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Abstract

There has recently been significant interest in the machine learning community on understanding
and using submodular functions. Despite this recent interest, little is known about submodular functions
from a learning theory perspective. One exception is the work of Goemans et al. [15, 16], which studies
submodular function in an exact learning model where one must approximate the target function on
every point of the domain. The model that they consider is interesting, since it has several algorithmic
consequences, but it is not the most natural model from a learning theory perspective. It is much more
natural to consider a PAC-style analysis in a standard distributional learning setting.

In this paper, we consider this problem: learning submodular functions in a distributional setting. A
problem instance consists of a distribution on {0, 1}n and a real-valued function on {0, 1}n that is non-
negative, monotone and submodular. We are given poly(n) samples from this distribution, along with
the values of the function at those sample points. The task is to approximate the value of the function to
within a multiplicative factor at subsequent sample points drawn from the distribution, with sufficiently
high probability. We prove several results for this problem.

• There is an algorithm that, for any distribution, approximates any such function to within a factor
of
√

n on a set of measure 1− ε.
• There is a distribution and a family of functions such that no algorithm can approximate those

functions to within a factor of Õ(n1/3) on a set of measure 1/2 + ε.
• If the function is a matroid rank function and the distribution is a product distribution, such

as the uniform distribution, then there is an algorithm that approximates it to within a factor
O (log(1/ε)) on a set of measure 1− ε.

Our work combines central issues in optimization (submodular functions and matroids) with central topics
in learning (learnability of natural but complex classes of functions in a distributional setting). Our
analysis involves a twist on the usual learning theory models and uncovers some interesting structural and
extremal properties of submodular functions, which we suspect are likely to be useful in other contexts.
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1 Introduction
Submodular functions are a discrete analog of convex functions that enjoy numerous applications and have
structural properties that can be exploited algorithmically. They arise naturally in the study of graphs, ma-
troids, covering problems, facility location problems, etc., and they have been extensively studied in oper-
ations research and combinatorial optimization for many years [17]. More recently submodular functions
have become key concepts both in Machine Learning and Algorithmic Game Theory. For example, submod-
ular functions have been used to model bidders’ valuation functions in combinatorial auctions [29, 9, 4, 38],
and for solving feature selection problems in graphical models [26] or for solving various clustering prob-
lems [31]. In fact, submodularity in machine learning has been a topic of two tutorials at two recent major
conferences in machine learning [27, 28].

Despite the increased interest on submodularity in machine learning, little is known about the topic from
a learning theory perspective. One exception is the recent work of Goemans et al. [15, 16], who considered
learning submodular functions with value queries in an exact learning model. However, it is well-known
that in many learning applications it is undesirable to allow arbitrary membership or value queries because
natural oracles, such as hired humans, have difficulty labeling synthetic examples [5]. In addition, negative
results for exact learning do not necessarily imply hardness for learning in other models. This motivates the
problem of learning submodular functions in a traditional distributional learning setting.

In this work, we consider submodular function learning in a distributional setting, and we develop a PAC-
style analysis for this scenario. The model we consider in this paper is as follows. The learning algorithm is
given a set S of polynomially many labeled examples drawn i.i.d. from some fixed, but unknown, distribution
D over points in {0, 1}n; alternatively one may think of D as a distribution over subsets of {1, . . . , n}. The
points are labeled by a fixed, but unknown, target function f∗. The function f∗ is assumed to be real-valued,
non-negative, monotone and submodular.1 The goal is to output a hypothesis function f that, with probability
1−δ over the choice of examples, is a good approximation of the target f∗ on most of the points coming from
D. Here “most” means a 1− ε fraction and “good approximation” means that f(S) ≤ f∗(S) ≤ g(n) · f(S)
for some function g(n). We prove that if the underlying distribution is arbitrary and the target function
is an arbitrary non-negative, monotone, submodular function, then it is not possible to achieve a constant
approximation factor g(n). Given this, we focus on the question: What approximation factors g : N → R
are possible? We prove poly(n) upper and lower bounds on the approximation factor achievable when the
algorithm receives only poly(n, 1/ε, 1/δ) examples.

Our learning model described above differs from the usual PAC-learning model; we call our model the
PMAC-learning model. (The “M” stands for “mostly”.) In our model, one must approximate the value of
a function on a set of large measure, with high confidence. In contrast, the traditional PAC-learning model
usually studies learnability of much simpler classes of Boolean functions. There, one must compute the value
exactly on a set of large measure, with high confidence.

