Envy-Free Classification

Maria-Florina Balcan
Machine Learning Department
Carnegie Mellon University

Travis Dick
Computer Science Department
Carnegie Mellon University

Ritesh Noothigattu
Machine Learning Department
Carnegie Mellon University

Ariel D. Procaccia
Computer Science Department
Carnegie Mellon University

Abstract

In classic fair division problems such as cake cutting and rent division, envy-freeness requires that each individual (weakly) prefer his allocation to anyone else's. On a conceptual level, we argue that envy-freeness also provides a compelling notion of fairness for classification tasks. Our technical focus is the generalizability of envy-free classification, i.e., understanding whether a classifier that is envy free on a sample would be almost envy free with respect to the underlying distribution with high probability. Our main result establishes that a small sample is sufficient to achieve such guarantees, when the classifier in question is a mixture of deterministic classifiers that belong to a family of low Natarajan dimension.

1 Introduction

The study of fairness in machine learning is driven by an abundance of examples where learning algorithms were perceived as discriminating against protected groups (Sweeney, 2013; Datta et al., 2015). Addressing this problem requires a conceptual — perhaps even philosophical — understanding of what fairness means in this context. In other words, the million dollar question is (arguably\footnote{Recent work takes a somewhat different view (Kilbertus et al., 2017).}) this: What are the formal constraints that fairness imposes on learning algorithms? On a very high level, most of the answers proposed so far (Luong et al., 2011; Dwork et al., 2012; Zemel et al., 2013; Feldman et al., 2015; Hardt et al., 2016; Joseph et al., 2016; Zafar et al., 2017a,b) fall into two (partially overlapping) categories: individual fairness notions, and group fairness notions.

In the former category, the best known example is the influential fair classification model of Dwork et al. (2012). The model involves a set of individuals and a set of outcomes. It is instructive to think of financially-motivated settings where the outcomes are, say, credit card offerings or displayed advertisements, and a loss function represents the benefit (e.g., in terms of revenue) of mapping a given individual to a given outcome. The centerpiece of the model is a similarity metric on the space of individuals; it is specific to the classification task at hand, and ideally captures the ethical ground truth about relevant attributes. For example, a man and a woman who are similar in every other way should be considered similar for the purpose of credit card offerings, but perhaps not for lingerie advertisements. Assuming such a metric is available, fairness can be naturally formalized as a Lipschitz constraint, which requires that individuals who are close according to the similarity metric be mapped to distributions over outcomes that are close according to some standard metric (such as total variation). The algorithmic problem is then to find a classifier that minimizes loss, subject to the Lipschitz constraint.

As attractive as this model is, it has one clear weakness from a practical viewpoint: the availability of a similarity metric. Dwork et al. (2012) are well aware of this issue; they write that justifying
this assumption is “one of the most challenging aspects” of their approach. They add that “in reality the metric used will most likely only be society’s current best approximation to the truth.” But, despite recent progress on automating ethical decisions in certain domains (Noothigattu et al., 2018; Freedman et al., 2018), the task-specific nature of the similarity metric makes even a credible approximation thereof seem unrealistic. In particular, if one wanted to learn a similarity metric, it is unclear what type of examples a relevant dataset would consist of.

An alternative notion of individual fairness, therefore, is called for. And our proposal draws on an extensive body of work on rigorous approaches to fairness, which — modulo one possible exception (see Section 1.2) — has not been tapped by machine learning researchers: the literature on fair division (Brams & Taylor, 1996; Moulin, 2003). The most prominent notion is that of envy-freeness (Foley, 1967; Varian, 1974), which, in the context of the allocation of goods, requires that the utility of each individual for his allocation be at least as high as his utility for the allocation of any other individual; this is the gold standard of fairness for problems such as cake cutting (Robertson & Webb, 1998; Procaccia, 2013) and rent division (Su, 1999; Gal et al., 2017).

Similarly, in the classification setting, envy-freeness would simply mean that the utility of each individual for his distribution over outcomes is at least as high as his utility for the distribution over outcomes assigned to any other individual. For example, it may well be the case that Bob is offered a worse credit card than that offered to Alice (in terms of, say, annual fees), but this outcome is not unfair if Bob is genuinely more interested in the card offered to him because he does not qualify for Alice’s card, or because its specific rewards program better fits his needs. Such rich utility functions are also evident in the context of job advertisements (Datta et al., 2015): people generally want higher paying jobs, but would presumably have higher utility for seeing advertisements for jobs that better fit their qualifications and interests.

Of course, as before, envy-freeness requires access to individuals’ utility functions, but — in stark contrast to the similarity metric of Dwork et al. (2012) — we do not view this assumption as a barrier to implementation. Indeed, there are a variety of techniques for learning utility functions (Chajewska et al., 2001; Nielsen & Jensen, 2004; Balcan et al., 2012). Moreover, in our running example of advertising, one can even think of standard measures like expected click-through rate (CTR) as an excellent proxy for utility.

It is worth noting that the classification setting is different from classic fair division problems in that the “goods” (outcomes) are non-excludable. In fact, one envy-free solution simply assigns each individual to his favorite outcome; but when the loss function disagrees with the utility functions, it may be possible to achieve smaller loss without violating the envy-freeness constraint.

In summary, we view envy-freeness as a compelling, well-established, and, importantly, practicable notion of individual fairness for classification tasks. Our goal is to understand its learning-theoretic properties.

1.1 Our Results

The technical challenge we face is that the space of individuals is potentially huge, yet we seek to provide universal envy-freeness guarantees. To this end, we are given a sample consisting of individuals drawn from an unknown distribution. We are interested in learning algorithms that minimize loss, subject to satisfying the envy-freeness constraint, on the sample. Our primary technical question is that of generalizability, that is, given a classifier that is envy free on a sample, is it approximately envy free on the underlying distribution? Surprisingly, Dwork et al. (2012) do not study generalizability in their model, and we are aware of only one subsequent paper that takes a learning-theoretic viewpoint on individual fairness and gives theoretical guarantees (see Section 1.2).

In Section 3, we do not constrain the classifier in question. Therefore, we need some strategy to extend a classifier that is defined on a sample; assigning an individual the same outcome as his nearest neighbor in the sample is a popular choice. However, we show that any strategy for extending a classifier from a sample, on which it is envy free, to the entire set of individuals is unlikely to be approximately envy free on the underlying distribution, unless the sample is exponentially large.

For this reason, in Section 4, we focus on structured families of classifiers. On a high level, our goal is to relate the combinatorial richness of the family to generalization guarantees. One obstacle is that standard notions of dimension do not extend to the analysis of randomized classifiers, whose range is
distributions over outcomes (equivalently, real vectors). We circumvent this obstacle by considering mixtures of deterministic classifiers that belong to a family of bounded Natarajan dimension (an extension of the well-known VC dimension to multi-class classification). Our main technical result asserts that, under this assumption, envy-freeness on a sample does generalize to the underlying distribution, even if the sample is relatively small (its size grows almost linearly in the Natarajan dimension). Finally, we discuss the implications of this result in Section 5.

