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Abstract

Many natural games have both high and low cost Nash equililthieir Price of Anarchy is high and
yet their Price of Stability is low. In such cases, one coubghdrto “move” behavior from a high cost
equilibrium to a low cost one by a “public service advertisgampaign” encouraging players to follow the
low-cost equilibrium, and if every player follows the adeithen we are done. However, the assumption
thateveryondollows instructions is unrealistic. A more natural assuimpis that some players will follow
them, while other players will not. In this paper we consitlex question of to what extent can such an
advertising campaign cause behavior to switch from a badilequm to a good one even if only a fraction
of people actually follow the given advice, and do so only genarily. Unlike in the “price of altruism”
model, we assume everyone will ultimately act in their owteiast.

We analyze this question for several important and wideldistd classes of games including network
design with fair cost sharing, scheduling with unrelatecchiaes, and party affiliation games (which in-
clude consensus and cut games). We show that for some of glaeses (such as fair cost sharing), a
randomq fraction of the population following the given advice is ficient to get a guarantee within an
O(1/«) factor of the price of stability for ang > 0. However, for some games (such as party affiliation
games), there is a strict threshold (in this cases 1/2 yields almost no benefit, yet > 1/2 is enough
to reach near-optimal behavior), and for some games, susthesluling, no value < 1 is sufficient. We
also consider a “viral marketing” model in which certainysas are specifically targeted, and analyze the
ability of such targeting to influence behavior using a muciaker number of targeted players.
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1 Introduction

Understanding theguality of Nash equilibria in a game has been a major focus of alguoittgame theory.
The main motivation is to understand what is the additiost that is incurred when we assume that agents
are behaving in a strategic manner, rather than performiglglzal optimization.

Koutsoupias and Papadimitriou [14] proposed the notioRrafe of Anarchy (PoAas the ratio of the cost
of the worst Nash equilibria to the social optimum [16]. ThedFhas been studied for a large variety of games,
including routing, network design with cost-sharing, jabeduling, network creation etc. (see [17,9, 12, 2, 10,
13]). While the PoA takes a worst-case pessimistic viewndigg the resulting Nash equilibrium, therice
of Stability (PoS)4, 8] takes the reverse view, and considers the ratio of dhes$t-cost Nash equilibrium
to the social optimum. In fact, for many natural games thed”df Anarchy may be very large while the
Price of Stability is quite low. For example, in job schedglion unrelated machines the Price of Anarchy is
unbounded while there always is a Nash equilibrium whiclo@adly optimal (and hence the Price of Stability
is 1). Another example is fair cost-sharing games withlayers, where the Price of Anarchy@n) and the
Price of Stability is©(log n).

In cases where there are both high and low cost Nash eqailibrcentral authority could hope to “move”
behavior from a high cost equilibrium to a low cost one by riagra public service advertising campaign pro-
moting the better behavior. If indeederyondollows the given advice, then we reach the desired eqiuilibor
This has motivated much of the research on price of staljfity The starting point of our work, however, is
the realization that it is quite a lot to assume that everywitifollow any given piece of advice, even if the
behavior is optimal if everyone else follows it as well. A ragealistic assumption is that we might advertise
a certain recommended behavior and then some frabtiann < 1 of players will actually go along. In this
paper, we consider the question of what can be done in sudmnarse, where a public authority would like to
encourage behavior to move from a bad equilibrium to a go@ but can only count on a fraction of players
acting in the desired manner. Is affecting a small constauatibn of players sufficient to cause the rest of the
players to naturally head towards a low-cost equilibriumgmthe other hand is even a small constant fraction
not paying attention enough to cause the whole thing to unravgiiat we show is that certain well-studied
games are quite resilient to such a setting, resulting inrdost equilibria for any constant > 0; some have
a threshold property (e.g., producing good equilibriador 1/2 but poor equilibria fore < 1/2) and some
perform poorly for all constanta < 1.

As a motivating example one can consider a traffic contrairget Suppose that currently we have reached
some equilibrium which has a high average latency. The aititsowould like to change the route selection
in order to improve this latency. One possible way of chaggirdriver’'s preferred route is by posting adver-
tisements (e.g., road signs) that suggest to take alteenaiutes (for exampleThe best route to reach the
bridge is ..). Some drivers would follow the advertisements (road Sigvtsle others would ignore them and
maybe even try to minimize their driving time given that oatyme drivers follow the advertisement and switch
routes. We would like to assume that eventually every duveuld act to minimize driving time conditioned
on the behavior of the others (and thus the advertisements danly limited time effect). The hope is that
by having some drivers switch routes, we would converge texadlly to a better overall equilibrium. A similar
motivation can be given to the fair cost-sharing games whieldiscuss in this paper. The cost of an edge in
this case can be viewed as the maintenance cost of that rgatesg and the player’s cost can be viewed as
paying road tolls to cover the maintenance cost of the rogtheats the player uses.

To model this type of scenario we introduce the followadyertisement modeln this model, the authority
first suggests to each player a proposed action, and eachr@agepts the proposal with some (constant)
probability o. The players that accept the new action are calledabeptiveplayers (since they are receptive
to the advertising campaign), and they stay with the newoadting enough so that thn-receptiveplayers
converge to some Nash equilibrium (given that the receptisigers actions are fixed). Then all players follow
an arbitrary best response dynamics and converge to soradaish equilibrium (we will only consider games
where the best response dynamics is guaranteed to coneeageure Nash equilibrium).



Our Results We consider three classes of gaméair cost-sharinggames,job scheduling on unrelated
machinegames angbarty affiliation games. For simplicity assume we advertise the sociallyndtsolution
(although all our results apply if we start with any approation of the optimal solution, including the best
Nash equilibrium, and the guarantees degrade proportiot@mthe approximation factor). Our main results
are the following:

e For the fair cost sharing games (Section 3) we show that fprearthe expected cost of the new equi-
librium is O((log n)/«) from the optimal solution. Recall that the price if stalyilis © (logn) for this
game, so the difference in guarantees is @anlyt /o), whereas the Price of Anarchy &(n). Our posi-
tive result regarding fair cost-sharing extends to the e#sere we add to the cost model a linear latency
function which depends on the load observed on the edgeshearioof for this case is technically even
more challenging.

