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Abstract

We state and analyze the first active learn-
ing algorithm which works in the presence
of arbitrary forms of noise. The algorithm,
A2 (for Agnostic Active), relies only upon
the assumption that the samples are drawn
i.i.d. from a fixed distribution. We show
that A2 achieves an exponential improvement
(i.e., requires only O

(
ln 1

ε

)
samples to find

an ε-optimal classifier) over the usual sample
complexity of supervised learning, for several
settings considered before in the realizable
case. These include learning threshold clas-
sifiers and learning homogeneous linear sep-
arators with respect to an input distribution
which is uniform over the unit sphere.

1. Introduction

What distinguishes active learning from the more typ-
ical batch learning is that the algorithm initially sees
only the unlabeled portion of a pool of examples drawn
from some underlying distribution. The algorithm can
then pay for the label of any example in the pool,
and the hope is that a good classifier can be learned
with significantly fewer labels by actively directing the
queries to informative examples. There is a significant
practical interest in minimizing the number of labeled
examples in settings where there is no shortage of un-
labeled data but labels are expensive.

Most active learning strategies are noise seeking on
many natural learning problems. In particular, the
process of trying to find an optimal separation between
one class and another often involves label queries for
examples with a large conditional noise rate. Thus the
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most informative examples are also the ones that are
typically the most noise-prone.

Consider the active learning algorithm which searches
for the optimal threshold on an interval using binary
search. This example is often used to demonstrate the
potential of active learning in the noise-free case when
there is a perfect threshold separating the classes (Co-
hen et al., 1994). Binary search needs O(ln 1

ε ) labeled
examples to learn a threshold with error less than ε,
while learning passively requires O

(
1
ε

)
labels. A fun-

damental drawback of this algorithm is that a small
amount of adversarial noise can force the algorithm
to behave badly. Is this extreme brittleness to small
amounts of noise essential? Can we still achieve an
exponential decrease in sample complexity? Can we
avoid making assumptions about the mechanism pro-
ducing noise? These are the questions addressed here.

Previous Work on Active Learning There has
been substantial work on active learning under addi-
tional assumptions.

For example, the Query by Committee analysis (Fre-
und et al., 1993) assumes realizability (i.e., there ex-
ists a perfect classifier in a known set) and a correct
Bayesian prior on the set of hypotheses. Recent work
by Dasgupta (2005) has identified sufficient and semi-
necessary conditions for active learning given only the
additional realizability assumption. (Dasgupta et al.,
2005; Dasgupta, 2004) also assume realizability. If
there exists a perfect separator in our class, we can use
any informative querying strategy to direct the learn-
ing process without the need to worry about the dis-
tribution it induces—any inconsistent hypothesis can
be eliminated based on a single query, regardless of
which distribution this query comes from. In the ag-
nostic case, however, a hypothesis that performs badly
on the query distribution may well be the optimal hy-
pothesis with respect to the input distribution. This
is the main challenge in agnostic active learning that



Agnostic Active Learning

is not present in the non-agnostic case.

Burnashev and Zigangirov (1974) allow noise, but re-
quire a correct Bayesian prior on threshold functions.
Other assumptions include specific noise models. For
example, Castro et al. (2005) have analyzed active
learning in a setting with a constant noise rate every-
where.

The membership-query setting (Angluin, 1998; An-
gluin, 2001; Bshouty & Eiron, 2002; Jackson, 1997)
is similar to active learning considered here except
that no unlabeled data is given. Instead, the learn-
ing algorithm is allowed to query examples of its own
choice. This is problematic in several applications
because natural oracles, such as hired humans, have
difficulty labeling synthetic examples (Baum & Lang,
1992). Ulam’s Problem (quoted in (Czyzowicz et al.,
1989)), where the goal is find a distinguished element
in a set by asking subset membership queries, is also
related. The quantity of interest is the smallest num-
ber of such queries required to find the element, given a
bound on the number of queries that can be answered
incorrectly. But both types of results do not apply here
since an active learning strategy can only buy labels of
the examples it observes. For example, a membership
query algorithm can be used to quickly find a separat-
ing hyperplane in a high-dimensional space. An active
learning algorithm can not do so when the data distri-
bution does not support queries close to the decision
boundary.