Our study has multiple motivations. From an applications perspective, algorithms for learning submodular
functions may be useful in some of the applications where these functions arise. For example, an auctioneer
may use such an algorithm to “sketch” the players’ valuation functions before designing the auction. (We
ignore the players’ incentives in this example.) From a foundational perspective, submodular functions form
a broad class of important functions, so studying their learnability allows us to understand their structure
in a new way. To draw a parallel to the Boolean-valued case, a class of comparable breadth is the class of
monotone Boolean functions; the learnability of such functions has been intensively studied [6, 7].

Our work has several interesting by-products. One is the PMAC-learning model, which studies both the
probability mass of points on which the hypothesis does well and the multiplicative approximation achieved
on those points. Another by-product of our work is a new family of matroids which reveals interesting
extremal properties of submodular functions. Roughly speaking, we show that a small Boolean cube can be
embedded into a large Boolean cube so that any {0, 1}-valued function on the small cube maps to a function

1Formally, f∗(S) ≥ 0 for all S ⊆ {1, . . . , n}, f∗(S) ≤ f∗(T ) whenever S ⊆ T ⊆ {1, . . . , n}, and f∗(S) + f∗(T ) ≥
f∗(S ∪ T ) + f∗(S ∩ T ) for all S, T ⊆ {1, . . . , n}.
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that is submodular on the large cube but is now {α, β}-valued (on the image of the embedding) with α � β.

1.1 Overview of Our Results and Techniques
To study learnability of submodular functions, a natural starting point is to consider Boolean-valued sub-
modular functions. This turns out to be quite simple since such functions form an extremely restricted class,
as shown in Appendix A. For the rest of this paper we focus on real-valued submodular functions.

We start by showing that it is possible to PMAC-learn the general class of non-negative, monotone sub-
modular functions with an approximation factor of

√
n + 1. To prove this we use a structural result in [15]

which shows that any monotone, non-negative submodular function can be approximated within a factor of√
n on every point by the square root of an additive function. Using this result, we show how to convert the

problem of learning a submodular function in the PMAC model to the problem of learning a linear separa-
tor in the usual PAC model. We remark that an improved structural result for any subclass of submodular
functions immediately implies an improved analysis of our algorithm for that subclass.

We use the new matroid family mentioned above to show a comparable lower bound: any algorithm
that uses a polynomial number of examples cannot PMAC-learn the class of submodular functions with an
approximation factor o(n1/3/log n). In fact, we show that any algorithm can do only negligibly better than
random guessing for this class of functions. Moreover, this lower bound holds even if the algorithm is told
the underlying distribution and it is given the ability to query the function on inputs of its choice and even if
the queries are adaptive. In other words this lower bound holds even in the PMAC model augmented with
value queries.

This lower bound holds even for matroid rank functions, but it uses a non-product distribution on examples.
It turns out that the use of such a distribution is necessary: using Talagrand’s inequality, we prove that a
constant approximation factor can be achieved for matroid rank functions under product distributions. That
result yields an interesting “approximate characterization” of matroid rank functions. It is well known that
defining f by f(S) = h(|S|) gives a submodular function if h is concave. Surprisingly, we show that an
approximate converse is true; the formal statement is in Section 5.1.

To prove our lower bound, we propose the following technical problem. We would like find a map ρ :
{0, 1}d → {0, 1}n and real numbers α � β such that every Boolean function f on {0, 1}d can be mapped
to a non-negative, monotone, submodular function f̃ on {0, 1}n satisfying f(x) = 0 ⇒ f̃(ρ(x)) ≤ α and
f(x) = 1 ⇒ f̃(ρ(x)) ≥ β. This yields a lower bound on learning submodular functions with approximation
factor β

α when d = ω(log n), since roughly 2d examples are needed to learn an arbitrary Boolean function f .
There are two trivial solutions to this technical problem, respectively based on partition matroids and

paving matroids [33]. These trivial solutions are uninteresting since the former requires d ≤ log n, and the
latter only gives an additive gap between α and β. Our new family of matroids generalizes both the class
of partition matroids and the class of paving matroids. We use them to obtain a construction with α = 16d,
β = n1/3 and any d = o(n1/3). Setting d = log n log log n gives the Ω̃(n1/3) lower bound for learning
submodular functions.