¢ Forjob scheduling on unrelated machines (Section 4) we shoggative result, showing that for = n
machines, even if we pick — 2 of the n jobs, there is still a possibility of reaching a pure Nash
equilibrium whose cost is unbounded compared to the soptahom. We also show for two machines
andn jobs, that if we pickn/2 — 1 jobs, there is still a possibility of reaching a pure Nashikopium
whose cost is unbounded compared to the social optimum. Wiplement those results showing that
there is always a set ef — n/m jobs, such that any pure Nash equilibrium we reach is sgabgtimal.

e For party affiliation games (Section 5) where players haggeteo (log n) we show a threshold property:
any value ofa < 1/2 is not sufficient to improve the equilibrium beyond t¢n?) price of anarchy,
while any valuea > 1/2 is sufficient to produce behavior within an(1) factor of optimal. In the
case of players with low degree, we show that there is a selageps of sizedn, for some constant
1 > > 1/2, such that if they switch their action, the dynamics willuisn a good equilibrium.

Related Work It is worthwhile to compare and contrast our model with thiaPdce of Altruism [18] and
Strong Price of Anarchy [3]. The Price of Altruism [18] assesrthat the authorities control some fraction of
the players (or flow) and this part never behaves in a stratggy. In contrast we assume that the receptive
players return (eventually) to play strategically, and deetthe dynamics always converge to a pure Nash
equilibrium. Thek-Strong Price of Anarchy [3] focuses on those equilibriahstiat no subset of at most
players can deviate arall strictly benefit; thus it is like a model of stability when pés can intelligently
form coalitions. In contrast, we consider players that aseimyopic in the usual Nash sense, except some
fraction are willing to give the advertised behavior a thheltwo solution concepts are incomparable in their
final guarantees. For job scheduling on two unrelated mashithe2-Strong Price of Anarchy i©(n) [3],
while in our model we show that even if we piek'2 — 1 jobs the Price of Anarchy is still unbounded. On the
other hand, one can also show a reverse example, of a higlstcosy equilibrium [3] where modifying the
action of any single job would lead to an optimal outcome.

Charikar et al. [5] consider fair cost sharing for the casa the graph isindirectedand all players have
a common sink, and show that good equilibria can be reachel mpcess in which players enter one at a
time and then undergo best-response dynamics. Howevetjrimted graphs, it is easy to construct simple
examples where such a process fails and players reach dibequon that is€2(n) from optimal. This further
motivates our work as it shows that very bad equilibria camdaehed by natural dynamics in natural games.
For a full discussion see Appendix B.

Organization We begin with the formal description of our model in Section\& then discuss cost sharing
games in Section 3, load balancing games in Section 4, atgaffiliation games in Section 5. We finish with
a discussion in Section 6.

IWe remark that after modifying a constant fraction of theypla’ actions the social cost can still be quite high, so #seilit can
not be derived by the standard potential-function argument



2 The Model

A game is denoted by a tuple =< N, (S;), (cost;) > whereN is a set ofn players,S; is the finite action
space of playet € N, andcost; is the cost function of playei. The joint action space of the players
isS = & x ... xS, Fora joint actions € S we denote bys_; the actions of players # i, i.e.,
S—i = (81, .y Si—1, Si—1, ---, Sn)- The cost function of playermaps a joint actios € S to a real non-negative
number, i.e.cost; : S — RT. Every game has associated a social cost funatizst : S — R that maps

a joint action to a real value. In the cases discussed in tgempthe social cost is a simple function of the
costs of the players. For example, we discuss the sumcaet(s) = > | cost;(s), and the maximum, i.e.,
cost(s) = max]_, cost;(s). (In the context of load balancing games we call the maximaaias$ function
the makesparsocial cost function.) The optimal social costOPT(G) = minges cost(s). We sometimes
overload notation and u¥@PT for a joint actions that achieves coDPT(G).

Given a joint actions, the Best Response (BRJj player: is the set of action®3 R;(s) that minimizes its
cost, given the other players actionis;, i.e., BR;(s_;) = arg min,es, cost;(a, s_;).

A joint action s € S is apure Nash Equilibrium (NEf no playeri € N can benefit from unilaterally
deviating to another action, namely, every player is plgydnbest response action éni.e., s; € BR;(s_;)
for everyi € N. A best response dynamics is a process in which at each tepe sbme player which is
not playing a best response switches its action to a bestmespaction, given the current joint action. In this
paper we will concentrate on games in which any best respayrsemics converges to a pure Nash equilibrium
(which are equivalent to the class of ordinal potential gaufi&]).

Let V/(G) be the set of Nash equilibria of the gageThePrice of Anarchy(PoA) is defined as the ratio be-
tween the maximum cost of Nash equilibrium and the socidhapn, i.e.,(max ey (g) cost(s))/OPT(G).
ThePrice of Stability(PoS) is the ratio between the minimum cost of Nash equilibrand the social optimum,
i.e., (mingepr(g) cost(s))/OPT(G).

The main model we introduce and study in this paper is oneweatall theadvertising model In this
model, the authority first suggests to each player an alfigenaction, and each player accepts the proposed
action with some (constant) probability. The players tltaept the new action are called receptive players, and
they stay with the new action long enough so that the normpteeeplayers converge to some Nash equilibrium
(given that the receptive players actions are fixed). Thignia}ers follow an arbitrary best response dynamics
and converge to some pure Nash equilibrium (we will only adgrsgames where the best response dynamics
is guaranteed to converge to a pure Nash equilibrium). Waedfis model formally in Figure 1.

When we refer later to aadvertising strategye mean a joint actios’ = advertise(G). Given a set of
receptive players, there is a sel/(s*¢, R) which includes all the equilibria’ that the dynamics could reach
having an advertisemert? and a set of receptive playeRs Theexpected cost of the final equilibriugiven
594 is Eg[max,scy(saa g) cost(s’)]. When we say thafor gameg there exists a strategy for the advertising
model which has an expected cost of the final equilibrium atofowe mean that there exists a joint action
5% for G such thattr[max sy (sad, ) cost(s/)] < X.