When Active Learning Can Help It is impor-
tant to keep in mind that the speedups achievable with
active learning depend on the match between the dis-
tribution over example-label pairs and the hypothesis
class, and therefore on the target hypothesis in the
class. There are simple examples where active learn-
ing does not help at all, even if there is no noise (see,
for example, (Dasgupta, 2005)). Obviously, all such
lower bounds apply in our setting as well.

It is also important to note that we cannot hope to
achieve speedups when the noise rate η is large, due
to a lower bound of Ω(η2

ε2 ) on the sample complexity
of any active learner (Kaariainen, 2005).

Summary of Results In section 3, we present an
Agnostic Active learning algorithm, A2. The only as-
sumption we rely upon is that samples are drawn i.i.d.
from some underlying distribution. In particular, we
make no assumptions about the mechanism producing
noise (e.g., class/target misfit, fundamental random-
ization, adversarial situations). As far as we know,
this is the first result of this form.

Section 3.1 proves that A2 is correct, and section 3.2
shows that A2 is never harmful, i.e., it never requires
significantly more samples than batch learning. Sec-
tion 4 shows the potential of A2 by establishing ex-
ponential speedups in several settings previously an-
alyzed without noise. In particular, we show that we
can achieve exponential speedups for the simple case of
learning threshold functions; the result holds for arbi-
trary distributions provided that the noise rate is suf-
ficiently small with respect to the desired error ε. We
also show that our algorithm achieves an exponential
improvement if the hypothesis class consists of homo-
geneous (through the origin) linear separators and the
data is distributed uniformly over the unit sphere in
Rd. The last example has been the most encouraging
theoretical result so far in the realizable case (Das-
gupta et al., 2005). The A2 analysis also achieves an
almost contradictory property: for some sets of classi-
fiers, we can choose an ε-optimal classifier with fewer
samples than are needed to estimate the error rate of
the chosen classifier with precision ε.

2. Preliminaries

Let X be an instance space and Y = {−1, 1} be the set
of possible labels. Let H be the hypothesis class, a set
of functions mapping from X to Y . We assume there
is a distribution D over instances in X, and that the
instances are labeled by a possibly randomized oracle
O. The error rate of a hypothesis h with respect to
a distribution P over X × Y is defined as errP (h) =
Prx,y∼P [h(x) 6= y]. Let η = min

h∈H
(errD,O(h)) denote

the minimum error rate of any hypothesis in H with
respect to the distribution (D,O) induced by D and
the labeling oracle O. The goal is to find a hypothesis
h ∈ H with errD,O(h) within ε of η, where ε is some
target error.

The algorithm A2 relies on a subroutine, which com-
putes a lower bound LB(S, h, δ) and an upper bound
UB(S, h, δ) on the true error rate errP (h) of h by using
a sample S of examples drawn i.i.d. from P . Each of
these bounds must hold for all h simultaneously with
probability at least 1 − δ. The subroutine is formally
defined below.

Definition 1 A subroutine for computing LB(S, h, δ)
and UB(S, h, δ) is said to be legal if for all distribu-
tions P over X × Y , and for all m ∈ N,

LB(S, h, δ) ≤ errP (h) ≤ UB(S, h, δ)

holds for all h ∈ H simultaneously, with probability
1− δ over the draw of S according to Pm.

Examples of such subroutines are the VC bound (Vap-



Agnostic Active Learning

nik & Chervonenkis, 1971) and the Occam Razor
bound (Blumer et al., 1987).

3. The A2 Agnostic Active Learner

At a high level, A2 can be viewed as a robust ver-
sion of the selective sampling algorithm of Cohen et al.
(1994). Selective sampling is a sequential process that
keeps track of two spaces—the current version space
Hi, defined as the set of hypotheses in H consistent
with all labels revealed so far, and the current region
of uncertainty Ri, defined as the set of all x ∈ X, for
which there exists a pair of hypotheses in Hi that dis-
agrees on x. In round i, the algorithm picks a random
unlabeled example from Ri and queries it, eliminat-
ing all hypotheses in Hi inconsistent with the received
label. The algorithm then eliminates those x ∈ Ri

on which all surviving hypotheses agree, and recurses.
This process fundamentally relies on the assumption
that there exists a consistent hypothesis in H. In the
agnostic case, we cannot eliminate a hypothesis based
on its disagreement with a single example. We need
to be more conservative, or we risk eliminating best
hypotheses in the class.