1.2 Related Work

Conceptually, our work is most closely related to work by Zafar et al. (2017b). They are interested in group notions of fairness, and advocate preference-based notions instead of parity-based notions. In particular, they assume that each group has a utility function for classifiers, and define the preferred treatment property, which requires that the utility of each group for its own classifier be at least its utility for the classifier assigned to any other group. Their model and results focus on the case of binary classification where there is a desirable outcome and an undesirable outcome, so the utility of a group for a classifier is simply the fraction of its members that are mapped to the desirable outcome. Although, at first glance, this notion seems similar to envy-freeness, it is actually fundamentally different. Our paper is also completely different from that of Zafar et al. in terms of technical results; theirs are purely empirical in nature, and focus on the increase in accuracy obtained when parity-based notions of fairness are replaced with preference-based ones.

Very recent, concurrent work by Rothblum & Yona (2018) provides generalization guarantees for the metric notion of individual fairness introduced by Dwork et al. (2012), or, more precisely, for an approximate version thereof. There are two main differences compared to our work: first, we propose envy-freeness as an alternative notion of fairness that circumvents the need for a similarity metric. Second, they focus on binary classification, and so are able to make use of standard Rademacher complexity results to show generalization. By contrast, standard tools do not directly apply in our setting. It is worth noting that several other papers provide generalization guarantees for notions of group fairness, but these are more distantly related to our work (Zemel et al., 2013; Woodworth et al., 2018; Donini et al., 2018; Kearns et al., 2018; Hébert-Johnson et al., 2018).

2 The Model

We assume that there is a space \mathcal{X} of individuals, a finite space \mathcal{Y} of outcomes, and a utility function $u : \mathcal{X} \times \mathcal{Y} \to [0, 1]$ encoding the preferences of each individual for the outcomes in \mathcal{Y}. In the advertising example, individuals are users, outcomes are advertisements, and the utility function reflects the benefit an individual derives from being shown a particular advertisement. For any distribution $p \in \Delta(\mathcal{Y})$ (where $\Delta(\mathcal{Y})$ is the set of distributions over \mathcal{Y}) we let $u(x, p) = \mathbb{E}_{y \sim p}[u(x, y)]$ denote individual x’s expected utility for an outcome sampled from p. We refer to a function $h : \mathcal{X} \to \Delta(\mathcal{Y})$ as a classifier, even though it can return a distribution over outcomes.

2.1 Envy-Freeness

Roughly speaking, a classifier $h : \mathcal{X} \to \Delta(\mathcal{Y})$ is envy free if no individual prefers the outcome distribution of someone else over his own.

Definition 1. A classifier $h : \mathcal{X} \to \Delta(\mathcal{Y})$ is envy free (EF) on a set S of individuals if $u(x, h(x)) \geq u(x, h(x'))$ for all $x, x' \in S$. Similarly, h is (α, β)-EF with respect to a distribution P on \mathcal{X} if

$$\Pr_{x, x' \sim P}[u(x, h(x)) < u(x, h(x')) - \beta] \leq \alpha.$$

Finally, h is (α, β)-pairwise EF on a set of pairs of individuals $S = \{(x_i, x'_i)\}^n_{i=1}$ if

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[u(x_i, h(x_i)) < u(x_i, h(x'_i)) - \beta] \leq \alpha.$$

\[2\] On a philosophical level, the fair division literature deals exclusively with individual notions of fairness. In fact, even in group-based extensions of envy-freeness (Manurangsi & Suksompong, 2017) the allocation is shared by groups, but individuals must not be envious. We subscribe to the view that group-oriented notions (such as statistical parity) are objectionable, because the outcome can be patently unfair to individuals.
Any classifier that is EF on a sample S of individuals is also (α, β)-pairwise EF on any pairing of the individuals in S, for any $\alpha \geq 0$ and $\beta \geq 0$. The weaker pairwise EF condition is all that is required for our generalization guarantees to hold.

2.2 Optimization and Learning

Our formal learning problem can be stated as follows. Given sample access to an unknown distribution P over individuals \mathcal{X} and their utility functions, and a known loss function $\ell : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$, find a classifier $h : \mathcal{X} \rightarrow \Delta(\mathcal{Y})$ that is (α, β)-EF with respect to P minimizing expected loss $\mathbb{E}_{x \sim P}[\ell(x, h(x))]$, where for $x \in \mathcal{X}$ and $p \in \Delta(\mathcal{Y})$, $\ell(x, p) = \mathbb{E}_{y \sim p}[\ell(x, y)]$.

We follow the empirical risk minimization (ERM) learning approach, i.e., we collect a sample of individuals drawn i.i.d from P and find an EF classifier with low loss on the sample. Formally, given a sample of individuals $S = \{x_1, \ldots, x_n\}$ and their utility functions $u_x(\cdot) = u(x, \cdot)$, we are interested in a classifier $h : S \rightarrow \Delta(\mathcal{Y})$ that minimizes $\sum_{i=1}^{n} \ell(x_i, h(x_i))$ among all classifiers that are EF on S. The algorithmic problem itself is beyond the scope of the current paper; see Section 5 for further discussion.

Recall that we considered randomized classifiers that can assign a distribution over outcomes to each of the individuals. However, one might wonder whether the EF classifier that minimizes loss on a sample happens to always be deterministic. Or, at least, the optimal deterministic classifier on the sample might incur a loss that is very close to that of the optimal randomized classifier. If this were true, we could restrict ourselves to classifiers of the form $h : \mathcal{X} \rightarrow \mathcal{Y}$, which would be much easier to analyze. Unfortunately, it turns out that this is not the case. In fact, there could be an arbitrary (multiplicative) gap between the optimal randomized EF classifier and the optimal deterministic EF classifier. The intuition behind this is as follows. A deterministic classifier that has very low loss on the sample, but is not EF, would be completely discarded in the deterministic setting. On the other hand, a randomized classifier could take this loss-minimizing deterministic classifier and mix it with a classifier with high “negative envy”, so that the mixture ends up being EF and at the same time has low loss. This is made concrete in Example 1 in the appendix.

3 Arbitrary Classifiers

An important (and typical) aspect of our learning problem is that the classifier h needs to provide an outcome distribution for every individual, not just those in the sample. For example, if h chooses advertisements for visitors of a website, the classifier should still apply when a new visitor arrives. Moreover, when we use the classifier for new individuals, it must continue to be EF. In this section, we consider two-stage approaches that first choose outcome distributions for the individuals in the sample, and then extend those decisions to the rest of \mathcal{X}.