Another natural model we study in this paper is thal marketing modelwhere the only difference is
that the seRR is not random, but specifically selected with the propos¢ides. Formally, we seled® andsgd
for i € R based only on the description of the gaghand independently of the initial joint actiei’. (Each
playeri € R is assumed to switch to actio§?.) Otherwise the viral model is identical to the advertising
model.

The notation and definitions for the specific games addresstte paper are provided in Sections 3, 4
and 5, where the appropriate games are studied.

3 Cost Sharing Games

In this section we consider fair cost sharing games definefdllasvs. We are given a grapty = (V, E),
which can be directed or undirected, where each edge £ has a nonnegative cost > 0. There is a



Figure 1 Advertising model
Input: Gameg, parametery > 0.
Initially players are playing some joint actiofi” € S.

1. We use an advertising campaign and propose an action to gager. Formally, lets®? =
advertise(G) be the advertised behavior. (Note théf is selected only based on the description
of the gameg and independently of the initial joint acticf*.)

2. Each player independently decides to follow or not to follow the propd)se:tions;ld by flipping a
coin of biasa. Let R be set of players who decide to follow the proposal - we will daem the
receptive playersEach playet € R now switches to playing?d.

3. The non-receptive players (playeri\ R) settle on a Nash equilibriusi*” for themselves, given that
the receptive players playf?. Namely, for each playef € N \ R we have that?" € BRj(sT;-; 594,
The equilibriums™ for players inN \ R might beadversarially selected_et s™*% = (s"; s‘}%d) be the
behavior at this point.

4. The players inR stop following the advertising campaign, and the entireogiayers N undergoes a
best response dynamics until a Nash equilibrigifor the whole game is reached. (We will discuss
only games where the best response dynamics is guaranteedverge to a pure Nash equilibrium.)

setN = {1,...,n} of n players, where playet is associated with a soureg and a sinkt;. The strategy
set of playeri is the setS; of s; — t; paths. In an outcome of the game, each playehooses a single
path P; € S;. A cost-sharing method assigns nonnegative cost sharée foldyers, as a function of the set
of players that choose a path that contains the edg&he social cost of an outcome= (P,...,P,) is
defined to becost (P, ..., P,) = > . p, ce- Given a vector of players’ strategies= (P, ..., P,), letz.
be the number of agents whose strategy contains edde the fair cost sharing game the cost to ageist
costi(s) = > .cp, z= and the goal of each agent is to connect its terminals witfimuim total cost.

It is well known that fair cost sharing games are potentiahga [15, 4] and the price of anarchy in these
games is9(n) while the price of stability isH (n) [4], where H(n) = > ;1/i = ©(logn). We show
in following that in the fair cost sharing game there existtrategy for the advertising model producing an
equilibria whose expected cost is at mostii1/«a) log n) factor away from the cost of the optimal solution.
Thus we get significant benefit from advertising in these game

Before presenting the proof of our main results we first give useful lemmas. The first one is well
known characterization of the potential functidS) = > 5 > "<, f.(z) of these games [15, 4].

Lemma 1 In the fair cost sharing game the for any joint actiere S we have:
cost(s) < ®(s) < H(n) - cost(s).

The second lemma, whose proof is in the Appendix, statesdlfmnving useful property of a binomial
random variable.

Lemma 2 Let X be a binomial random variable distributeli(n, p) thenE x [Xil] =0 <i> .

We start with our main result concerning fair cost-shariagngs.

Theorem 3 For the fair cost sharing game there exists a strategy fordbgertising model which has an
expected cost of the final equilibrium at me&i(1/«)(log n) - cost(OPT)).



Proof: Fix some optimal solutioOPT. Let s = OPT, so the advertising strategy will be to tell each
playeri to use his patiP?"T in OPT. Let R be the set of receptive players aRo= N \ R. For every edge

e, let n2P" denote the number of people who use edge OPT, and let us decompose this quantity into the
numbern_',, of those in sef? and the numbemOpt of those not inR (both of which are random variables); so

opt opt opt
Ne =TN,p +n e.R

We start by bounding the expected worst-case cost of thevimhs™*? produced at the end of step
three : that isE g[max mea_ (gnr oty cost(s™? )], where the max is taken over all behavief¥ that are

Nash equilibria for players iV \ R given the behavior of players iR. We will call this E[cost(s™¢ )]
for short. For every edge let B, denote the cost of edgefor a non-receptive player ¢ R under the
joint action s™¢¢, and letA, denote the cost of edgefor a receptive playef € R under the joint action
smed et X, = ¢, /(1 + nOPt) and letX, = c./n¥,. We clearly haveB, < X, andA. < X/. So,

for any playeri ¢ R we havecost;(POFT, smed) < > ceporr Xe and for any player € R we have
cost; (POFT, smed) < 3 _porr X.. Sinces™d is an equilibrium for the non-receptive players we have
smed ¢ BR;(s™¢?) for i € R. This implies the following upper bound on the expected! toat at the end of

step three :
E[cost(s™ <EZ Z —I—EZ Z

i¢R eePZOPT i€ER eEPZOPT

opt

Rearranging the sum over players to be a sum over edges we get:

E[cost(s™ <EZX nom —|—EZX/ Opt

Note thatX! < 2X. whennZ%, > 0. This implies that

E[cost(s™ )] < 3E[Z X -nP =3 Z E[X] - no".

So, to complete the proof we have to analjeX.]. Lemma 2 implies thaE[X,] is O (ce/(a ngpt)) for

nP* > 1. This implies that the expected cost at the end of step tlatsfiss:

E[cost(s™?)] = O ((l/a) Z ce> = O((1/a) cost(OPT)). (3.2)

ecOPT

EQ. (3.1) together with Lemma 1 implies that the expectedevaf the potential functio® at the end of step
three is only arO((1/«) log n) factor larger than the cost @PT, i.e.:

E[®(s™1)] = O((1/a)(log n) - cost(OPT)).