A formal specification of A2 is given in Algorithm 1.
Let Hi be the set of hypotheses still under consid-
eration by A2 in round i. If all hypotheses in Hi

agree on some region of the instance space, this re-
gion can be safely eliminated. To help us keep track of
progress in decreasing the region of uncertainty, define
DisagreeD(Hi) as the probability that there exists a
pair of hypotheses in Hi that disagrees on a random
example drawn from D:

DisagreeD(Hi) = Prx∼D[∃h1, h2 ∈ G : h1(x) 6= h2(x)].

Hence DisagreeD(Hi) is the volume of the current
region of uncertainty with respect to D.

Let Di be the distribution D restricted to the current
region of uncertainty. Formally, Di = D(x | ∃h1, h2 ∈
Hi : h1(x) 6= h2(x)). In round i, A2 samples a set of
examples Si from Di, O, and uses it to compute up-
per and lower bounds for all hypotheses in Hi. It then
eliminates all hypotheses whose lower bound is greater
than the minimum upper bound. Figure 3.1 shows the
algorithm in action for the case when the data lie in
the [0, 1] interval on the real line, and H is the set
of thresholding functions. The horizontal axis denotes
both the instance space and the hypothesis space, su-
perimposed. The vertical axis shows the error rates.
Round i completes when Si is large enough to elimi-
nate at least half of the current region of uncertainty.
Since we eliminate only those examples on which the
surviving hypotheses agree, an optimal hypothesis in

Hi with respect to Di remains an optimal hypothesis
in Hi+1 with respect to Di+1. Since each round i cuts
DisagreeD(Hi) down by half, the number of rounds
is bounded by log 1

ε . Sections 4 gives examples of dis-
tributions and hypothesis classes for which A2 requires
only a small number of labeled examples to transition
between rounds, yielding an exponential improvement
in sample complexity.

When evaluating bounds during the course of Algo-
rithm 1, we choose a schedule of δ according to the
following rule: we evaluate bound k with confidence
δk = δ

k(k+1) , for k ≥ 1.

Algorithm 1 A2 (allowed error rate ε, sampling oracle
for D, labeling oracle O, hypothesis class H)
Set i = 1, Di = D, Hi = H, Si = ∅, and k = 1.

while DisagreeD(Hi)(min
h∈Hi

UB(Si, h, δk) −
min
h∈Hi

LB(Si, h, δk)) > ε

1. set Si = ∅, H ′
i = Hi, k ← k + 1.

2. while DisagreeD(H ′
i) ≥ 1

2DisagreeD(Hi)

(a) if DisagreeD(H ′
i)(min

h∈H′
i

UB(Si, h, δk) −

min
h∈H′

i

LB(Si, h, δk)) ≤ ε

(b) return h = argmin
h∈H′

i

UB(Si, h, δk).

(c) else
i. S′i = Rejection sample 2|Si| + 1 samples

x from D satisfying:

∃h1, h2 ∈ Hi : h1(x) 6= h2(x)

ii. Si ← Si∪{(x,O(x)) : x ∈ S′i}; k ← k +1;
iii. H ′

i = {h ∈ Hi : LB(Si, h, δk, ) ≤
min

h′∈Hi

UB(Si, h
′, δk)}, k ← k + 1.

end if

end while

3. Hi+1 ← H ′
i;

Di+1 ← Di conditioned on the disagreement
∃h1, h2 ∈ Hi : h1(x) 6= h2(x);

i← i + 1.

end while
Return h = argmin

h∈Hi

UB(Si, h, δk).
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Figure 3.1. A2 in action: Sampling, Bounding, Eliminat-
ing.

3.1. Correctness

Theorem 3.1 (Correctness) For all H, for all
(D,O), for all valid subroutines for computing UB and
LB, with probability 1−δ, A2 returns an ε-optimal hy-
pothesis or does not terminate.

Note 1 For most “reasonable” subroutines for com-
puting UB and LB, A2 terminates with probability at
least 1 − δ. For more discussion and a proof of this
fact see Section 3.2.

Proof: We first prove that all bound evaluations are
valid simultaneously with probability at least 1−δ, and
then show that the procedure produces an ε-optimal
hypothesis upon termination.