In more detail, we are given a sample $S = \{x_1, \ldots, x_n\}$ of individuals and a classifier $h : S \rightarrow \Delta(\mathcal{Y})$ assigning outcome distributions to each individual. Our goal is to extend these assignments to a classifier $\overline{h} : \mathcal{X} \rightarrow \Delta(\mathcal{Y})$ that can be applied to new individuals as well. For example, \overline{h} could be the loss-minimizing EF classifier on the sample S.

For this section, we assume that \mathcal{X} is equipped with a distance metric d. Moreover, we assume in this section that the utility function u is L-Lipschitz on \mathcal{X}. That is, for every $y \in \mathcal{Y}$ and for all $x, x' \in \mathcal{X}$, we have $|u(x, y) - u(x', y)| \leq L \cdot d(x, x')$.

Under the foregoing assumptions, one natural way to extend the classifier on the sample to all of \mathcal{X} is to assign new individuals the same outcome distribution as their nearest neighbor in the sample. Formally, for a set $S \subseteq \mathcal{X}$ and any individual $x \in \mathcal{X}$, let $\text{NN}_S(x) \in \arg\min_{x' \in S} d(x, x')$ denote the nearest neighbor of x in S with respect to the metric d (breaking ties arbitrarily). The following simple result (whose proof is relegated to Appendix B) establishes that this approach preserves envy-freeness in cases where the sample is exponentially large.

Theorem 1. Let d be a metric on \mathcal{X}, P be a distribution on \mathcal{X}, and u be an L-Lipschitz utility function. Let S be a set of individuals such that there exists $\mathcal{X} \subseteq \mathcal{X}$ with $P(\mathcal{X}) \geq 1 - \alpha$ and $\sup_{x \in \mathcal{X}} d(x, \text{NN}_S(x)) \leq \beta/(2L)$. Then for any classifier $h : S \rightarrow \Delta(\mathcal{Y})$ that is EF on S, the extension $\overline{h} : \mathcal{X} \rightarrow \Delta(\mathcal{Y})$ given by $\overline{h}(x) = h(\text{NN}_S(x))$ is (α, β)-EF on P.

The conditions of Theorem 1 require that the set of individuals S is a $\beta/(2L)$-net for at least a $(1-\alpha)$-fraction of the mass of P on X. In several natural situations, an exponentially large sample guarantees that this occurs with high probability. For example, if X is a subset of \mathbb{R}^q, $d(x, x') = ||x - x'||_2$, and X has diameter at most D, then for any distribution P on X, if S is an i.i.d. sample of size $O\left(\frac{1}{\alpha}(\frac{LD_X^2}{\beta})^{q}(q \log \frac{LD_X^2}{\beta} + \log \frac{1}{\delta})\right)$, it will satisfy the conditions of Theorem 1 with probability at least $1 - \delta$. This sampling result is folklore, but, for the sake of completeness, we prove it in Lemma 5 of Appendix B.

However, the exponential upper bound given by the nearest neighbor strategy is as far as we can go in terms of generalizing envy-freeness from a sample (without further assumptions). Specifically, our next result establishes that any algorithm — even randomized — for extending classifiers from the sample to the entire space X requires an exponentially large sample of individuals to ensure envy-freeness on the distribution P. The proof of Theorem 2 can be found in Appendix B.

Theorem 2. There exists a space of individuals $X \subset \mathbb{R}^q$, and a distribution P over X such that, for every randomized algorithm A that extends classifiers on a sample to X, there exists an L-Lipschitz utility function u such that, when a sample of individuals S of size $n = 4^q/2$ is drawn from P without replacement, there exists an EF classifier on S for which, with probability at least $1 - 2\exp(-4^q/100) - \exp(-4^q/200)$ jointly over the randomness of A and S, its extension by A is not (α, β)-EF with respect to P for any $\alpha < 1/25$ and $\beta < L/8$.

We remark that a similar result would hold even if we sampled S with replacement; we sample here without replacement purely for ease of exposition.

4 Low-Complexity Families of Classifiers

In this section we show that (despite Theorem 2) generalization for envy-freeness is possible using much smaller samples of individuals, as long as we restrict ourselves to choosing a classifier from a family of relatively low complexity.

In more detail, two classic complexity measures are the VC-dimension (Vapnik & Chervonenkis, 1971) for binary classifiers, and the Natarajan dimension (Natarajan, 1989) for multi-class classifiers. However, to the best of our knowledge, there is no suitable dimension directly applicable to functions ranging over distributions, which in our case can be seen as $|Y|$-dimensional real vectors. One possibility would be to restrict ourselves to deterministic classifiers of the type $h : X \rightarrow Y$. However, we have seen in Section 2 that envy-freeness is a very strong constraint on deterministic classifiers. Instead, we will consider a family \mathcal{H} consisting of randomized mixtures of deterministic classifiers belonging to a family $\mathcal{G} \subset \{ g : X \rightarrow Y \}$ of low Natarajan dimension. This allows us to adapt Natarajan-dimension-based generalization results to our setting while still working with randomized classifiers.

4.1 Natarajan Dimension Primer

Before presenting our main result, we briefly summarize the definition and relevant properties of the Natarajan dimension. For more details, we refer the reader to (Shalev-Shwartz & Ben-David, 2014).

We say that a family \mathcal{G} multi-class shatters a set of points x_1, \ldots, x_n if there exist labels y_1, \ldots, y_n and y'_1, \ldots, y'_n such that for every $i \in [n]$ we have $y_i \neq y'_i$, and for any subset $C \subset [n]$ there exists $g \in \mathcal{G}$ such that $g(x_i) = y_i$ if $i \in C$ and $g(x_i) = y'_i$ otherwise. The Natarajan dimension of a family \mathcal{G} is the cardinality of the largest set of points that can be multi-class shattered by \mathcal{G}.

For example, suppose we have a feature map $\Psi : X \times Y \rightarrow \mathbb{R}^q$ that maps each individual-outcome pair to a q-dimensional feature vector, and consider the family of functions that can be written as $g(x) = \arg \max_{y \in Y} w^\top \Psi(x, y)$ for weight vectors $w \in \mathbb{R}^q$. This family has Natarajan dimension at most q.

For a set $S \subset X$ of points, we let $\mathcal{G}|_S$ denote the restriction of \mathcal{G} to S, which is any subset of \mathcal{G} of minimal size such that for every $g \in \mathcal{G}$ there exists $g' \in \mathcal{G}|_S$ such that $g(x) = g'(x)$ for all $x \in S$. The size of $\mathcal{G}|_S$ is the number of different labelings of the sample S achievable by functions in \mathcal{G}. The following Lemma is the analogue of Sauer’s lemma for binary classification.\[\]
Lemma 1 (Natarajan). For a family G of Natarajan dimension d and any subset $S \subseteq \mathcal{X}$, we have $|G|_S \leq |S|^d |\mathcal{Y}|^{2d}$.