This implies that the expected cost of the final equilibriurtha end of step four , i.eE[cost(s)], is at most
that large, as desired.l

Note that in fact the proof of Theorem 3 can be adapted to psowgething stronger.

Theorem 4 Consider fair cost sharing games and a joint actiénUsing s®® = F for the advertising model
has an expected cost of the final equilibrium at m@§tl /«)(log n) - cost(F)).



3.1 Extensions

A well studied extension of the fair cost sharing game is ohere instead of a constant cest each edge has

a coste (z) that is a nondecreasing but concave function of the numbplagersz using that edge [4]. For
example, this can model a buy-at-bulk economy of scale fgiriguedges that can be used by more players.
Notice that the cost of an edgg(x) might increase with the number of players using it, but thet per player
fe(z) = ce(z)/x decreases it.(x) is concave. We can extend our result to this case as well.gpovof see
Appendix C.)

Theorem 5 For the cost sharing game with nondecreasing concave castifinsc, (x), there exists a strat-
egy for the advertising model which has an expected costeofital equilibrium at mosO((1/«)(logn) -
cost(OPT)).

Another extension [4] of the fair cost sharing game is onere/leach edge has both a cost functipfi)
and a latency functiod. (x), wherec.(z) is the cost of building the edgefor « users which the users will
share, whiled.(x) is the delay suffered by each user on edge = users are sharing the edge. The goal of
each user will be to minimize the sum of his cost and his lagteHave assume that both the cost and latency
for each edge depend only on the number of players using dg&t ¢hen the total cost felt by each user on the
edge isf.(z) = c.(z)/z + d.(z). These games remain potential games [15, 4] (they are plarticases of
congestion games). One can prove a lemma similar to Lemmatingethe cost and the value of the potential
function for any given joint action. In particular, for linedelays we have:

Lemma 6 Consider the cost sharing game with delays where the costifumon edge: is f.(z) = c./x +
l. - x. For any joint actions € S we have:

%cost(s) < P(s) < H(n) - cost(s).

We show here how we can extend our results to deal with linekyd. The extension is not immediate
though since the part of our argument in Theorem 3 that satsafter step two, every non-receptive player
i has a reasonably cheap option to try (namely its pat®IT) is not clear anymore: since the original
behaviors™ wasarbitrary there could exist edges with a much higher number of playerhem under the
joint action (572", s¢) than inOPT. In order to prove the desired result we instead argue tretemée of a
related “shadow” game, whose price of anarchy is not toclaagd then relate performance of the behaviors
as well as the optimum values between the two games.

Theorem 7 For the cost sharing game with delays where the cost functivedgee is f.(z) = c./z + . - x
there exists a strategy for the advertising model which hasx@ected cost of the final equilibrium at most
O((1/a)(logn) - cost(OPT)).

Proof: Fix some optimal solutiofOPT and lets®® = advertise(G) = OPT. Namely, the advertising
strategy will be to tell each playérto use his patrPiOP T'in OPT. Let R be the set of receptive players. Let
noP: denote the number of people iwho use edge and letn¢™" denote the number of people @PT who
usee.

By assumption, in step three all the users noRisettle on some equilibrium (givefgd). Letn. denote

the number of users who are now on edg&o,n, > n(@)p}‘;_ We now define a new gangg with respect to the

users ink = N \ R, which is a congestion game with a linear latency functiptvw) = a. + I. - n, where
ae. = ce/(1 +n.). Let OPT’ denote the optimal cost for this gargé

We first claim that the behavior at the end of step three is atsequilibrium for users iR if we use the
costh. instead off, on all edges. In particular, suppose this was not the case. So, somei wsgrently
using a selS of edges would prefer switching to the set- A + B. l.e.,

> (nc+ : +zene> > <n0+ o le(ne + 1)). (3.2)

ecA e€B

6



However, if we replaceCL with == on the LHS of EQ. (3.2), then the gap only gets larger. Thisma¢hati
is not at equilibrium undef since |t can benefit from switching.

Now we use the fact that the new gagdiehas a price of anarchy 6f/2 [6]. So, the total cost ig’ of the
behavior of the non-receptive players at the end of Stetis®(OPT’). Note now that the following hold:

(a) The cost of the non-receptive players at the end of Stege thsing cost functiong. is at most twice
their cost using functioni. (since adding to the denominator in going froryfito i at best reduces the
cost by a factor of).

(b) E(OPT’) = O((1/a) cost(OPT)). This is because one option f&PT’ is to use the same paths as
in OPT, in which case:

(i) thel. - nterms are the same as@PT, and

(ii) sincen, > nc¥; and as we argued in Theorem 3 we hae. /(1 + nT;)] = O (ce/(a n‘;pt)),

t
eng? >0

this means the expected sum of theterms inOPT’ is O ( > Opt co/(a ngpt)> .

These imply that the expected cost undaf the non-receptive playei at the end of Step three satisfies:

E[cost(sg“l)] O((1/a) cost(OPT)).
We now argue that the expected cost in the original game #rdheptive players at the end of step three is
alsoO((1/a) cost(OPT)). In particular, the key issue is the latency term, sinceetluauld potentially be
more non-receptive players on any given edge tha®@®T. However, if on a given edge there are more
receptive players than non-receptive players'iti?, then we lose at most a factor of two compared to the
latency cost inOPT; on the other hand if there are more non-receptive playes thceptive ones, then we
are fine again because we have bounded the cost of the ngtivecglayers, so we can charge the cost of
the receptive players to the cost of the non-receptive pkayehich we already bounded. This implies that the
expected cost at the end of step three satisfies:

E[cost(s™? )] = O((1/a) cost(OPT)). (3.3)

This together with Lemma 6 implies that the expected valuthefpotential function® at the end of step
three is at most a®((1/«) log n) factor larger than the cost @PT, which implies the cost of any final
equilibrium at the end of step four is at most that large, asrdd. B

Remarks: Note that in all the variants of the cost sharing game stuttidtlis section, the cost of the final
equilibrium reached i®((1/«) log n) from the optimal cost while the price of stability @&(log n) as shown
in [4]. This implies that the difference in guarantee is oalfactorO(1/«). Second, our proofs do not
really require us to us®PT for advertise(G), but rather we can start with any solutidh We would then
converge to a pure Nash equilibrium whose cost is at gét /o) log n) from cost(F). For example, if we
let F be the best Nash equilibrium, then since the price of stghdiO(log n), the expected cost of the final
equilibrium is withinO((1/a) log? n) of the optimal cost.