To prove the first claim, notice that the samples on
which each bound is evaluated are drawn i.i.d. from
some distribution over X × Y . This can be verified
by noting that the distribution Di used in round i
is precisely that given by drawing x from the under-
lying distribution D conditioned on the disagreement
∃h1, h2 ∈ Hi : h1(x) 6= h2(x), and then labeling ac-
cording to the oracle O. The k-th bound evaluation
fails with probability at most δ

k(k+1) . By the Union
bound, the probability that any bound fails is less then

the sum of the probabilities of individual bound fail-
ures. This sum is bounded by

∑∞
k=1

δ
k(k+1) = δ.

To prove the second claim, notice first that since every
bound evaluation is correct, we can be certain that step
2(c)(iii) never eliminates a hypothesis that has mini-
mum error rate with respect D. Let us now introduce
the following notation. For a hypothesis h ∈ H and
G ⊆ H define:

eD,G,O(h) = Prx,y∼D,O|∃h1,h2∈G:h1(x) 6=h2(x)[h(x) 6= y],

fD,G,O(h) = Prx,y∼D,O|∀h1,h2∈G:h1(x)=h2(x)[h(x) 6= y].

Notice that eD,G,O(h) is in fact errDG,O(h), where DG

is D conditioned on the disagreement ∃h1, h2 ∈ G :
h1(x) 6= h2(x). Moreover, given any G ⊆ H, we can
decompose the error rate of every hypothesis h into
two parts as follows:

errD,O(h) = eD,G,O(h) ·DisagreeD(G) + fD,G,O(h) ·
(1−DisagreeD(G)) = errDG,O(h) ·DisagreeD(G)+
fD,G,O(h) · (1−DisagreeD(G)).

Notice that the only term that varies with h ∈ G
in the above decomposition, is eD,G,O(h). Conse-
quently, if we want to find an ε-optimal hypothesis
we need only bound the error rate of errDG,O(h) ·
DisagreeD(G) to precision ε. But this is exactly
what the negation of the main while-loop guard does,
and this is also the condition we use in Step 2(a)
of the algorithm. In other words, upon termination
we have DisagreeD(Hi)(minh∈Hi

UB(Si, h, δk) −
minh∈Hi

LB(Si, h, δk)) ≤ ε, which proves the desired
result.

3.2. Fallback Analysis

This section shows that A2 is never much worse than
a standard batch, bound-based algorithm1 in terms
of the number of samples required in order to learn,
assuming that UB and LB are “sane”.

Define the sample complexity m(ε, δ, H) required by
a batch algorithm that uses a subroutine for comput-
ing LB(S, h, δ) and UB(S, h, δ) as the minimum num-
ber of samples m such that for all S ∈ Xm, we have
|UB(S, h, δ)− LB(S, h, δ)| ≤ ε for all h ∈ H.

We use the following bound on m(ε, δ,H) stated as
Theorem A.1 in Appendix A:

m(ε, δ,H) =
64
ε2

(
2V ln

(
12
ε

)
+ ln

(
4
δ

))
Here V is the VC-dimension of H. Assume that
m(2ε, δ,H) ≤ m(ε,δ,H)

2 , and also that the function m

1A standard example of a bound-based learning algo-
rithm is Empirical Risk Minimization (ERM).
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is monotonically increasing in 1/δ. These conditions
are satisfied by many subroutines for computing UB
and LB, including those based on the VC-bound (Vap-
nik & Chervonenkis, 1971) and the Occam’s Razor
bound (Blumer et al., 1987).

Theorem 3.2 For all H, for all (D,O), for all UB
and LB satisfying the assumption above, the algorithm
A2 makes at most 2m(ε, δ′,H) calls to the oracle O,
where δ′ = δ

N(ε,δ,H)(N(ε,δ,H)+1) and N(ε, δ,H) satisfies:
N(ε, δ,H) ≥ ln 1

ε lnm(ε, δ
N(ε,δ,H)(N(ε,δ,H)+1) ,H). Here

m(ε, δ,H) is the sample complexity of UB and LB.

Proof: Let δk = δ
k(k+1) be the confidence parame-

ter used in the k-th application of the subroutine for
computing UB and LB. We will determine an upper
bound N(ε, δ,H) on the number of bound evaluations
throughout the life of the algorithm. This will imply
that the confidence parameter δk will always be greater
than δ′ = δ

N(ε,δ,H)(N(ε,δ,H)+1) .

