml − ln(1/δ)
have err(h) ≤ ǫ. Furthermore, if |S| ≥ 2

ǫ2
[ln |C| + ln 2

δ
], then with probability

1 − δ, all h ∈ C satisfy descS(h) ≤ ǫ-descD(h).

The point of this theorem is that an algorithm can use observable quantities to
determine if it can be confident, and furthermore if we have enough unlabeled
data, the observable quantities will be no worse than if we were learning a slightly
less compatible function using an infinite-size unlabeled sample.

4 Infinite hypothesis spaces: uniform convergence bounds

To reduce notation, we will assume in the rest of this paper that χ(h, x) ∈ {0, 1}
so that χ(h, D) = Prx∈D[χ(h, x) = 1]. However, all our sample complexity
results can be easily extended to the case that χ(h, x) ∈ [0, 1].

For infinite hypothesis spaces, the first issue that arises is that in order to
achieve uniform convergence of unlabeled error rates, the set whose complexity
we care about is not C but rather χ(C) = {χh : h ∈ C} where we define χh(x) =
χ(h, x). For instance, suppose examples are just points on the line, and C =
{ha(x) : ha(x) = 1 iff x ≤ a}. In this case, VCdim(C) = 1. However, we could
imagine a compatibility function such that χ(ha, x) depends on some complicated
relationship between the real numbers a and x. In this case, VCdim(χ(C)) is much
larger, and indeed we would need many more unlabeled examples to estimate
compatibility over all of C.

A second issue is that we need an appropriate measure for the “size” of
the set of surviving functions. VC-dimension tends not to be a good choice: for
instance, if we consider the case of Example 1 (margins), then even if data is
concentrated in two well-separated “blobs”, the set of compatible separators still
has as large a VC-dimension as the entire class even though they are all very
similar with respect to D. Instead, we consider the expected number of splits
of a sample of size m drawn from D (its logarithm is annealed VC-entropy)
which exhibits better behavior. Specifically, for any C, we denote by C[m, D] the
expected number of splits of m points (drawn i.i.d.) from D with concepts in C.
Also, for a given (fixed) S ⊆ X , we will denote by S the uniform distribution
over S, and by C[m, S] the expected number of splits of m points (drawn i.i.d.)
from S with concepts in C. We can now get a bound as follows:



Theorem 4. An unlabeled sample of size

mu = O

(
V Cdim (χ(C))

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)

and a labeled sample of size

ml >
2

ǫ

[
log(2s) + log

2

δ

]
, where s = CD,χ(t + 2ǫ)[2ml, D]

is sufficient so that with probability 1 − δ, all h ∈ C with êrr(h) = 0 and
êrrunl(h) ≤ t + ǫ have err(h) ≤ ǫ, and furthermore all h ∈ C have |errunl(h) −
êrrunl(h)| ≤ ǫ.

This is the analog of Theorem 2 for the infinite case. In particular, this implies
that if err(c∗) = 0 and errunl(c

∗) ≤ t, then with high probability the h ∈ C that
optimizes êrr(h) and êrrunl(h) has err(h) ≤ ǫ.
Proof Sketch: By standard VC-bounds [11, 22], the number of unlabeled examples
is sufficient to ensure that with probability 1 − δ/2 we can estimate, within ǫ,
Prx∈D[χh(x) = 1] for all χh ∈ χ(C). Since χh(x) = χ(h, x), this implies we have
can estimate, within ǫ, the unlabeled error rate errunl(h) for all h ∈ C, and so
the set of hypotheses with êrrunl(h) ≤ t + ǫ is contained in CD,χ(t + 2ǫ).

The bound on the number of labeled examples follows from [11] (where it
is shown that the expected number of partitions can be used instead of the
maximum in the standard VC proof). This bound ensures that with probability
1 − δ/2, none of the functions in CD,χ(t + 2ǫ) whose whose true (labeled) error
is at least ǫ have an empirical (labeled) error of 0. ⊓⊔

We can also give a bound where we specify the number of labeled examples
as a function of the unlabeled sample; this is useful because we can imagine our
learning algorithm performing some calculations over the unlabeled data and
then deciding how many labeled examples to purchase.

Theorem 5. Given t ≥ 0, an unlabeled sample S of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)

is sufficient so that if we label ml examples drawn uniformly at random from S,
where

ml >
4

ǫ

[
log(2s) + log

2

δ

]
and s = CS,χ(t + ǫ)

[
2ml, S

]

then with probability ≥ 1 − δ, all h ∈ C with êrr(h) = 0 and êrrunl(h) ≤ t + ǫ
have err(h) ≤ ǫ. Furthermore all h ∈ C have |errunl(h) − êrrunl(h)| ≤ ǫ.