1.2 Related Work
Optimization Optimization problems involving submodular functions have been widely studied in the lit-
erature with better and better algorithms (or approximation algorithms) both for submodular functions min-
imization and maximization [17, 32, 19, 21, 12]. Approximation algorithms for submodular analogues of
several other well-known optimization problems have been studied, e.g., submodular set cover [39], sub-
modular sparsest cut [34], submodular vertex cover [20, 14].
Exact Learning with Value Queries We now discuss the prior work on learning submodular functions and
its relationship to our work. As mentioned above, a recent paper of Goemans et al. [15] also considers the
problem of approximately learning non-negative, monotone, submodular functions. (This problem had been
discussed in an earlier manuscript [16] and some improvements were obtained by Svitkina and Fleischer
[34].) From a learning theory perspective, the results of Goemans et al. [15] are of the type “exact learning
in the value query model”. In particular, their model does not involve a distribution on the domain of the
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function. Instead, the algorithm queries the domain at poly(n) points (chosen adaptively by the algorithm)
and it learns the value of f∗ at those points. Then the algorithm must produce a hypothesis f which is correct
to within a multiplicative factor g(n) for every point in the domain. In contrast, the model that we focus on
is the more widely studied passive supervised learning setting [3, 25, 36, 37], which as mentioned above
is more justified in learning motivated settings [5].. The algorithm can only see a polynomial number of
examples chosen i.i.d. from the underlying distribution, but only requires that the algorithm approximate f∗

well on most of the examples coming from the same distribution. Our lower bounds are much stronger: they
hold in the more powerful setting where the algorithm can additionally query a polynomial number of points
of its choice and it is required to approximate the target function well on only on a 1/2+1/ poly(n) fraction
of the points coming from the underlying distribution.

Our techniques are also are very different from those in [15]. First, our learning algorithm is much simpler
— whereas their algorithm uses several submodular optimization algorithms, we only require the aforemen-
tioned structural result in order to reduce the problem to a traditional PAC-learning problem. Moreover, our
algorithm is noise-tolerant; we elaborate on this in Section 3 and Appendix B.1. Second, proving the lower
bound for our distributional learning requires a much more involved argument than needed for exact learning
— they use a submodular function which is almost “flat” except for a single, large “valley”, whereas we re-
quire a function which is submodular yet has a super-polynomial number of large valleys. Indeed, our work
was partially motivated by the observation that the functions that are proven hard to learn in [15] are actually
trivial to learn in a distributional setting, where the goal is to approximate the target function on most of the
points coming from the distribution.

Even in the case of Boolean functions, lower bounds for distributional learning are typically much harder
to show than lower bounds for exact learning. For instance, even the simple classes of non-monotone con-
junctions or functions having a single positive example are hard for exact learning, and yet they are trivial
to PAC-learn. Proving a lower bound for PAC-learning requires exhibiting some fundamental complexity in
the class of functions under consideration, especially when one does not restrict the form of the hypothesis
function. A similar phenomenon holds in the PMAC model as well.

2 A Formal Framework
In this section we give formal definitions for the objects and problems studied in this paper. Let [n] denote
the set {1, 2, . . . , n}. For S ⊆ [n] and x ∈ [n] \ S, let S + x denote S ∪ {x}. Given S ⊆ [n] we will denote
by χ(S) ∈ Rn its indicator vector, i.e., χ(S)i is 1 if i is in S and 0 otherwise.

2.1 Background and Notation: Submodular Functions and Matroids
We state here briefly some useful standard facts about submodular functions. For a detailed discussion, we
refer the reader to Lovász’s survey [30], Fujishige’s monograph [13] and Schrijver [33].
Definition 1. A function f : 2[n] → R is called submodular if

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ [n]. (2.1)

The function f is called monotone (or non-decreasing) if f(S) ≤ f(T ) whenever S ⊆ T ⊆ [n].
Definition 2. A function f : 2[n] → R+ is called subadditive if

f(S) + f(T ) ≥ f(S ∪ T ) for all S, T ⊆ [n]. (2.2)

A function f : 2[n] → R is called L-Lipschitz if |f(S + x)− f(S)| ≤ L for all S ⊆ [n] and x 6∈ S.
One manner in which submodular functions arise is as the rank functions of matroids. Further information

about matroids can be found in standard references, e.g., Schrijver [33].
Definition 3. M = (V, I) is a matroid if V is a finite set and I ⊆ 2V is a non-empty family such that

• if I ∈ I and J ⊆ I , then J ∈ I, and
• if I, J ∈ I and |J | < |I|, then there exists an i ∈ I \ J such that J + i ∈ I.

Let M = (V, I) be a matroid. The subsets of V in I are called independent and those not in I are called
dependent. A maximal independent set is called a base of M. All bases have the same size, which is called

3



the rank of the matroid and denoted rk(M). Let the function rankM : 2V → N+ be defined by
rankM(S) := max { |I| : I ⊆ S, I ∈ I } .