4 Load Balancing Games

In this section we concentrate on load balancing games (€& defined as follows. There arejobs and
m unrelated machines. Each player is associated with a jobagen players. Every job can impose a load
on one of the machines, so for every playéts set of feasible actions is to assign jpbo some maching,
i € {1,...,m}. Each jobj has associated a cast; for running on machine. Given an assignment of jobs
to machines, the load of machineés the sum of the costs of the jobs that are assigned to thatined.e.,

7



Li(s) = > epy(s) Gij WhereB;(s) is the set of jobs assigned to machinee., B;(s) = {j : s; = i}. The
cost of a playey is the load on the machine that playeselected, i.ecost;(s) = Ls,(s). For the social cost
we use thanakespanwhich is the load on the most loaded machine, test(s) = max; L;(s). The price of
stability in this games i3, since there is always a pure Nash equilibrium which is at&iedly optimal [11].
First, we show a strong negative result: as long as therevarelayers (jobs) that are not re-assigned,
the Price of Anarchy can be unbounded. In addition, we sha ttis negative result holds even in the
viral marketing model, and even if we restrict the adverdarghoosing equilibrias™" that are reachable via
better-response dynamics from the initial steit8 (we call such an adversaryr@asonable adversayy

Theorem 8 There is a load balancing game with = n unrelated machines such that in the viral marketing
model, for any sek of at mostn — 2 players, the cost of the final Nash equilibrium might be umlgiea with
respect to the social optimum. (l.e., for any advertisenj@nt action s*? and set of players, |R| < n — 2,
there is an equilibriums/ € U(s%, R) such thatcost(s/) > 1 while OPT = ¢.) Moreover, there exist initial
joint actionss*™ such that this can occur via a reasonable adversary.

For the case of two machines and an arbitrary number of jobsanealerive the following result.

Theorem 9 There is a load balancing game with two unrelated machinekrajobs such that in the viral
model, for any seR of at mostn/2 — 1 players, the cost of the final Nash equilibrium might be umioieadl
with respect to the social optimum.

We can show that the result above is almost tight in the sdradehiere is always a set of playdRsof size
(1 — /m)n, such that in the viral marketing model the final equilibriisralways optimal.

Theorem 10 For any load balancing game there exists a strategy for tha wodel with a set? of at most
(1 — 1/m)n players such that any final equilibriusi has optimal cost.

Due to lack of space we defer the proofs of all theorems dssmligh this section to Appendix D.

5 Consensus Games, Cut Games, and Party Affiliation Games

In this section we consider three related classes of ganteged by users who are viewed as vertices in a
connected, undirected simple graph= (N, E) with n vertices, whereV = {1, ..., n}. We will first describe
the most general game pérty affiliationand then discuss the special casesooisensus gamesdcut games

In party affiliation gameg7] the set of edged’ is partitioned into positive and negative edges, denoted
by PE and NE respectively. Each playerhas two actions: or b, i.e.,S; = {r,b}. A player has cost 1
for each incident positive edge on which he disagrees wihnkighbor, and cost 1 for each negative edge
on which he agrees with his neighbor, i.€ost;(s) = > ; yepr Lisizs;) T 2_(i,j)ene Lisi=s;)- The overall
social cost is the sum of the costs of all the users, plig., cost(s) = 1+ >,y cost,(s).? It is straight
forward to show an exact potential function [15] for the paaffiliation game, simply let the potential be
d(s) = (cost(s) — 1)/2. Also, in any party affiliation game the social optimum is asN&quilibrium, thus
the Price of Stability ig.

Consensus gamese a special case of party affiliation games where all the®dy~ are positive edges,
i.e., NE = (). The two social optimal solutions in a consensus game afrbltad” and “all red”, both of which
are also a Nash equilibrium. On the other hand, for an everbeuwf players, let; be the cliquek,, with a
perfect matching removed, e.d,= {(¢,j) : j # i} —{(2i,2i — 1) : n/2 > ¢ > 1}. Consider the joint action
s in which even players play and odd players play, i.e., sor = r andso,1 = b. This is a Nash equilibrium,
since each player has exactly half its neighbors the sanoe aod exactly half of the opposite color. This
results in a social cost ¢2(n?) and thus the Price of Anarchy for consensus gamexig ).

2The “4+1” is just to ensure the cost is nonzero so that all ratios afededined.



Cut gamegqsee [7]) are a special case of party affiliation games whirthe edges inG are negative
edges, i.e.,PE = (). Thus cut games have the opposite objective from consersugesy As mentioned
above, in a cut game the optimal solution is a Nash equilibrand so the Price of Stability is However,
the problem offindingan (approximately) optimal solution is the Min-UnCut pretni [1] for which the best
efficient approximation algorithm known has approximatratio O(y/logn). As with consensus games, the
Price of Anarchy for cut-games can be as bad2as?). For instance, ifG is the complete bipartite graph
K, 2,n/2, then coloring half the nodes on the left and half the nodetherright blue, and coloring half the
nodes on the left and half the nodes on the right red, is a Nasitileium with cost(n?) (and yet the optimal
solution has cost 1 since the graph is bipartite).

We first show that if all nodes have degrefog n), then in the advertising model all these games have a
sharp threshold at = 1/2: any constantr > 1/2 is sufficient to produce an optimal or near-optimal solution
and yet there exist families of graphs for which any constart 1/2 yields a solution of cost as nearly bad
as possible (a factd2(n?) worse than optimal). We begin with the simpler case of cosseigames (proof in
Appendix E).

Theorem 11 For consensus games in which each node has deg(eesn) there is a sharp threshold at
a = 1/2 in the advertising model: for any constant > 1/2 there exists a strategy such that with high
probability the final equilibrium is the optimal solutionafio of 1), and yet for any constant < 1/2 there
exist graphs such that for any advertising strategy witthipgobability the final equilibrium will be a factor
Q(n?) worse than optimal.