Proof. Standard VC-bounds (in the same form as for Theorem 4) imply that
the number of labeled examples ml is sufficient to guarantee the conclusion of
the theorem with “err(h)” replaced by “err

S
(h)” (the error with respect to S)

and “ǫ” replaced with “ǫ/2”. The number of unlabeled examples is enough to
ensure that, with probability ≥ 1 − δ/2, for all h ∈ C, |err(h) − err

S
(h)| ≤ ǫ/2.

Combining these two statements yields the theorem. ⊓⊔



So, if err(c∗) = 0 and errunl(c
∗) ≤ t, then with high probability the h ∈ C

that optimizes êrr(h) and êrrunl(h) has err(h) ≤ ǫ. If we assume errunl(c
∗) = 0

then we can use CS,χ(0) instead of CS,χ(t + ǫ).
Notice that for the case of Example 1, in the worst case (over distributions D)

this will essentially recover the standard margin sample-complexity bounds. In
particular, CS,χ(0) contains only those separators that split S with margin ≥ γ,
and therefore, s is no greater than the maximum number of ways of splitting 2ml

points with margin γ. However, if the distribution is nice, then the bounds can be
much better because there may be many fewer ways of splitting S with margin
γ. For instance, in the case of two well-separated “blobs” discussed above, if S
is large enough, we would have just s = 4. We also mention that using [7, 8]
we can give versions of these bounds using other complexity measures such as
Rademacher averages.

5 ǫ-Cover-based Bounds

The bounds in the previous section are for uniform convergence: they provide
guarantees for any algorithm that optimizes well on the observed data. In this
section, we consider stronger bounds based on ǫ-covers that can be obtained for
algorithms that behave in a specific way: they first use the unlabeled examples to
choose a “representative” set of compatible hypotheses, and then use the labeled
sample to choose among these. Bounds based on ǫ-covers exist in the classical
PAC setting, but in our framework these bounds and algorithms of this type are
especially natural and convenient.

Recall that a set Cǫ ⊆ 2X is an ǫ-cover for C with respect to D if for every
c ∈ C there is a c′ ∈ Cǫ which is ǫ-close to c. That is, Prx∈D(c(x) 6= c′(x)) ≤ ǫ.

To illustrate how this can produce stronger bounds, imagine examples are
pairs of points in {0, 1}n, C is the class of linear separators, and compatibility is
determined by whether both points are on the same side of the separator (i.e., the
case of Example 3). Now suppose for simplicity that the target function just splits
the hypercube on the first coordinate, and the distribution is uniform over pairs
having the same first coordinate (so the target is fully compatible). It is not hard
to show that given polynomially many unlabeled examples U and 1

4 log n labeled
examples L, with high probability there will exist high-error functions consistent
with L and compatible with U .5 So, we do not yet have uniform convergence.
In contrast, the cover-size of the set of functions compatible with U is constant,
so ǫ-cover based bounds allow learning from just a constant number of labeled
examples.

5 Proof: Let V be the set of all variables that (a) appear in every positive example of
L and (b) appear in no negative example of L. Over the draw of L, each variable has
a (1/2)2|L| = 1/

√
n chance of belonging to V , so with high probability V has size

at least 1

2

√
n. Now, consider the hypothesis corresponding to the conjunction of all

variables in V . This correctly classifies the examples in L, and whp it classifies every

other example in U negative because each example in U has only a 1/2|V | chance
of satisfying every variable in V , and the size of U is much less than 2|V |. So, this
means it is compatible with U and consistent with L, even though its true error is
high.



Theorem 6. If t is an upper bound for errunl(c
∗) and p is the size of a minimum

ǫ − cover for CD,χ(t + 4ǫ), then using mu unlabeled examples and ml labeled
examples for

mu = O

(
V Cdim (χ(C))

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)
and ml = O

(
1

ǫ
ln

p

δ

)
,

we can with probability 1 − δ identify a hypothesis which is 10ǫ close to c∗.

Proof Sketch: First, given the unlabeled sample U , define Hǫ ⊆ C as follows:
for every labeling of U that is consistent with some h in C, choose a hypothesis
in C for which êrrunl(h) is smallest among all the hypotheses corresponding to
that labeling. Next, we obtain Cǫ by eliminating from Hǫ those hypotheses f
with the property that êrrunl(f) > t + 3ǫ. We then apply a greedy procedure
on Cǫ, and we obtain Gǫ = {g1, · · · , gs}, as follows:

Initialize H1
ǫ = Cǫ and i = 1.