Classes of low Natarajan dimension also enjoy the following uniform convergence guarantee.

Lemma 2. Let G have Natarajan dimension d and fix a loss function $\ell : G \times \mathcal{X} \to [0, 1]$. For any distribution P over \mathcal{X}, if S is an i.i.d. sample drawn from P of size $O\left(\frac{1}{\epsilon^2} \left(d \log |\mathcal{Y}| + \log \frac{1}{\delta} \right)\right)$, then with probability at least $1 - \delta$ we have $\sup_{g \in G} \left| \mathbb{E}_{x \sim P}[\ell(g, x)] - \frac{1}{n} \sum_{x \in S} \ell(g, x) \right| \leq \epsilon$.

4.2 Main Result

We consider the family of classifiers that can be expressed as a randomized mixture of m deterministic classifiers selected from a family $G \subset \{g : \mathcal{X} \to \mathcal{Y}\}$. Our generalization guarantees will depend on the complexity of the family G, measured in terms of its Natarajan dimension, and the number m of functions we are mixing. More formally, let $\check{g} = (g_1, \ldots, g_m) \in G^m$ be a vector of m functions in G and $\alpha \in \Delta_m$ be a distribution over $[m]$, where $\Delta_m = \{p \in \mathbb{R}^m : p_i \geq 0, \sum_i p_i = 1\}$ is the m-dimensional probability simplex. Then consider the function $h_{\check{g}, \alpha} : \mathcal{X} \to \Delta(\mathcal{Y})$ with assignment probabilities given by

$$
\Pr(h_{\check{g}, \alpha}(x) = y) = \sum_{i=1}^{m} \mathbb{I}(g_i(x) = y) \alpha_i.
$$

Intuitively, for a given individual x, $h_{\check{g}, \alpha}$ chooses one of the g_i randomly with probability α_i, and outputs $g_i(x)$. Let

$$
\mathcal{H}(G, m) = \{h_{\check{g}, \alpha} : \mathcal{X} \to \Delta(\mathcal{Y}) : \check{g} \in G^m, \alpha \in \Delta_m\}
$$

be the family of classifiers that can be written this way. Our main technical result shows that envy-freeness generalizes for this class.

Theorem 3. Suppose G is a family of deterministic classifiers of Natarajan dimension d, and let $\mathcal{H} = \mathcal{H}(G, m)$ for $m \in \mathbb{N}$. For any distribution P over \mathcal{X}, $\gamma > 0$, and $\delta > 0$, if $S = \{(x_i, x_i')\}_{i=1}^{n}$ is an i.i.d. sample of pairs drawn from P of size

$$
n \geq O\left(\frac{1}{\gamma^2} \left(dm^2 \log dm|\mathcal{Y}| \log(m|\mathcal{Y}|/\gamma) + \log \frac{1}{\gamma}\right)\right),
$$

then with probability at least $1 - \delta$, every classifier $h \in \mathcal{H}$ is (α, β)-pairwise-\text{-EF} on S is also $(\alpha + 7\gamma, \beta + 4\gamma)$-\text{-EF} on P.

Theorem 3 is only effective insofar as families of classifiers of low Natarajan dimension are useful. And, indeed, several prominent families have low Natarajan dimension (Daniely et al., 2012), including one vs. all (which is a special case of the example given in Section 4.1), multiclass SVM, tree-based classifiers, and error correcting output codes.

We now turn to the theorem’s proof, which consists of two steps. First, we show that envy-freeness generalizes for finite classes. Second, we show that $\mathcal{H}(G, m)$ can be approximated by a finite subset.

Lemma 3. Let $\mathcal{H} \subset \{h : \mathcal{X} \to \Delta(\mathcal{Y})\}$ be a finite family of classifiers. For any $\gamma > 0$, $\delta > 0$, and $\beta \geq 0$ if $S = \{(x_i, x_i')\}_{i=1}^{n}$ is an i.i.d. sample of pairs from P of size $n \geq \frac{1}{2\gamma^2} \ln \frac{|\mathcal{H}|}{\delta}$, then with probability at least $1 - \delta$, every $h \in \mathcal{H}$ that is (α, β)-pairwise-\text{-EF} on S (for any α) is also $(\alpha + \gamma, \beta)$-\text{-EF} on P.

Proof. Let $f (x, x', h) = \mathbb{I}\{u(x, h(x)) < u(x, h(x')) - \beta\}$ be the indicator that x is envious of x' by at least β under classifier h. Then $f (x_i, x_i', h)$ is a Bernoulli random variable with success probability $\mathbb{E}_{x, x', h}[f (x, x', h)]$. Applying Hoeffding’s inequality to any fixed hypothesis $h \in \mathcal{H}$ guarantees that

$$
\Pr_S\left(\mathbb{E}_{x, x' \sim P}[f (x, x', h)] \geq \frac{1}{n} \sum_{i=1}^{n} f (x_i, x_i', h) + \gamma \right) \leq \exp(-2n\gamma^2).
$$

Therefore, if h is (α, β)-\text{-EF} on S, then it is also $(\alpha + \gamma, \beta)$-\text{-EF} on P with probability at least $1 - \exp(-2n\gamma^2)$. Applying the union bound over all $h \in \mathcal{H}$ and using the lower bound on n completes the proof.

Next, we show that $\mathcal{H}(G, m)$ can be covered by a finite subset. Since each classifier in \mathcal{H} is determined by the choice of m functions from G and mixing weights $\alpha \in \Delta_m$, we will construct finite covers of G and Δ_m. Our covers \hat{G} and $\hat{\Delta}_m$ will guarantee that for every $g \in G$, there exists $\hat{g} \in \hat{G}$ such
that $\Pr_{x \sim P}(g(x) \neq \hat{g}(x)) \leq \gamma / m$. Similarly, for any mixing weights $\alpha \in \Delta_m$, there exists $\hat{\alpha} \in \Delta_m$ such that $\|\alpha - \hat{\alpha}\|_1 \leq \gamma$. If $h \in \mathcal{H}(G, m)$ is the mixture of g_1, \ldots, g_m with weights α, we let \hat{h} be the mixture of $\hat{g}_1, \ldots, \hat{g}_m$ with weights $\hat{\alpha}$. This approximation has two sources of error: first, for a random individual $x \sim P$, there is probability up to γ that at least one $g_i(x)$ will disagree with $\hat{g}_i(x)$, in which case h and \hat{h} may assign completely different outcome distributions. Second, even in the high-probability event that $\hat{g}_i(x) = \hat{g}_i(x)$ for all $i \in [m]$, the mixing weights are not identical, resulting in a small perturbation of the outcome distribution assigned to x.