The key to the upper bound above is that with high probaliiti/setR satisfies the property that every vertex
not in R has more than half its neighbors R For cut games and more generally party-affiliation games,
we will need a bit more (in particular becau€ T no longer necessarily has zero cost for every player).
Specifically let us say that a sStis a f-dominating set if every vertex not if has more than &/2 +
fraction of its neighbors ir5. Hoeffding bounds imply that in the advertising model with> 1/2 + 23, with
high probability the set of receptive players ig-@ominating set, so long as all nodes have degr@egn):

Lemma 12 For any party affiliation game in which each node has dege¢lg n), for any constanty >
1/2 + 23 with probability 1 — o(1) the set of receptive players isladominating set in the advertising model.

We now show the following property gf-dominating sets in party affiliation games.

Lemma 13 For party-affiliation games, if the s&t following the advertising strategy is/@&dominating set,
then we can produce a solution within &1{1/3) factor of optimal.

Proof: We argue by considering two kinds of nodes: those with leas G fraction of their incident
edges incurring a cost (of one) @PT (call those “low-cost” nodes), and those with more tham faaction
of their incident edges incurring a cost@PT (call those “high-cost” nodes). The advertising strategjtoi
tell nodes to behave according @PT, i.e., s% = OPT.3 SinceR is a f-dominating set, each low-cost
node will change in step three to its color@PT (because that color minimizes its cost with a majority of
its neighbors). For the high-cost nodes, we may not produeel¢sired behavior; however, no matter how the
high-cost nodes behave, they cannot incur a cost that is thareal /5 factor worse than their cost @PT
(by definition of “high cost”). Therefore, the total cost Hyetend of step three is at mgdt+ 1/3)OPT.
Finally, the cost can only improve via the best-responsegs®in Step four . B

Fora > 1/2, by setting8 = (o — 1/2)/2, Lemma 12 and Lemma 13 imply that the cost of the final
equilibrium is within anO(1) factor of optimal. Forx < 1/2, theQ2(n?) bound from Theorem 11 still applies;
thus exhibiting is a sharp thresholdaat= 1/2 in the advertising model.

%In general, this advertising strategy can be computatiprierd to compute. For cut-games, however, at the loss ofxtma e
O(v/1og n) factor we can instead use the Min-UnCut approximation dlgar of [1], and the rest of the argument proceeds in the
same way.



Theorem 14 For party-affiliation games in which each node has degeékg n), for any constanty > 1/2
there exists a strategy for the advertising model such tlit lvgh probability the final equilibrium has cost
O(OPT). Moreover, for any constant < 1/2 there exist party-affiliation games such that for any adserg
strategy with high probability the final equilibrium will keefactor 2(n?) worse than optimal.

Unfortunately, in the low-degree case, no value< 1 is sufficient to achieve a cost that is even within
ao(n) factor of OPT, because the grapii could consist of a collection of constant-sized componeas
with high probability a constant fraction of these compdsemould have no member iR. On the other hand,
note that if the set of receptive playeksconstitutes a3-dominating set, then by Lemma 13 we produce a
solution within anO(1/3) factor of optimal. This immediately translates to a resnlthe viral marketing
model, where we can select the set of receptive players. dlleing lemma constructs &-dominating set
in an arbitrary graph.

Lemma 15 For any graphG and 3 < 1/6, there is ag-dominating sef? of size at most31/32)n.
Proof: Let S’ be a random set of vertices, where each verte¥ iwith probability 1/2 + 3, and let
S"” = {v : v does not have at leakt, (1/2 + 3)] neighbors inS’},

whered, is the degree of. ConsiderkR = S’ U S”. The setR is by construction &-dominating set, so we
simply have to argue about size. In particular, we show thgt@rtexv has some constant probability of not
being chosen s’ U S”.

With probability 1/2— 3 the vertexv is not in.S’. In order forv not to be inS” it needs at leastd(1/2+3)]
neighbors inS’. Consider the following event: the fir3tneighbors ofv are inS’ (probability (1/2 + 3)3) and
from the remaining! — 3 neighbors of at least| (d — 3)(1/2 + ) | are inS’ (this has probability at least/2
since this is less than or equal to the median of the distabt If this event occurs, sincé < 1/6, thenv
has at least

[(dy —3)(1/24 B8)] +3 = |do(1/2+ B) + 3(1/2 = B)] > |du(1/2 4 8) + 1] > [du(1/2 + 3)]

neighbors inS” and therefore it is not its”. Sincewv is not in.S” nor S” it is not in R. The probability of the
event is at least/2(1/2 — 8)(1/2 + 3)3 > 1/32 for 3 < 1/6. So, the expected size &fis at most(31/32)n
and therefore a set of at most that size must exilk.

For the case of consensus games we can show improved bourzs & only need a strict majority for
each node). Call a sétastrict dominating seif for every nodev not in S the strict majority of its neighbors
areins, i.e. [%1. For consensus game it is sufficient to have a strict donmigagetR to guaranteed an
optimal solution, since then we are guarantee that all tageps will switch to the color of the majority of
their neighbors. The following lemma derives bounds facstfominating sets.

Lemma 16 For any graphG in which each node has odd degree, there is a strict domigat@iR of size at
mostn /2, and for general degrees, there is a strict dominating/3eff size at most23/27)n.

Proof: First, consider the case that each node has odd degree.d€oasi arbitrary Nash equilibrium of the
cut gamen the given graplG, i.e., all the edges are negative edges, andlbt the minority color class in
this equilibrium (hence, the size @ is at mostn/2). Since it is a Nash equilibrium of the cut game, each
vertex not inR has a majority of its neighbors in the set(a strict majority since all degrees are odd).

For the case of general degrees we use a randomized argumeéat 85 Lemma 15, the difference being
that we select each vertex to be i with a slightly different constant probabilit§/3. (For details see
AppendixE.) N

We can now deduce the following theorem for the viral marigtinodel.
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Theorem 17 In the viral marketing model: (1) For any party affiliation gee there is a seR of (31/32)n
players that guarantees a solution within &{1) factor of optimal. (2) For consensus games, there is dset
of at mostu /2 players if all degrees are odd, or a sBtof at most(23/27)n players for general degrees, that
guarantees an optimal solution.