1. Let gi = argmin
f∈Hi

ǫ

êrrunl(f).

2. Using unlabeled data, determine Hi+1
ǫ by crossing out from Hi

ǫ those hy-

potheses f with the property that d̂(gi, f) < 3ǫ.
3. If Hi+1

ǫ = ∅ then set s = i and stop; else, increase i by 1 and goto 1.

Our bound on mu is sufficient to ensure that, with probability ≥ 1 − δ/2,
Hǫ is an ǫ-cover of C, which implies that, with probability ≥ 1 − δ/2, Cǫ is an
ǫ-cover for CD,χ(t). It is then possible to show Gǫ is, with probability ≥ 1− δ/2,
a 5ǫ-cover for CD,χ(t) of size at most p. The idea here is that by greedily creating
a 3ǫ-cover of Cǫ with respect to distribution U , we are creating a 4ǫ-cover of Cǫ

with respect to D, which is a 5ǫ-cover of CD,χ(t) with respect to D. Furthermore,
we are doing this using no more functions than would a greedy 2ǫ-cover procedure
for CD,χ(t + 4ǫ) with respect to D, which is no more than the optimal ǫ-cover of
CD,χ(t + 4ǫ).

Now to learn c∗ we use labeled data and we do empirical risk minimization
on Gǫ. By standard bounds [2], the number of labeled examples is enough to
ensure that with probability ≥ 1 − δ/2 the empirical optimum hypothesis in Gǫ

has true error at most 10ǫ. This implies that overall, with probability ≥ 1 − δ,
we find a hypothesis of error at most 10ǫ. ⊓⊔

As an interesting case where unlabeled data helps substantially, consider a
co-training setting where the target c∗ is fully compatible and D satisfies the
independence given the label property. As shown by [5], one can boost any weak
hypothesis from unlabeled data in this setting (assuming one has enough labeled
data to produce a weak hypothesis). We show here that given enough unlabeled
data, in fact we can learn from just a single labeled example. Specifically it is
possible to show that, for any concept classes C1 and C2, we have:

Theorem 7. Assume that err(c∗) = errunl(c
∗) = 0 and D satisfies indepen-

dence given the label. Then using mu unlabeled examples and ml labeled exam-
ples we can find a hypothesis that with probability 1 − δ has error at most ǫ,



provided that mu = O
(

1
ǫ
·
[
(V Cdim(C1) + V Cdim(C2)) · ln

(
1
ǫ

)
+ ln

(
1
δ

)])
and

ml = O(log 1

ǫ

1
δ
).

In particular, by reducing ǫ to poly(δ), we can reduce the number of labeled
examples needed ml to 1. In fact, our argument can be extended to the case
considered in [1] that D+ and D− merely satisfy constant expansion. In section
6.2, we give an efficient algorithm for the case that C1 and C2 are the class of
linear separators (though that requires true independence given the label).

6 Algorithmic results

6.1 A simple computational example

We give here a simple example to illustrate the bounds in Section 3, and for which
we can give a polynomial-time algorithm that takes advantage of them. Let the
instance space X = {0, 1}n, and for x ∈ X , let vars(x) be the set of variables
set to 1 by x. Let C be the class of monotone disjunctions (e.g., x1 ∨ x3 ∨ x6),
and for h ∈ C, let vars(h) be the set of variables disjoined by h. Now, suppose
we say an example x is compatible with function h if either vars(x) ⊆ vars(h)
or vars(x) ∩ vars(h) = φ. This is a very strong notion of “margin”: it says, in
essence, that every variable is either a positive indicator or a negative indicator,
and no example should contain both positive and negative indicators.

Given this setup, we can give a simple efficient PACunl-learning algorithm
for this pair (C, χ). We begin by using our unlabeled data to construct a graph
on n vertices (one per variable), putting an edge between two vertices i and j
if there is any example x in our unlabeled sample with i, j ∈ vars(x). We now
use our labeled data to label the components. If the target function is fully
compatible, then no component will get multiple labels (if some compnent does
get multiple labels, we halt with failure). Finally, we produce the hypothesis h
such that vars(h) is the union of the positively-labeled components. This is fully
compatible with the unlabeled data and has zero error on the labeled data, so
by Theorem 1, if the sizes of the datasets are as given in the bounds, with high
probability the hypothesis produced will have error ≤ ǫ.