Consider i = 1. If condition 2 of Algorithm A2 is
repeatedly satisfied then after labeling m(ε, δ′,H) ex-
amples from D1 we have that, uniformly, for all hy-
potheses h ∈ H1, |UB(S1, h, δ′)− LB(S1, h, δ′)| ≤ ε.
Note that in these conditions we safely halt. Notice
also that the number of bound evaluations during this
process is at most ln m(ε, δ′,H).

On the other hand, if loop (2) ever completes and i
increases, then it is enough to have uniformly for all
h ∈ H2, |UB(S2, h, δ′)− LB(S2, h, δ′)| ≤ 2ε. (This
follows from the exit conditions we use in the outer
while-loop and in Step 2(a) of A2.) Clearly, in order
to uniformly have that for all hypotheses h ∈ H2 their
true upper and lower bounds are within 2ε from each
other, we only need m(2ε, δ′,H) ≤ m(ε,δ′,H)

2 labeled
examples from D2 and the number of bounds evalua-
tions in round i = 2 is at most lnm(ε, δ′,H).

In general, in round i it is enough to have uniformly for
all h ∈ Hi, |UB(Si, h, δ′)− LB(Si, h, δ′)| ≤ 2i−1ε, and
in order to obtain this we only need m(2i−1ε, δ′,H) ≤
m(ε,δ′,H)

2i−1 labeled examples from Di. Also the num-
ber of bounds evaluations in round i is at most
lnm(ε, δ′,H).

Since the number of rounds is bounded by ln 1
ε , it

follows that the maximum number of bound evalua-
tion throughout the life of the algorithm is at most
ln 1

ε lnm(ε, δ′,H). This implies that in order to deter-
mine an upper bound N(ε, δ,H) we just need to find
a solution of the following inequality: N(ε, δ,H) ≥
ln 1

ε lnm(ε, δ
N(ε,δ,H)(N(ε,δ,H)+1) ,H).

Finally, adding up the number of calls to the oracle

in all rounds, we get that the number of calls to the
oracle throughout the life of the algorithm is at most
2m(ε, δ′,H).

Let V denote the VC-dimension of H, and let
m(ε, δ,H) be the number of examples required by the
ERM algorithm. As we state in Theorem A.1 in Ap-
pendix A a classic bound on m(ε, δ,H) is m(ε, δ,H) =
64
ε2

(
2V ln

(
12
ε

)
+ ln

(
4
δ

))
. Then using Theorem 3.2, we

can show the following corollary.

Corollary 3.3 For all hypothesis classes H of VC-
dimension V , for all distributions (D,O) over X ×Y ,
the algorithm A2 requires at most Õ

(
1
ε2 (V ln 1

ε + ln 1
δ )
)

labeled examples drawn i.i.d. from (D,O).2

Proof: We use the form of m(ε, δ,H) and The-
orem 3.2 to upper bound N = N(ε, δ,H). It
is enough to find the smallest N satisfying N ≥
ln
(

1
ε

)
ln
(

64
ε2

(
2V ln

(
12
ε

)
+ ln

(
4N2

δ

)))
. Using the in-

equality ln a ≤ ab − ln b − 1 for all a, b > 0 and some
simple algebraic manipulations, we get the desired up-
per bound on N(ε, δ,H). The result then follows from
Theorem 3.2.

4. Active Learning Speedups

In this section, we show that it is possible to achieve
exponential sample complexity improvements even
with arbitrary noise for some sets of classifiers.

4.1. Learning Threshold Functions

We begin by analyzing the simple class of threshold
functions. As mentioned in the introduction, it turns
out that even for this simple class of functions expo-
nential reduction in sample complexity is not achiev-
able when the noise rate η is large (Kaariainen, 2005).
Therefore we prove two results: one shows an exponen-
tial sample complexity improvement when the noise
rate is small, while the other simply shows a slower im-
provement when the noise rate is large. In the extreme
where the noise rate is 1/2, there is no improvement.

Theorem 4.1 Let H be the set of thresholds on an in-
terval with LB and UB the VC bound. For all distribu-
tions (D,O), for any ε < 1

2 and η < ε
16 , the algorithm

A2 makes O

(
ln
(

1
ε

)
ln
(

ln ( 1
εδ )

δ

))
calls to the oracle

O on examples drawn i.i.d. from D, with probability
1− δ.