6 Conclusions

In this paper we consider the question of to what extent cgoullic advertising campaign” cause behavior
to switch from a bad equilibrium to a good one even if only afi@n of people actually follow the given
advice, and do so only temporarily. Unlike the notion of praf stability we do not assume everyone takes the
advice, and unlike the notion of price of altruism we assurery®ne in the end will act in their own interest.
We show that for some natural games (cost-sharing), it isigind@o induce a small fraction to behave well
in order to reach a good equilibrium, whereas for othersdloalancing) one needs to reach nearly the entire
population, and yet others (party affiliation) have a thoddiproperty. Thus, we provide an interesting metric
along which games can differ: how much “effort” (e.g., adigmg dollars) a central authority might need to
incur in order to induce good behavior in them.

While we have described our results using advice that ctengighe global optimum behavior, in all cases
this can be replaced with advising the best equilibrium aestna cost of the price of stability. In a sense
(viewed in reverse) this can be thought of as asking “howlstatthe price of stability”: starting from a good
equilibrium, can a small shock to the system produce a bad &tan which the natural dynamics could not
recover?
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A Useful Lemmas

Lemma 2 If X be a binomial random variable distributéi(n, p) thenE x {Xﬁrl] =0 <L> .
Proof. We have

n+1 “n+1/n\ . . 1w /n+1) ,
E = Wl —p)" 7t = = 2+11 n—i
X[XJFJ i:0¢+1<z’>p( 2 p:O<i—|-1>p (1=p)
_ 1 (1 p)n—i-l
p p

This implies that

R e e )

X+1 p-(n+1) p-(n+1) n+1

as desired. B

B Simple Dynamics and Equilibria Selection

Charikar et al. analyze in [5] a two-step fair cost sharingngaplayed by a set of selfish players on an
undirectedgraph where all players have a common sink. In stepe players arrive one by one and each
connects to the root by greedily choosing a path minimiziagdst, i.e., each selects a greedy (best response)
path relative to the selection of paths by the previous playe Phase, players are allowed to change their
paths in order to decrease their costs, namely, in the sest@pdplayers play best response dynamics until
eventually a Nash equilibrium is reached. Charikar et disfmws that the sum of the players’ costs at the end
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of the first step will beD(log? n) close to the cost of a socially optimal solution (which irstbase is defined
to be a minimum Steiner tree connecting the players to thg.rddis then then implies that the cost of the
Nash equilibrium achieved in the second step{$og® n) close toOPT.

Note that in the directed case the result above does notindiakt such natural dynamics can lead to very
poor equilibria. Figure 2 shows an example where if the plagerive one by one and each connects to the root
by greedily choosing a path minimizing its cost, then the céshe equilibrium obtained can be much worse
than the cost oOPT. The optimal solution which is also a Nash equilibria in teiemple is(P, ..., P,)
whereP; = s; — v — t for eachi; however the solution obtained if the players arrive onetanha and each
connects to the root by greedily choosing a path minimiztegost is(P;, ..., P,) whereP/ = s; — t for
each playei. Clearly,cost(Py,..., P,) = nwhich is much worse thagost(OPT) = k.

This further motivates our work since it demonstrates thadrpequilibria can be reached by natural dy-
namics in natural games.

Figure 2 For anyl < k < n, if players arrive one a time and each connects to the rootégdily choosing a
path minimizing its cost, then the cost of the equilibriuntasbed isr, whereasOPT has cost onlyk.

C Additional Proofs for Cost Sharing Games

Theorem 5 In the the cost sharing game with nondecreasing concavéuwuagionsc, (x), there exists a strat-
egy for the advertising model producing an equilibria whespected cost is at most &1 (1/«) log n) factor
larger than the cost of the optimal solution.

Proof: The argument is similar to that in Theorem 3. First note thasé games remain potential games [15, 4]
(they are particular cases of congestion games).

As in the proof of Theorem 3, to analy®{cost(s™? )], for every edge: let B, denote the cost of edge
e for a non-receptive player € R under the joint actiors™, and letA, denote the cost of edgefor a
receptive playei € R under the joint action™?. Let X, = c./(1 + ”255) and letX! = ce/n;’}’lg. Since by
assumption the cost per playgr(xz) = c.(z)/x decreases with, we haved, < X, andB. < X.. Soasin
the proof of Theorem 3 an upper bound on the expected cost &inith of step three is

E[cost(s™)] <3 E[X,]-n®" = O((1/a)cost(OPT)).
Furthermore as shown in [4], Lemma 1 holds for this game ak Whkse then imply that the expected value

of the potential function® at the end of step three is only &n((1/«)logn) factor larger than the cost of
OPT, which implies the cost of the equilibrium at the end of steprfis at most that large, as desiredl
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D Proofs for Load Balancing Games

Theorem 8 There is a load balancing game with = n unrelated machines such that in the viral marketing
model, for any seR of at mostn — 2 players, the cost of the final Nash equilibrium might be umistad with
respect to the social optimum. (l.e., for any advertisenj@nt actions®? and set of player®, |R| < n — 2,
there is an equilibriuns/ € U(s%?, R) such thakost(sf) > 1 while OPT = ¢.) Moreover, there exist initial
joint actionss™ such that this can occur via a reasonable adversary.

Proof: Consider the following load balancing garge Job; has cost on machinej and1 on any other
machine. The social optimum assigns jplto machinej and has cost. In G, a joint action is a Nash
equilibrium if and only if it allocates to each machine a $ingb. Let anemptymachine be a machine with
no job assigned to it.

Consider an initial joint action” which assigns an even j@k to machine2k — 1 and an odd jol2k — 1
to machine2k. Note that this initial assignment™ is a Nash equilibrium and has cdstTherefore, the ratio
of the initial configurations®** cost and the social optimum 1g'¢, which is unbounded singeis arbitrary.