Notice that if we want to view the algorithm as “purchasing” labeled data,
then we can simply examine the graph, count the number of connected compo-
nents k, and then request 1

ǫ
[k ln 2+ln 2

δ
] labeled examples. (Here, 2k = |CS,χ(0)|.)

By the proof of 1, with high probability 2k ≤ |CD,χ(ǫ)|, so we are purchasing no
more than the number of labeled examples in the theorem statement.

Also, it is interesting to see the difference between a “helpful” and “non-
helpful” distribution for this problem. An especially non-helpful distribution
would be the uniform distribution over all examples x with |vars(x)| = 1, in
which there are n components. In this case, unlabeled data does not help at all,
and one still needs Ω(n) labeled examples (or, even Ω(n/ǫ) if the distribution is a
non-uniform as in VC-dimension lower bounds [13]). On the other hand, a helpful
distribution is one such that with high probability the number of components is
small, such as the case of features appearing independently given the label.



6.2 Co-training with linear separators

We now consider the case of co-training where the hypothesis class is the class
of linear separators. For simplicity we focus first on the case of Example 3: the
target function is a linear separator in Rn and each example is a pair of points
both of which are assumed to be on the same side of the separator (i.e., an
example is a line-segment that does not cross the target plane).

As in the previous example, a natural approach is to try to solve the “con-
sistency” problem: given a set of labeled and unlabeled data, our goal is to find
a separator that is consistent with the labeled examples and compatible with
the unlabeled ones. Unfortunately, this consistency problem is NP-hard: given a
graph G embedded in Rn with two distinguished points s and t, it is NP-hard
to find the linear separator that cuts the minimum number of edges, even if
the minimum is 0 [14]. For this reason, we will make an additional assumption,
that the two points in an example are each drawn independently given the label.
That is, there is a single distribution D over Rn, and with some probability
p+, two points are drawn iid from D+ (D restricted to the positive side of the
target function) and with probability 1 − p+, the two are drawn iid from D−

(D restricted to the negative side of the target function). Blum and Mitchell
[5] have also given positive algorithmic results for co-training when (a) the two
halves of an example are drawn independently given the label (which we are
assuming now), (b) the underlying function is learnable via Statistical Query
algorithms (which is true for linear separators by [4]), and (c) we have enough
labeled data to produce a weakly-useful hypothesis on one of the halves to begin
with.6 Thus, our key contribution here is to show how we can run that algorithm
with only a single labeled example. In the process, we also simplify the results
of [4] somewhat.

Theorem 8. There is a polynomial-time algorithm (in n and b, where b is the
number of bits per example) to learn a linear separator under the above assump-
tions, using polynomially many unlabeled examples and a single labeled example.

Proof Sketch: Assume for convenience that the target separator passes through
the origin, and let us denote the separator by c∗ · x = 0. We will also assume
for convenience that p+ ∈ [ǫ/2, 1 − ǫ/2]; that is, the target function is not over-
whelmingly positive or overwhelmingly negative (if it is, this is actually an easy
case, but it makes the arguments more complicated). Define the margin of some
point x as the distance of x/|x| to the separating plane, or equivalently, the
cosine of the angle between c∗ and x.

We begin by drawing a large unlabeled sample S =
{
〈xi

1, x
i
2〉

}
; denote by

Sj the set
{
xi

j

}
, for j = 1, 2. (We describe our algorithm as working with the

fixed unlabeled sample S, since we just need to apply standard VC-dimension
arguments to get the desired result.) The first step is to perform a transformation

6 A weakly-useful predictor is a hypothesis h such that Pr[h(x) = 1|c∗(x) = 1] >
Pr[h(x) = 1|c∗(x) = 0] + ǫ; it is equivalent to the usual notion of a “weak hypoth-
esis” when the target function is balanced, but requires the hypothesis give more
information when the target function is unbalanced.



T on S1 to ensure that some reasonable (1/poly) fraction of T (S1) has margin
at least 1/poly, which we can do via the Outlier Removal Lemma of [4, 12].7 The
Outlier Removal Lemma states that one can algorithmically remove an ǫ′ fraction
of S1 and ensure that for the remainder, for any vector w, maxx∈S1

(w · x)2 ≤
poly(n, b, 1/ǫ′)Ex∈S1

[(w · x)2], where b is the number of bits needed to describe
the input points. We reduce the dimensionality (if necessary) to get rid of any
of the vectors for which the above quantity is zero. We then determine a linear
transformation (as described in [4]) so that in that in the transformed space for
all unit-length w, Ex∈T (S1)[(w · x)2] = 1). Since the maximum is bounded, this
guarantees that at least a 1/poly fraction of the points in T (S1) have at least a
1/poly margin with respect to the separating hyperplane.