It is well-known that the function rankM is non-negative, monotone, submodular, and 1-Lipschitz. The
converse is also true: any non-negative, integer-valued, monotone, submodular, 1-Lipschitz function with
f(∅) = 0 is a rank function of some matroid [33].

2.2 Our Learning Framework
In this paper we focus on learning in the passive, supervised learning setting. In this setting, we have an
instance space X = {0, 1}n, our data comes from a fixed unknown distribution D over X , and the data
is “labeled” by some unknown target function f∗ : X → R+. A learning algorithm is given a set S of
labeled training examples drawn i.i.d. from D and labeled by f∗. The algorithm performs some computation
over the labeled examples S and outputs a hypothesis f : X → R+ that, with high probability, is a good
approximation of the target for most points in D. Formally, we define the PMAC learning model as follows.
Definition 4. Let F be a family of non-negative, real-valued functions with domain {0, 1}n and let g :
N → R+ be a function. We say that an algorithm A PMAC-learns F with approximation factor g if, for any
distribution D over {0, 1}n, for any target function f∗ ∈ F , and for ε and δ sufficiently small:

• The input to A is a sequence of pairs (x1, y1), . . . , (x`, y`), where each xi is chosen independently
from distribution D and each yi = f∗(xi).

• The input sequence of A has length ` = poly(n, 1
ε ,

1
δ ) and A has running time poly(n, 1

ε ,
1
δ ).

• The output of A is a function f : {0, 1}n → R that satisfies

Pr(x1,y1),...(x`,y`)

[
Prx [ f(x) ≤ f∗(x) ≤ g(n) · f(x) ] ≥ 1− ε

]
≥ 1− δ.

The term PMAC stands for “Probably Mostly Approximately Correct”. We remark that PMAC-learning
with approximation factor 1 is equivalent to PAC-learning.

In this paper, we study the following problem. LetF be the family of all non-negative, monotone, submod-
ular functions. For what ε, δ and g : N → R does there exist an algorithm that efficiently PMAC-learns F?
How does the answer change if we impose some restrictions on the distribution D or consider a subfamily
of the whole set F?

3 An O(
√

n)-approximation Algorithm
In this section we present our upper bounds for efficiently PMAC-learning two very broad families of func-
tions. We give a PMAC-learning algorithm with approximation factor O(n) for learning the family of non-
negative, monotone, subadditive functions. We also give a PMAC-learning algorithm with approximation
factor O(

√
n) for learning the class of non-negative, monotone, submodular functions.

We start with two lemmas concerning these classes of functions.
Lemma 1. Let f : 2[n] → R+ be a non-negative, monotone, subadditive function. Then there exists a linear
function f̂ such that f̂(S) ≤ f(S) ≤ nf̂(S) for all S ⊆ [n].

A stronger result for the class of submodular functions was proven by Goemans et al. [15], using proper-
ties of submodular polyhedra and John’s theorem on approximating centrally-symmetric convex bodies by
ellipsoids [23].
Lemma 2 (Goemans et al. [15]). Let f : 2[n] → R+ be a non-negative, monotone, submodular function
with f(∅) = 0. Then there exists a function f̂ of the form f̂(S) =

√
wTχ(S) where w ∈ Rn

+ such that
f̂(S) ≤ f(S) ≤

√
nf̂(S) for all S ⊆ [n].

We now use the preceding lemmas in proving our main algorithmic results.
Theorem 3. Let F be the class of non-negative, monotone, subadditive functions over X = 2[n]. There is
an algorithm that PMAC-learns F with approximation factor n + 1. That is, for any distribution D over X ,
for any ε, δ sufficiently small, with probability 1− δ, the algorithm produces a function f that approximates

4



f∗ within a multiplicative factor of n + 1 on a set of measure 1 − ε with respect to D. The algorithm uses
` = 48n

ε log
(

9n
δε

)
training examples and runs in time poly(n, 1/ε, 1/δ).

We sketch in the following the proof of this theorem. For a full proof see Appendix B.

Proof Sketch. Because of the multiplicative error allowed by the PMAC-learning model, we will analyze
separately the subset of the instance space where f∗ is zero and the subset where f∗ is non-zero. For
convenience, let us define P = { S : f∗(S) 6= 0 } and Z = { S : f∗(S) = 0 }.