2Here and in the rest of the paper, the Õ(·) notation
is used to hide factors logarithmic in the factors present
explicitly.
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Proof: Each execution of loop 2 decreases
DisagreeD(Hi) by at least a factor of 2, implying that
the number of executions is bounded by log 1

ε . Conse-
quently, we are done if only O

(
ln 1

δ′

)
labeled samples

are required per loop.3

Let h∗ be any minimum error rate hypothesis. For
h1, h2 ∈ Hi, let di(h1, h2) be the probability that
h1 and h2 predict differently on a random ex-
ample drawn according to Di, i.e., di(h1, h2) =
Prx∼Di

(h1(x) 6= h2(x)).

Consider i ≥ 1. Let [loweri, upperi] be the sup-
port of Di. Note that for any hypothesis h ∈ Hi

we have errDi,O(h) ≥ di(h, h∗) − errDi,O(h∗). We
also clearly have errDi,O(h∗) ≤ η/Zi, where Zi =
Prx∼D(x ∈ [loweri, upperi]). (So Zi is a shorthand
for DisagreeD(Hi).)

Now notice that at least a 1
2 -fraction (measured with

respect to Di) of thresholds in Hi satisfy di(h, h∗) ≥ 1
4 ,

and these thresholds are located at the “ends” of the
interval [loweri, upperi]. Formally, assume first that
both di(h∗, loweri) ≥ 1

4 and di(h∗, upperi) ≥ 1
4 , then

let li and ui be the hypotheses to the left and to the
right of h∗, respectively, that satisfy di(h∗, li) = 1

4
and di(h∗, ui) = 1

4 . We clearly have that all h ∈
[loweri, li]∪[ui, upperi] satisfy di(h∗, h) ≥ 1

4 and more-
over Prx∼Di

(x ∈ [loweri, li] ∪ [ui, upperi]) ≥ 1
2 . Now

assume without loss of generality that di(h∗, loweri) ≤
1
4 . Let ui be the hypothesis to the right of h∗ with
di(h, upperi) = 1

2 . Then we clearly have that all
h ∈ [ui, upperi] satisfy di(h∗, h) ≥ 1

4 and moreover
Prx∼Di

(x ∈ [ui, upperi]) ≥ 1
2 .

Using the VC bound, we get that with probability 1−δ′

if

|Si| = O

 ln 1
δ′(

1
8 −

η
Zi

)2

 ,

then uniformly for all hypotheses h ∈ Hi, we have
|UB(Si, h, δ)− LB(Si, h, δ)| ≤ 1

8 −
η
Zi

.

Consider a hypothesis h ∈ Hi with di(h, h∗) ≥ 1
4 .

For any such h we have errDi,O(h) ≥ di(h, h∗) −
errDi,O(h∗) ≥ 1

4 −
η
Zi

, and so LB(Si, h, δ) ≥ 1
4 −

η
Zi
−

( 1
8 −

η
Zi

) = 1
8 . On the other hand, errDi,O(h∗) ≤ η

Zi
,

and so UB(Si, h
∗, δ) ≤ η

Zi
+ 1

8−
η
Zi

= 1
8 . Thus A2 elim-

inates all h ∈ Hi with di(h, h∗) ≥ 1
4 . But that means

we have DisagreeD(H ′
i) ≤ 1

2DisagreeD(Hi), ter-

3Notice that the difference (minh∈Hi UB(Si, h, Di, O)−
minh∈Hi LB(Si, h, Di, O)) appearing in Step 2(a) is always
constant.

minating round i. 4

Finally notice that A2 makes O
(
ln
(

1
δ′

)
ln
(

1
ε

))
calls

to the oracle, where δ′ = δ
N2(ε,δ,H) and N(ε, δ,H)

is an upper bound on the number of bound eval-
uations throughout the life of the algorithm. We
clearly have that the number of bound evaluations

required in round i is O

(
ln 1

δ′(
1
8−

η
Zi

)2

)
. This implies

that the number of bound evaluations throughout
the life of the algorithm N(ε, δ,H) should satisfy
c ln

(
N2(ε,δ,H)

δ

)
ln
(

1
ε

)
≤ N(ε, δ,H), for some constant

c. Solving this inequality, we get the desired result.

Theorem 4.2 Let H be the set of thresholds on an
interval with LB and UB the VC bound. Suppose that
ε < 1

2 and η > ε. For all D, with probability 1− δ, the

algorithm A2 will require at most Õ
(

η2 ln 1
δ

ε2

)
labeled

samples.