Lemma 4. Let \mathcal{G} be a family of deterministic classifiers with Natarajan dimension d, and let $\mathcal{H} = \mathcal{H}(G, m)$ for some $m \in \mathbb{N}$. For any $\gamma > 0$, there exists a subset $\mathcal{H} \subset \mathcal{H}$ of size $O\left(\frac{m^2 d \log(m|\mathcal{Y}|)}{\gamma^{d+1}}\right)$ such that for every $h \in \mathcal{H}$ there exists $\hat{h} \in \mathcal{H}$ satisfying:

1. $\Pr_{x \sim P}(\|h(x) - \hat{h}(x)\|_1 > \gamma) \leq \gamma$.
2. If S is an i.i.d. sample of individuals of size $O\left(\frac{m^2}{\gamma^2} (d \log |\mathcal{Y}| + \log \frac{1}{\delta})\right)$ then w.p. $\geq 1 - \delta$, we have $\|h(x) - \hat{h}(x)\|_1 \leq \gamma$ for all but a 2γ-fraction of $x \in S$.

Proof. As described above, we begin by constructing finite covers of Δ_m and \mathcal{G}. First, let $\hat{\Delta}_m \subset \Delta_m$ be the set of distributions over $[m]$ where each coordinate is a multiple of γ / m. Then we have $|\hat{\Delta}_m| = O\left(\left(\frac{m}{\gamma}\right)^m\right)$ and for every $p \in \Delta_m$, there exists $q \in \hat{\Delta}_m$ such that $\|p - q\|_1 \leq \gamma$.

In order to find a small cover of \mathcal{G}, we use the fact that it has low Natarajan dimension. This implies that the number of effective functions in \mathcal{G} when restricted to a sample S' grows only polynomially in the size of S'. At the same time, if two functions in \mathcal{G} agree on a large sample, they will also agree with high probability on the distribution.

Formally, let S' be an i.i.d. sample drawn from P of size $O\left(\frac{m^2}{\gamma^2} d \log |\mathcal{Y}|\right)$, and let $\hat{\mathcal{G}} = \mathcal{G}|_{S'}$ be any minimal subset of \mathcal{G} that realizes all possible labelings of S' by functions in \mathcal{G}. We now argue that with probability 0.99, for every $g \in \mathcal{G}$ there exists $\hat{g} \in \hat{\mathcal{G}}$ such that $\Pr_{x \sim P}(g(x) \neq \hat{g}(x)) \leq \gamma / m$. For any pair of functions $g, g' \in \mathcal{G}$, let $(g, g') : \mathcal{X} \rightarrow \mathcal{Y}^2$ be the function given by $(g, g')(x) = (g(x), g'(x))$, and let $\mathcal{G}^2 = \{(g, g') : g, g' \in \mathcal{G}\}$. The Natarajan dimension of \mathcal{G}^2 is at most $2d$ (see Lemma 6 in Appendix C). Moreover, consider the loss $c : \mathcal{G}^2 \times \mathcal{X} \rightarrow \{0, 1\}$ given by $c(g, g', x) = 1(g(x) \neq g'(x))$. Applying Lemma 2 with the chosen size of $|S'|$ ensures that with probability at least 0.99 every pair $(g, g') \in \mathcal{G}^2$ satisfies

$$\left| \mathbb{E}_{x \sim P}[c(g, g', x)] - \frac{1}{|S'|} \sum_{x \in S'} c(g, g', x) \right| \leq \frac{\gamma}{m}.$$

By the definition of $\hat{\mathcal{G}}$, for every $g \in \mathcal{G}$, there exists $\hat{g} \in \hat{\mathcal{G}}$ for which $c(g, \hat{g}, x) = 0$ for all $x \in S'$, which implies that $\Pr_{x \sim P}(g(x) \neq \hat{g}(x)) \leq \gamma / m$.

Using Lemma 1 to bound the size of $\hat{\mathcal{G}}$, we have that

$$|\hat{\mathcal{G}}| \leq |S'|^d |\mathcal{Y}|^{2d} = O\left(\left(\frac{m^2}{\gamma^2} d |\mathcal{Y}|^2 \log |\mathcal{Y}|\right)^d\right).$$

Since this construction succeeds with non-zero probability, we are guaranteed that such a set $\hat{\mathcal{G}}$ exists. Finally, by an identical uniform convergence argument, it follows that if S is a fresh i.i.d. sample of the size given in Item 2 of the lemma’s statement, then, with probability at least $1 - \delta$, every g and \hat{g} will disagree on at most a $2\gamma / m$-fraction of S, since they disagree with probability at most γ / m on P.

Next, let $\hat{\mathcal{H}} = \{h_{\hat{g}, \alpha} : \hat{g} \in \hat{\mathcal{G}}, \alpha \in \hat{\Delta}_m\}$ be the same family as \mathcal{H}, except restricted to choosing functions from $\hat{\mathcal{G}}$ and mixing weights from $\hat{\Delta}_m$. Using the size bounds above and the fact that $\binom{N}{m} = O\left(\frac{N^m}{m^m}\right)$, we have that

$$|\hat{\mathcal{H}}| = \frac{|\hat{\mathcal{G}}|}{m} \cdot |\hat{\Delta}_m| = O\left(\frac{(dm^2 |\mathcal{Y}|^2 \log(m|\mathcal{Y}|) |\mathcal{Y}|)^d m}{\gamma^{(2d+1)m}}\right).$$

7
Suppose that h is the mixture of $g_1, \ldots, g_m \in \mathcal{G}$ with weights $\alpha \in \Delta_m$. Let \hat{g}_i be the approximation to g_i for each i, let $\hat{\alpha} \in \Delta_m$ be such that $\|\alpha - \hat{\alpha}\|_1 \leq \gamma$, and let \hat{h} be the random mixture of $\hat{g}_1, \ldots, \hat{g}_m$ with weights $\hat{\alpha}$. For an individual x drawn from P, we have $g_i(x) \neq \hat{g}_i(x)$ with probability at most γ/m, and therefore they all agree with probability at least $1 - \gamma$. When this event occurs, we have $\|h(x) - \hat{h}(x)\|_1 \leq \|\alpha - \hat{\alpha}\|_1 \leq \gamma$.

The second part of the claim follows by similar reasoning, using the fact that for the given sample size $|S|$, with probability at least $1 - \delta$, every $g \in \mathcal{G}$ disagrees with its approximation $\hat{g} \in \mathcal{G}$ on at most a $2\gamma/m$-fraction of S. This means that $\hat{g}_i(x) = g_i(x)$ for all $i \in [m]$ on at least a $(1 - 2\gamma)$-fraction of the individuals x in S. For these individuals, $\|h(x) - \hat{h}(x)\|_1 \leq \|\alpha - \hat{\alpha}\|_1 \leq \gamma$.