The main idea of our algorithm is to reduce our learning problem to the standard problem of learning a
linear separator from i.i.d. samples in the passive, supervised learning setting [25, 37] with a slight twist in
order to handle the points in Z . The linear separator learning problem we reduce to is defined as follows.
The instance space is Rm where m = n + 1 and the distribution D′ is defined by the following procedure
for generating a sample from it. Repeatedly draw a sample S ⊆ [n] from the distribution D until f∗(S) 6= 0.
Next, flip a fair coin. The sample from D′ is (χ(S), f∗(S)) if the coin is heads and (χ(S), (n + 1) · f∗(S))
if the coin is tails. The function c∗ defining the labels is as follows: samples for which the coin was heads
are labeled +1, and the others are labeled −1.

We then show that the distribution over labeled examples induced by D′ and c∗ is linearly separable in
Rn+1. To prove this we use Lemma 1 which says that there exists a linear function f̂(S) = wTχ(S) such
that f̂(S) ≤ f∗(S) ≤ n · f̂(S) for all S ⊆ [n].

Our algorithm is now as follows. It partitions the training set S = {(S1, f
∗(S1)), . . . , (S`, f

∗(S`))} into
two sets S0 and S6=0, where S0 is the subsequence of S with f∗(Si) = 0, and S6=0 = S\S0. For convenience,
let us denote the sequence S6=0 as S6=0 =

(
(A1, f

∗(A1)), . . . , (Aa, f
∗(Aa))

)
. Now let U0 =

⋃
i∈S0

Si and
L0 = { S : S ⊆ U0 } . Using S6=0, the algorithm then constructs a sequence S ′6=0 =

(
(x1, y1), . . . , (xa, ya)

)
of training examples for the binary classification problem. For each 1 ≤ i ≤ a, let yi be −1 or 1, each with
probability 1/2. If yi = +1 set xi = (χ(Ai), f∗(Ai)); otherwise set xi = (χ(Ai), (n + 1) · f∗(Ai)). The
last step of our algorithm is to solve a linear program in order to find a linear separator u = (w,−z) where
w ∈ Rn, z ∈ R consistent with the labeled examples (xi, yi), i = 1 ≤ i ≤ a, with the additional constraints
that wj = 0 for j ∈ U0. The output hypothesis is f(S) = 1

(n+1)zwTχ(S). (See Algorithm 1 in Appendix B.)
To prove correctness, note that the LP is feasible; this follows from our earlier discussion using the facts

(i) S ′6=0 is a set of labeled examples drawn from D′ and labeled by c∗, and (ii) U0 ⊆
⋃

Si∈Z Si. It remains to
show that f approximates the target on most of the points. Let Y denote the set of points S ∈ P such that
both of the points (χ(S), f∗(S)) and (χ(S), (n + 1) · f∗(S)) are correctly labeled by sgn(uTx), the linear
separator found by our algorithm. We can then show that the function f(S) = 1

(n+1)zwTχ(S) approximates
f∗ to within a factor n + 1 on all the points in the set Y . Moreover, the function f correctly assigns label
0 to all the examples in L0. To finish the proof, we use classic VC bounds and the Chernoff bound to show
two important claims: for our choice of ` = 16n

ε log
(

n
δε

)
, with high probability both P \ Y and Z \ L0 have

small measure, at most 3ε. The complement of this set is (Z \L`)∪ (P \Y), which has measure at most 3ε,
with probability at least 1− 3δ. �

The preceding proof was for the class of subadditive functions. The proof for submodular functions is
similar, replacing Lemma 1 with Lemma 2.
Theorem 4. LetF be the class of non-negative, monotone, submodular functions over X = 2[n]. There is an
algorithm that PMAC-learns F with approximation factor

√
n + 1. That is, for any distribution D over X ,

for any ε, δ sufficiently small, with probability 1− δ, the algorithm produces a function f that approximates
f∗ within a multiplicative factor of

√
n + 1 on a set of measure 1− ε with respect to D. The algorithm uses

` = 48n
ε log

(
9n
δε

)
training examples and runs in time poly(n, 1/ε, 1/δ).