To avoid cumbersome notation in the rest of the discussion, we drop our
use of “T ” and simply use S and c∗ to denote the points and separator in the
transformed space. (If the distribution originally had a reasonable probability
mass at a reasonable margin from c∗, then T could be the identity anyway.)

The second step is we argue that a random halfspace has at least a 1/poly
chance of being a weak predictor on S1. ([4] uses the perceptron algorithm to
get weak learning; here, we need something simpler since we do not yet have any
labeled data.) Specifically, consider a point x such that the angle between x and
c∗ is π/2− γ, and imagine that we draw h at random subject to h · c∗ ≥ 0 (half
of the h’s will have this property). Then,

Prh(h(x) 6= c∗(x)|h · c∗ ≥ 0) = (π/2 − γ)/π = 1/2 − γ/π.

Since at least a 1/poly fraction of the points in S1 have at least a 1/poly margin
this implies that:

Prh,x[h(x) = 1|c∗(x) = 1] > Prh,x[h(x) = 1|c∗(x) = 0] + 1/poly.

This means that a 1/poly probability mass of functions h must in fact be weakly-
useful predictors.

The final step of the algorithm is as follows. Using the above observation, we
pick a random h, and plug it into the bootstrapping theorem of [5] (which, given
unlabeled pairs 〈xi

1, x
i
2〉 ∈ S, will use h(xi

1) as a noisy label of xi
2, feeding the

result into an SQ algorithm), repeating this process poly(n) times. With high
probability, our random h was a weakly-useful predictor on at least one of these
steps, and we end up with a low-error hypothesis. For the rest of the runs of the
algorithm, we have no guarantees. We now observe the following. First of all,
any function h with small err(h) must have small errunl(h). Secondly, because
of the assumption of independence given the label, as shown in theorem 7, the
only functions with low unlabeled error rate are functions close to c∗, close to
¬c∗, close to the “all positive” function, or close to the “all negative” function.8

So, if we simply examine all the hypotheses produced by this procedure, and

7 If the reader is willing to allow running time polynomial in the margin of the data
set, then this part of the argument is not needed.

8 I.e., exactly the case of the generative models we maligned at the start of this paper.



pick some h with a low unlabeled error rate that is at least ǫ/2-far from the
“all-positive” or “all-negative” functions, then either h or ¬h is close to c∗. We
can now just draw a single labeled example to determine which case is which. ⊓⊔

We can easily extend our algorithm to the standard co-training (where c∗1 can
be different from c∗2) as follows: we repeat the procedure in a symmetric way,
and then, in order to find a good pair of functions, just try all combinations of
pairs of compatible functions to find one of small unlabeled error rate, not close
to “all positive”, or “all negative” functions; finally use a constant number of
labeled examples to produce a low error hypothesis (and here we use only one
part of the example and only one of the functions in the pair).

7 Conclusions

We have provided a PAC-style model that incorporates both labeled and unla-
beled data, and have given a number of sample-complexity bounds. The intent
of this model is to capture many of the ways unlabeled data is typically used,
and to provide a framework for thinking about when and why unlabeled data
can help. The main implication of our analysis is that unlabeled data is useful
if (a) we have a good notion of compatibility so that the target function indeed
has a low unlabeled error rate, (b) the distribution D is helpful in the sense that
not too many other hypotheses also have a low unlabeled error rate, and (c) we
have enough unlabeled data to estimate unlabeled error rates well.

Our best (ǫ-cover based) bounds apply to strategies that use the unlabeled
data first to select a small set of “reasonable” rules and then use labeled data
to select among them, as do our algorithms of Section 6.2. It is interesting to
consider how this relates to algorithms (like the original co-training algorithm)
that use labeled data first, and then use unlabeled data to bootstrap from them.

Another open problem generally would be to better understand the space of
efficient algorithms in this context. In particular, even though we present two
positive algorithmic results, even for fairly simple pairs (C, χ), it seems difficult to
efficiently make full use of unlabeled data without additional assumptions on the
distribution. A specific open problem is whether there exist efficient algorithms
for the simple problem in Section 6.1 if we allow irrelevant variables. That is,
we assume the set of variables is partitioned into 3 groups A, B, and C, each
positive example has |vars(x) ∩ A| ≥ 1 and |vars(x) ∩ B| = 0, and each negative
example has |vars(x) ∩ B| ≥ 1 and |vars(x) ∩ A| = 0, but we allow |C| > 0.
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