Combining the generalization guarantee for finite families given in Lemma 3 with the finite approximation given in Lemma 4, we are able to show that envy-freeness also generalizes for $\mathcal{H}(\mathcal{G}, m)$.

Proof of Theorem 3. Let $\hat{\mathcal{H}}$ be the finite approximation to \mathcal{H} constructed in Lemma 4. If the sample is of size $|S| = O(\frac{1}{\gamma^2} (d \log (\log |\mathcal{Y}|) \log |\mathcal{Y}|/\gamma) + \log \frac{1}{\delta})$, we can apply Lemma 3 to this finite family, which implies that for any $\beta' \geq 0$, with probability at least $1 - \delta/2$ every $\hat{h} \in \hat{\mathcal{H}}$ that is (α', β')-pairwise-EF on S (for any α') is also $(\alpha' + \gamma, \beta')$-EF on P. We apply this lemma with $\beta' = \beta + 2\gamma$.

Moreover, from Lemma 4, we know that if $|S| = O(\frac{n^2}{\gamma^2} (d \log (\log |\mathcal{Y}|) + \log \frac{1}{\delta}))$, then with probability at least $1 - \delta/2$, for every $h \in \mathcal{H}$, there exists $\hat{h} \in \hat{\mathcal{H}}$ satisfying $\|h(x) - \hat{h}(x)\|_1 \leq \gamma$ for all but a 2γ-fraction of the individuals in S. This implies that on all but at most a 4γ-fraction of the pairs in S, h and \hat{h} satisfy this inequality for both individuals in the pair. Assume these high probability events occur. Finally, from Item 1 of the lemma we have that $\Pr_{x_1, x_2 \sim P} (\max_{i=1,2} \|h(x_i) - \hat{h}(x_i)\|_1 > \gamma) \leq 2\gamma$.

Now let $h \in \mathcal{H}$ be any classifier that is (α, β)-pairwise-EF on S. Since the utilities are in $[0, 1]$ and $\max_{x=x_i, x'_i} \|h(x) - \hat{h}(x)\|_1 \leq \gamma$ for all but a 4γ-fraction of the pairs in S, we know that \hat{h} is $(\alpha + 4\gamma, \beta + 2\gamma)$-pairwise-EF on S. Applying the envy-freeness generalization guarantee (Lemma 3) for $\hat{\mathcal{H}}$, it follows that h is also $(\alpha + 5\gamma, \beta + 2\gamma)$-EF on P. Finally, using the fact that

$$\Pr_{x_1, x_2 \sim P} \left(\max_{i=1,2} \|h(x_i) - \hat{h}(x_i)\|_1 > \gamma \right) \leq 2\gamma,$$

it follows that h is $(\alpha + 7\gamma, \beta + 4\gamma)$-EF on P. \hfill \Box

It is worth noting that the (exponentially large) approximation $\hat{\mathcal{H}}$ is only used in the generalization analysis; importantly, an ERM algorithm need not construct it. Also note that the number of outcomes $|\mathcal{Y}|$ only appears in the logarithmic terms of the sample complexity bounds, allowing these results to handle very large outcome spaces, provided that we choose a suitable family \mathcal{G} of deterministic classifiers.

5 Discussion

We firmly believe that envy-freeness gives a new, useful perspective on individual fairness in classification — when individuals have rich utility functions, which, as we have argued in detail in Section 1, is the case in advertising. However, in some domains there are only two possible outcomes, one of which is ‘good’ and the other ‘bad’; examples include predicting whether an individual would default on a loan, and whether an offender would recidivate. In these degenerate cases envy-freeness would require that the classifier assign each and every individual the exact same probability of obtaining the ‘good’ outcome, which, clearly, is not a reasonable constraint.

It is also worth noting that we have not directly addressed the problem of computing the loss-minimizing envy-free classifier from a given family on a given sample of individuals. Just like in the work of Dwork et al. (2012), when the classifier is arbitrary, this problem can be written as a linear program of polynomial size in the number of outcomes, because envy-freeness amounts to a set of linear constraints. In both settings, though, one needs to restrict the family of classifiers to obtain good sample complexity, and, moreover, the naïve formulation would be intractable when dealing with a combinatorial space of outcomes. Nevertheless, the linearity of envy-freeness may
enable practical mixed-integer linear programming formulations with respect to certain families. More generally, given the wealth of powerful optimization tools at the community’s disposal, we do not view computational complexity as a long-term obstacle to implementing our approach.

References

Shalev-Shwartz, S. and Ben-David, S. \textit{Understanding machine learning: From theory to algorithms}. Cambridge University Press, 2014.

A Appendix for Section 2

Example 1. Let $S = \{x_1, x_2\}$ and $Y = \{y_1, y_2, y_3\}$. Let the loss function be such that
\[
\ell(x_1, y_1) = 0 \quad \ell(x_1, y_2) = 1 \quad \ell(x_1, y_3) = 1 \\
\ell(x_2, y_1) = 1 \quad \ell(x_2, y_2) = 1 \quad \ell(x_2, y_3) = 0
\]
And let the utility function be such that
\[
u(x_1, y_1) = 0 \quad \nu(x_1, y_2) = 1 \quad \nu(x_1, y_3) = \frac{1}{\gamma} \\
\nu(x_2, y_1) = 0 \quad \nu(x_2, y_2) = 0 \quad \nu(x_2, y_3) = 1
\]
where $\gamma > 1$. Now, the only deterministic classifier with a loss of 0 is h_0 such that $h_0(x_1) = y_1$ and $h_0(x_2) = y_3$. But, this is not EF, since $\nu(x_1, y_1) < \nu(x_1, y_3)$. Furthermore, every other deterministic classifier has a total loss of at least 1, causing the optimal deterministic EF classifier to have loss of at least 1.

To show that randomized classifiers can do much better, consider the randomized classifier $S = \{x_1, x_2\}$, where the classifier h_C has a total loss of at least $1 - \frac{1}{\gamma}$ times smaller than the loss of the optimal deterministic one, for any $\gamma > 1$.

B Appendix for Section 3

Theorem 1. Let d be a metric on \mathcal{X}, P be a distribution on \mathcal{X}, and u be an L-Lipschitz utility function. Let S be a set of individuals such that there exists $\mathcal{X} \subset \mathcal{X}$ with $P(\mathcal{X}) > 1 - \alpha$ and $\sup_{x \in \mathcal{X}} d(x, \text{NN}_S(x)) \leq \beta/(2L)$. Then for any classifier $h : S \rightarrow \Delta(Y)$ that is EF on S, the extension $\overline{h} : \mathcal{X} \rightarrow \Delta(Y)$ given by $\overline{h}(x) = h(\text{NN}_S(x))$ is (α, β)-EF on P.