Proof Sketch: The proof is similar to the previous
proof. Theorem 4.1 implies that loop (2) will com-
plete log 1

η − 4 times. At this point, the noise be-
comes sufficient so that the algorithm may only halt
via the return step in loop (2). In this case, we have
DisagreeD(H) = Θ(η) implying that the number of

samples required is Õ
(

η2 ln 1
δ

ε2

)
.

Note that Theorem 4.2 asymptotically matches a lower
bound of Kaariainen (Kaariainen, 2005).

4.2. Linear Separators under the Uniform
Distribution

A commonly analyzed case for which active learning
is known to give exponential savings in the number of
labeled examples is when the data is drawn uniformly
from the unit sphere in Rd, and the labels are consis-
tent with a linear separator going through the origin.
We show that A2 also gives exponential savings in this
case, in the presence of noise.

Let X = {x ∈ Rd : ‖x‖ = 1}, the unit sphere in
Rd. Assume that D is uniform over X, and let H
be the class of linear separators through the origin.
Any h ∈ H is a homogeneous hyperplane represented
by a unit vector w ∈ X with the classification rule
h(x) = sign(w ·x). The distance between two hypothe-
ses u and v in H with respect to a distribution D (i.e.,
the probability that they predict differently on a ran-
dom example drawn from D) is given by dD(u, v) =

4The assumption in the theorem statement can clearly
be weakened to η < ε

(8+∆)
√

d
for any constant ∆ > 0.
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arccos(u·v)
π . Finally, let θ(u, v) = arccos(u · v). Thus

dD(u, v) = θ(u,v)
π .

Theorem 4.3 Let X, H, and D be as defined above,
and let LB and UB be the VC bound. Then for any
0 < ε < 1

2 , 0 < η < ε
16
√

d
, and δ > 0, with probability

1− δ, A2 requires

O

(
d

(
d ln d + ln

1
δ′

)
ln

1
ε

)
calls to the labeling oracle, where δ′ = δ

N2(ε,δ,H) and

N(ε, δ,H) = O
(
ln 1

ε

(
d2 ln d + ln d ln 1

ε

δ

))
.

Proof: Let w∗ ∈ H be a hypothesis with the
minimum error rate η. Denote the region of uncer-
tainty in round i by Ri. Thus Prx∼D[x ∈ Ri] =
DisagreeD(Hi).

Consider round i of A2. Initially i = 1, corresponding
to Hi = H, Di = D, and DisagreeD(Hi) = 1.

Theorem A.1 says that it suffices to query the oracle
on a set S of O(d2 ln d + d ln 1

δ′ ) examples from Di to
guarantee, with probability 1− δ′, that for all w ∈ Hi,

|errDi,O(w)− êrrDi,O(w)| < 1
2

(
1

8
√

d
− η

ri

)
,

where ri is a shorthand for DisagreeD(Hi). (By as-
sumption, η < ε

16
√

d
. We also have DisagreeD(Hi) ≥

ε. Thus the precision above is at least 1
16
√

d
.)5 This

implies that UB(S, w, δ′)−errDi,O(w) < 1
8
√

d
− η

ri
, and

errDi,O(w) − LB(S, w, δ′) < 1
8
√

d
− η

ri
. Consider any

w ∈ Hi with dDi(w,w∗) ≥ 1
4
√

d
. For any such w, we

have errDi,O(w) ≥ 1
4
√

d
− η

ri
, and so

LB(S, w, δ′) >
1

4
√

d
− η

ri
− 1

8
√

d
+

η

ri
=

1
8
√

d
.

But we also know that errDi,O(w∗) = η
ri

, and thus
UB(S, w∗, δ′) < η

ri
+ 1

8
√

d
− η

ri
= 1

8
√

d
, so A2 will elim-

inate w in step 2(c)(iii).

Thus round i eliminates all hypotheses w ∈ Hi with
dDi(w,w∗) ≥ 1

4
√

d
. Since all hypotheses in Hi agree

on every x 6∈ Ri, we have

dDi
(w,w∗) =

1
ri

dD(w,w∗) =
θ(w,w∗)

πri
.

Thus round i eliminates all hypotheses w ∈ Hi with
θ(w,w∗) ≥ πri

4
√

d
. But since 2θ/π ≤ sin θ, for θ ∈ (0, π

2 ],
it certainly eliminates all w with sin θ(w,w∗) ≥ ri

2
√

d
.