Let R be an arbitrary set af — 2 jobs and lets*? be the recommendation for playersi Let j; andjs,
be the two players not i andi, = s/ andis = s7* the machines on which they run if*, respectively.
Given our initial joint actions’™ we know thatj; # i; andj, # is. Also, if j; = i thenj, = i; and vice
versa. Hence, eitheli = i, andj, = i1 Or j; # is andjs # i1. We will show that for ours’™ for any s*¢
and anyR, even for a reasonable adversary the process can termimatinial Nash equilibriuns/ which has
a cost of at least.

If there is a playek in R which s%¢ assigns to a maching = k, then consider the following dynamics.
Let all the jobs except reach any equilibriumy’ for them (say, using a best response dynamics)’ there
is no empty machine, since otherwise somejob k can improve its cost by moving to the empty machine.
This implies thats’ is a pure Nash equilibrium of the gargeand therefores/ = s’. Since the cost of jola in
s/ is 1, we have thatost(s/) = 1, and we are done. Therefore, assume thaassigns each jop € R to its
least load machine, i.es?d = J.

We have two remaining cases to analyze. The first case is yyhgn, andj, # i;. In this cases®® assigns
job i; to machinei; and jobiy to machineis, and each machine has a loadlof ¢, while machineg; andjs
are empty. Jobg, andj, can then undergo a better-response process and selecliotiérfg equilibrium: job
41 selects maching, and jobj, selects maching;, having a cost of for each. Since this is an equilibrium
we also reached’ which has a cost of. In the second casg = i, andj, = 4;. In this case aftes® each
machine has a single job, and hence we are at an equilibriuichvillas a cost of. R

Theorem 9 There is a load balancing game with two unrelated machinds:gobs such that in the viral
model, for any seR? of at mostn/2 — 1 players, the cost of the final Nash equilibrium might be uniztad
with respect to the social optimum.

Proof: Assume that: is even, i.e.n = 2k. We havek jobs of type I, defined such as their cost on machine
1 is € and on machin@ is 1; we also have: jobs of type II, defined such as their cost on macHinge 1 and

on maching is e. In s all the jobs of type | are on machirgeand all the jobs of type Il are on machite
which is a Nash equilibrium that has a costiofcompared tdOPT which has a cost dfe).

Suppose thar includesk; jobs of type | andk; jobs of type2, and advertises®® for them. Consider the

following Nash equilibriums™¢< for the players not inR. We select:; jobs from type 1l andk, jobs of type

| and pair them with the jobs if® where in each pair one job is of type | and the other of typeSin¢e R

is strictly less than half the jobs, i.eR| < k — 1, we can do it, and there will be at least one type | job and
one type Il job remaining.) For each pair of matched jgbs R andj» ¢ R we set the action of joh, to

be the opposite machine ¢f, i.e.,s7:* = 3 — 5. This implies that the pair’s contribution on each machine
is identical. Therefore at™<? we have that the load on both machines is identical, and hieise@ Nash
equilibrium. Since there is a pair of jobs that did not mowarirtheir action ins" the cost is at least, while
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the optimal cost ige. N

Theorem 10 For any load balancing game there exists a strategy for tia¢ miodel with a sef? of at most
(1 — 1/m)n players such that the cost of the final equilibriurnis optimal.

Proof: Lets? = OPT for someOPT. Letk be the machine with most playerssff, i.e.,k = arg max; | B;(s%?)|.
Let R = N\ Bi(s%), and note that since at leastm players are inB;(s%?), then|R| < n —n/m. Note that
given thats® is performed byR, any jobj € By (s%?) has a best response whose cost is at mast ;(OPT),
since ins™¢¢ only jobs in By (s°?) would select maching. Therefore at the end of step three we have that
cost(s™d) = cost(OPT). Since the best response dynamics does not increase tharzbstventually
converge to a pure Nash equilibrium [11], we havet(s/) = cost(OPT), as desired. B

E Additional Proofs for Consensus Games, Cut Games, and PartAffiliation
Games

Theorem 11 For consensus games in which each node has degtiegn) there is a sharp threshold at
a = 1/2 in the advertising model: for any constamt> 1/2 there exists a strategy such that with high prob-
ability the final equilibrium is the optimal solution (rat@f 1), and yet for any constaat < 1/2 there exist
graphs such that for any advertising strategy with high ability the final equilibrium will be a factof)(n?)
worse than optimal.

Proof: For the upper bound, the advertising strategy is simply lioale nodes to become color red, i.e.,
5% = (r,...,r). By Hoeffding bounds, each node with degree at léast /(o — 1/2)? has more than half
of its neighbors in seR with probability at least. — 1/n2. Therefore, by the union bound all nodes have this
property with probability at least — 1/n, and so with high probability at the end of step three all soaie
red, i.e.,s™? = (r,...,r), which is optimal.

For the lower bound, let = 1/2 — « and consider a graph consisting of two cliques of sizZe, where
each vertex hasn/8 neighbors in the other cligue. Suppose initially we have cigue red and the other
clique blue. Sincey is a positive constant, for sufficiently largewe have that with high probability each
node has at most B2 — ~/2 fraction of its neighbors in sef. However, since each node initially has only
a~y/4 fraction of its neighbors of the other color, this will not befficient to cause any of the nodes notSin
to change color in step three . Therefore, in step three galea inS will simply revert to their original color
and we again hav@(n?) badly-colored edges. N

Lemma 16 For any graphG in which each node has odd degree, there is a strict domghaétR of size at
mostn /2, and for general degrees, there is a strict dominatindsaftsize at mos{23/27)n.

Proof: For the case of general degrees we use a randomized arguiméat o0 Lemma 15. LetS’ be a
random set of vertices, where each vertex i§'iwith probability 2/3, and let

S” = {v : v does not have a strict majority of neighbors3ft.

We will then letR = S’ U S”. SetR by construction has the property that all vertices noRihave a strict

majority of their neighbors iR so we simply have to argue about size. In particular, anyexerthas at least
a probability1/3 of not being chosen i8” and probability at least/9 having a strict majority of its neighbors
in S’ (the worst case is whemhas degre@). So, the expected size & is at most(23/27)n and therefore a
set of at most that size must existll
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