Proof. Let $h : S \rightarrow \Delta(Y)$ be any EF classifier on S and $\overline{h} : \mathcal{X} \rightarrow \Delta(Y)$ be the nearest neighbor extension. Sample x and x' from P. Then, x belongs to the subset \mathcal{X} with probability at least $1 - \alpha$. When this occurs, x has a neighbor within distance $\beta/(2L)$ in the sample. Using the Lipschitz continuity of u, we have $|u(x, \overline{h}(x)) - u(\text{NN}_S(x), h(\text{NN}_S(x)))| \leq \beta/2$. Similarly, $|u(x, \overline{h}(x')) - u(\text{NN}_S(x), h(\text{NN}_S(x')))| \leq \beta/2$. Finally, since $\text{NN}_S(x)$ does not envy $\text{NN}_S(x')$ under h, it follows that x does not envy x' by more than β under \overline{h}. \hfill \square

Lemma 5. Suppose $\mathcal{X} \subset \mathbb{R}^q$, $d(x, x') = \|x - x'\|_2$, and let $D = \sup_{x, x' \in \mathcal{X}} d(x, x')$ be the diameter of \mathcal{X}. For any distribution P over \mathcal{X}, $\beta > 0$, $\alpha > 0$, and $\delta > 0$ there exists $\mathcal{X} \subset \mathcal{X}$ such that $P(\mathcal{X}) \geq 1 - \alpha$ and, if S is an i.i.d. sample drawn from P of size $|S| = O(\frac{1}{\alpha} (\frac{Ld\sqrt{q}}{\beta})^q (d \log \frac{LD\sqrt{q}}{\beta} + \log \frac{1}{\delta}))$, then with probability at least $1 - \delta$, $\sup_{x \in \mathcal{X}} d(x, \text{NN}_S(x)) \leq \beta/(2L)$.

Proof. Let C be the smallest cube containing \mathcal{X}. Since the diameter of \mathcal{X} is D, the side-length of C is at most D. Let $s = \beta/(2L\sqrt{q})$ be the side-length such that a cube with side-length s has diameter $\beta/(2L)$. It takes at most $m = \lceil D/s \rceil^q$ cubes of side-length s to cover C. Let C_1, \ldots, C_m be such a covering, where each C_i has side-length s.

Let C_i be any cube in the cover for which $P(C_i) > \alpha/m$. The probability that a sample of size n drawn from P does not contain a sample in C_i is at most $(1 - \alpha/m)^n \leq e^{-\alpha n/m}$. Let $I = \{i \in [m] : P(C_i) \geq \alpha/m\}$. By the union bound, the probability that there exists $i \in I$ such that C_i does not contain a sample is at most $me^{-\alpha n/m}$. Setting
\[
\frac{n}{\alpha} \ln \frac{m}{\delta} = O\left(\frac{1}{\alpha} \left(\frac{Ld\sqrt{q}}{\beta}\right)^q \left(q \log \frac{LD\sqrt{q}}{\beta} + \log \frac{1}{\delta}\right)\right)
\]
We claim that the utility function of Equation \(1\) is indeed \(L\)-Lipschitz with respect to any \(L_p\) norm. This is because for any cube \(c_i\), and for any \(x, x' \in c_i\), we have

\[
|u(x, y_i) - u(x', y_i)| = L \|x - \mu_i\|_\infty - \|x' - \mu_i\|_\infty \\
\leq L\|x - x'\|_\infty \leq L\|x - x'\|_p.
\]

Moreover, for the other outcome, we have \(u(x, -y_i) = u(x', -y_i) = 0\). It follows that \(u\) is \(L\)-Lipschitz within every cube. At the boundary of the cubes, the utility for any outcome is 0, and hence \(u\) is also continuous throughout \(X\). Because it is piecewise Lipschitz and continuous, \(u\) must be \(L\)-Lipschitz throughout \(X\), with respect to any \(L_p\) norm.

Next, let \(D\) be an arbitrary deterministic algorithm that extends classifiers on a sample to \(X\). We draw the sample \(S\) of size \(m/2\) from \(P\) without replacement. Consider the distribution over favorites of individuals in \(S\). Each individual in \(S\) has a favorite that is sampled independently from Bernoulli(1/2). Hence, by Hoeffding’s inequality, the fraction of individuals in \(S\) with a favorite of 0 is between...
We now show that for such a sample \(u \), we have \(\theta \). This expression is a quadratic function in \(\epsilon \). The value of \(\theta \) is at least \(1 - \frac{2}{Z} \epsilon \) with probability at least \(1 - 2 \exp(-m\epsilon^2) \). The same holds simultaneously for the fraction of individuals with favorite 1.

Given the sample \(S \) and the utility function \(u \) on the sample (defined by the instantiation of their favorites), consider the classifier \(h_{u,S} \), which maps each individual \(\mu_i \) in the sample \(S \) to his favorite \(y_i \). This classifier is clearly EF on the sample (by Theorem ??). Consider the extension \(h_{u,S}^\prime \) of \(h_{u,S} \) to the whole of \(X \) as defined by algorithm \(D \). Define two sets \(Z_0 \) and \(Z_1 \) by letting \(Z_y = \{ \mu_j \notin S \mid h_{u,S}^\prime(\mu_j) = y \} \), and let \(y \) denote an outcome that is assigned to at least half of the out-of-sample centers, i.e., an outcome for which \(|Z_y| \geq |Z_{\bar{y}}| \). Furthermore, let \(\theta \) denote the fraction of out-of-sample centers assigned to \(y \). Note that, since \(|S| = m/2 \), the number of out-of-sample centers is exactly \(m/2 \). This gives us \(|Z_y| = \theta m/2 \), where \(\theta \geq \frac{1}{2} \).

Consider the distribution of favorites in \(Z_y \) (these are independent from the ones in the sample since \(Z_{\bar{y}} \) is disjoint from \(S \)). Each individual in this set has a favorite sampled independently from Bernoulli(1/2). Hence, by Hoeffding’s inequality, the fraction of individuals in \(Z_y \), whose favorite is \(\bar{y} \), is at least \(\frac{1}{2} - \epsilon \) with probability at least \(1 - \exp(-\frac{m}{2}\epsilon^2) \). We conclude that with a probability at least \(1 - \frac{2}{Z} \exp(-m\epsilon^2) - \exp(-\frac{m}{2}\epsilon^2) \), the sample \(S \) and favorites (which define the utility function \(u \)) are such that: (i) the fraction of individuals in \(S \) whose favorite is \(y \) is at least \(\frac{1}{2} - \epsilon \) and \(\frac{1}{2} + \epsilon \), and (ii) the fraction of individuals in \(Z_y \), whose favorite is \(\bar{y} \), is at least \(\frac{1}{2} - \epsilon \).