5The assumption in the theorem statement can clearly
be weakened to η < ε

(8+∆)
√

d
for any constant ∆ > 0.

Consider any x ∈ Ri+1 and the value |w∗ · x| =
cos θ(w∗, x). There must exist a hypothesis w ∈ Hi+1

that disagrees with w∗ on x; otherwise x would not
be in Ri+1. But then we must have cos θ(w∗, x) ≤
cos(π

2 − θ(w,w∗)) = sin θ(w,w∗) < ri

2
√

d
, where the

last inequality is due to the fact that A2 eliminated all
w with sin θ(w,w∗) ≥ ri

2
√

d
. Thus any x ∈ Ri+1 must

satisfy |w∗ · x| < ri

2
√

d
.

Using the fact that Pr(A |B) = Pr(AB)
Pr(B) ≤

Pr(A)
Pr(B) for

any A and B, we can write

Prx∼Di
[x ∈ Ri+1] ≤ Prx∼Di

[
|w · x| ≤ ri

2
√

d

]

≤
Prx∼D

[
|w · x| ≤ ri

2
√

d

]
Prx∼D[x ∈ Ri]

≤ ri

2ri
=

1
2
,

where the second inequality follows from Lemma A.2.
Thus DisagreeD(Hi+1) ≤ 1

2DisagreeD(Hi), as de-
sired.

w∗

1
2
√

d

Figure 4.1. The region of uncertainty after the first itera-
tion (schematic).

To finish the argument, it suffices to notice that since
every round cuts DisagreeD(Hi) at least in half, the
total number of rounds is bounded by log 1

ε . No-
tice also that A2 makes O

(
d2 ln d + d ln 1

δ′

)
ln
(

1
ε

)
calls

to the oracle, where δ′ = δ
N2(ε,δ,H) and N(ε, δ,H)

is an upper bound on the number of bound eval-
uations throughout the life of the algorithm. We
clearly have that the number of bound evaluations
required in round i is O

(
d2 ln d + d ln 1

δ′

)
. This im-

plies that the number of bound evaluations through-
out the life of the algorithm N(ε, δ,H) should sat-
isfy c

(
d2 ln d + d ln

(
N2(ε,δ,H)

δ

))
ln
(

1
ε

)
≤ N(ε, δ,H)

for some constant c. Solving this inequality, we get
the desired result.
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For comparison, the query complexity of the
Perceptron-based active learner of Dasgupta et al.
(2005), is O(d ln 1

εδ (ln d
δ +ln ln 1

ε )), for the same H, X,
and D, but only for the realizable case when η = 0.

5. Discussion and Open Questions

The results here should be regarded as a first-case
proof-of-possibility. A2 suggests a number of inter-
esting open questions:

1. On what other (hypothesis spaces, distribution)
pairs can we observe exponential speedups? Is
there an algorithm that is more sample efficient
than A2? Does A2 always achieve speedups com-
parable to the ones achieved by the selective sam-
pling algorithm (Cohen et al., 1994), but in the
presence of (limited) noise?

2. Are there concept classes for which A2 (or some
other algorithm) can be made computationally ef-
ficient? Checking for disagreement amongst all
remaining classifiers can be very computationally
intensive.

3. What conditions are sufficient and necessary for
active learning to succeed in the agnostic case?
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A. Appendix

We use the following standard Sample Complexity
bound from Anthony and Bartlett (1999).

Theorem A.1 Suppose that H is a set of functions
from X to {−1, 1} with finite VC-dimension V ≥ 1.
Let D be an arbitrary, but fixed probability distribution
over X × {−1, 1}. For any ε, δ > 0, if we draw a
sample from D of size

m(ε, δ, V ) =
64
ε2

(
2V ln

(
12
ε

)
+ ln

(
4
δ

))
,

then with probability at least 1 − δ, we have
|err(h)− êrr(h)| ≤ ε for all h ∈ H.

In section 4.2 we make use of the following lemma. For
a proof see, for example, Dasgupta et al. (2005).

Lemma A.2 For any fixed unit vector w and any 0 <
γ ≤ 1,

γ

4
≤ Prx

[
|w · x| ≤ γ√

d

]
≤ γ,

where x is drawn uniformly from the unit sphere.