We now show that for such a sample \(S \) and utility function \(u \), \(h_{u,S}^\prime \) cannot be \((\alpha, \beta)\)-EF with respect to \(P \) for any \(\alpha < 1/25 \) and \(\beta < L/8 \). To this end, sample \(x \) and \(x' \) from \(P \). One scenario where \(x \) envies \(x' \) occurs when (i) the favorite of \(x \) is \(\bar{y} \), (ii) \(x \) is assigned to \(y \), and (iii) \(x' \) is assigned to \(\bar{y} \). Conditions (i) and (ii) are satisfied when \(x \) is in \(Z_y \), and his favorite is \(y \). We know that at least \(\frac{1}{2} - \epsilon \) fraction of the individuals in \(Z_y \), have the favorite \(y \). Hence, the probability that conditions (i) and (ii) are satisfied by \(x \) is at least \((\frac{1}{2} - \epsilon)|Z_y|/m = (\frac{1}{2} - \epsilon)(\frac{1}{2} - \epsilon) \). Condition (iii) is satisfied when \(x' \) is in \(S \) and has favorite \(\bar{y} \) (and hence assigned \(\bar{y} \)), or, if \(x' \) is in \(Z_{\bar{y}} \). We know that at least \((\frac{1}{2} - \epsilon) \) fraction of the individuals in \(S \) have the favorite \(\bar{y} \). Moreover, the size of \(Z_{\bar{y}} \) is \((1 - \theta) \frac{m}{2} \). So, the probability that condition (iii) is satisfied by \(x' \) is at least

\[
\frac{(\frac{1}{2} - \epsilon)|S| + |Z_{\bar{y}}|}{m} = \frac{1}{2} \left(\frac{1}{2} - \epsilon \right) + \frac{1}{2}(1 - \theta).
\]

Since \(x \) and \(x' \) are sampled independently, the probability that all three conditions are satisfied is at least

\[
\left(\frac{1}{2} - \epsilon \right)^2 \cdot \left(\frac{1}{2} \left(\frac{1}{2} - \epsilon \right) + \frac{1}{2}(1 - \theta) \right).
\]

This expression is a quadratic function in \(\theta \), that attains its minimum at \(\theta = 1 \) irrespective of the value of \(\epsilon \). Hence, irrespective of \(D \), this probability is at least \(\frac{1}{2} \left(\frac{1}{2} - \epsilon \right)^2 \). For concreteness, let us choose \(\epsilon \) to be 1/10 (although it can be set to be much smaller). On doing so, we have that the three conditions are satisfied with probability at least 1/25. And when these conditions are satisfied, we have \(u(x, h_{u,S}^\prime(x)) = 0 \) and \(u(x, h_{u,S}^\prime(x')) = L_s/2 \), i.e., \(x \) envies \(x' \) by \(L_s/2 = L/8 \). This
shows that, when x and x' are sampled from P, with probability at least $1/25$, x envies x' by $L/8$. We conclude that with probability at least $1 - 2 \exp(-m/100) - \exp(-m/200)$ jointly over the selection of the utility function u and the sample S, the extension of $h_{u,S}$ by D is not (α, β)-EF with respect to P for any $\alpha < 1/25$ and $\beta < L/8$.

To convert the joint probability into expected cost in the game, note that for two discrete, independent random variables X and Y, and for a Boolean function $\mathcal{E}(X,Y)$, it holds that

$$\Pr_{X,Y}(\mathcal{E}(X,Y) = 1) = \mathbb{E}_X [\Pr_Y(\mathcal{E}(X,Y) = 1)].$$

(2)

Given sample S and utility function u, let $\mathcal{E}(u, S)$ be the Boolean function that equals 1 if and only if the extension of $h_{u,S}$ by D is not (α, β)-EF with respect to P for any $\alpha < 1/25$ and $\beta < L/8$. From Equation (2), $\Pr_{u,S}(\mathcal{E}(u, S) = 1)$ is equal to $\mathbb{E}_u [\Pr_S(\mathcal{E}(u, S) = 1)]$. The latter term is exactly the expected value of the cost, where the expectation is taken over the randomness of u. It follows that the expected cost of (any) D with respect to the chosen distribution over utilities is at least $1 - 2 \exp(-m/100) - \exp(-m/200)$. \qed

C Appendix for Section 4

Lemma 6. Let $\mathcal{G} = \{g : \mathcal{X} \to \mathcal{Y}\}$ have Natarajan dimension d. For $g_1, g_2 \in \mathcal{G}$, let $(g_1, g_2) : \mathcal{X} \to \mathcal{Y}^2$ denote the function given by $(g_1, g_2)(x) = (g_1(x), g_2(x))$ and let $\mathcal{G}^2 = \{(g_1, g_2) : g_1, g_2 \in \mathcal{G}\}$. Then the Natarajan dimension of \mathcal{G}^2 is at most $2d$.

Proof. Let D be the Natarajan dimension of \mathcal{G}^2. Then we know that there exists a collection of points $x_1, \ldots, x_D \in \mathcal{X}$ that is shattered by \mathcal{G}^2, which means there are two sequences $q_1, \ldots, q_n \in \mathcal{Y}^2$ and $q'_1, \ldots, q'_n \in \mathcal{Y}^2$ such that for all i we have $q_i \neq q'_i$ and for any subset $C \subset [D]$ of indices, there exists $(g_1, g_2) \in \mathcal{G}^2$ such that $(g_1, g_2)(x_i) = q_i$ if $i \in C$ and $(g_1, g_2)(x_i) = q'_i$ otherwise.

Let $n_1 = \sum_{i=1}^D 1\{q_i \neq q'_i\}$ and $n_2 = \sum_{i=1}^D 1\{q_i \neq q'_i\}$ be the number of pairs on which the first and second labels of q_i and q'_i disagree, respectively. Since none of the n pairs are equal, we know that $n_1 + n_2 \geq D$, which implies that at least one of n_1 or n_2 must be $\geq D/2$. Assume without loss of generality that $n_1 \geq D/2$ and that $q_{i_1} \neq q'_{i_1}$ for $i = 1, \ldots, n_1$. Now consider any subset of indices $C \subset [n_1]$. We know there exists a pair of functions $(g_1, g_2) \in \mathcal{G}^2$ with $(g_1, g_2)(x_i)$ evaluating to q_i if $i \in C$ and q'_i if $i \notin C$. But then we have $g_1(x_i) = q_{i_1}$ if $i \in C$ and $g_1(x_i) = q'_{i_1}$ if $i \notin C$, and $q_{i_1} \neq q'_{i_1}$ for all $i \in [n_1]$. It follows that \mathcal{G} shatters x_1, \ldots, x_{n_1}, which consists of at least $D/2$ points. Therefore, the Natarajan dimension of \mathcal{G}^2 is at most $2d$, as required. \qed