Proof. To learn the class of non-negative, monotone, submodular functions we apply the algorithm described
in Theorem 3 (Algorithm 1 in Appendix B) with the following changes: (i) in the second step if yi = +1 we
set xi = (χ(Ai), f∗(Ai)2) and if yi = −1 we set xi = (χ(Ai), (n+1) ·f∗(Ai)2); (ii) we output the function
f(S) =

√
1

(n+1)zwTχ(S). To argue correctness we use Lemma 2, which shows that, for any f ∈ F , the

function f2 can be approximated to within a factor of n by a linear function. The proof of Theorem 3 can
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then be applied to the family
{

f2 : f ∈ F
}

. �

Remark We remark that our algorithm which proves Theorem 4 is significantly simpler than the algorithm
of Goemans et al. [15] which achieves a slightly worse approximation factor in the exact learning model with
value queries.
Extensions Our algorithms for learning subadditive and submodular functions in the PMAC model are quite
robust and it can be extended to handle more general cases as well as various forms of noise. First, we
can extend the results in Theorem 3 and Theorem 4 to the more general case where do not even assume
that the target function is subadditive (or submodular), but that it is within a factor α of a subadditive (or
submodular) function on every point in the instance space. Under this relaxed assumption we are able to
achieve the approximation factor α · (n + 1) (or

√
α · (n + 1)). We can also extend the results in Theorem 3

and Theorem 4 to the agnostic case where we assume that there exists a subadditive (or a submodular)
function that agrees with the target on all but an η fraction of the points; note that on the η fraction of the
points the target can be arbitrarily far from a subadditive (or a submodular) function. In this case we can still
PMAC-learn with a polynomial number of samples O( n

ε2
log

(
n
δε

)
), but using a potentially computationally

inefficient procedure. For formal theorems and proofs see Appendix B.1.
Finally, it is clear from the proofs of Theorem 3 and Theorem 4 that any improvements in the approxi-

mation factor for the structural result of Lemma 1 (or Lemma 2) for specific subclasses of subadditive (or
submodular) functions yield PMAC-learning algorithms with improved approximation factors.

4 A General Lower Bound
This section proves a strong lower bound on the approximation factor achievable by any algorithm which
PMAC-learns the class of non-negative, monotone, submodular functions. Specifically:
Theorem 5. No algorithm can PMAC-learn the class of non-negative, monotone, submodular functions with
approximation factor o(n1/3/log n).

The previous theorem gives an information-theoretic hardness result. We can also derive a complexity-
theoretic hardness result.
Theorem 6. Suppose that one-way functions exist. For any constant ε > 0, no algorithm can PMAC-learn
the class of non-negative, monotone, submodular functions with approximation factor O(n1/3−ε), even if
the functions are given via polynomial-time algorithms which compute their value on the support of the
distribution.

The proofs of these theorems rely on the following key theorem.
Theorem 7. Let V = [n] be the ground set. Let d be a positive integer with d = o(n1/3). There exists a
family of sets A ⊆ 2V and a family of matroids M = { MB : B ⊆ A } with the following properties.

• |A| = 2d and |A| ≥ n1/3/2 for every A ∈ A.
• For every B ⊆ A and every A ∈ A, we have

rankMB(A)

{
≤ 16d (if A ∈ B)
= |A| (if A ∈ A \ B)

Why should this theorem be true? To motivate it, consider the following problem. Let A1, . . . , Ak ⊆ V be
arbitrary, and let u1, . . . , uk be non-negative integers. We would like to find a matroid whose rank function
satisfies

rank(Ai) ≤ ui ∀i, and rank(S) is “large” if S is “far” from any Ai. (4.1)

If the sets A1, . . . , Ak are pairwise disjoint, then the problem is easy: the matroid M = (V, I) where
I = { I : |I ∩Aj | ≤ uj ∀j ∈ [k] } is a partition matroid [33], and its rank function has property (4.1).

Unfortunately, if the sets Ai are not disjoint, then this family I is typically not the independent sets of a
matroid. Consider taking n = 5, A1 = {1, 2, 3}, A2 = {3, 4, 5} and u1 = u2 = 2. Then both {1, 2, 4, 5} and
{2, 3, 4} are maximal sets in I but they do not have the same cardinality, which violates the matroid axioms.
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However, we do obtain a matroid if we only allow small independent sets (i.e., truncate the matroid). One
can show that

I = { I : |I ∩A1| ≤ u1 ∧ |I ∩A2| ≤ u2 ∧ |I| ≤ u1 + u2 − |A1 ∩A2| }
is the family of independent sets of a matroid. Roughly speaking, if |A1∩A2| is not too large, and if we only
consider sets I that are not too large, then I is a matroid. In this section we show how to generalize this to any
k: if A1, . . . , Ak are arbitrary sets whose intersections are not too large, then we can find a matroid satisfying
property (4.1). This is formalized below, and choosing A appropriately leads to a proof of Theorem 7.

It is worth contrasting the matroid construction of Theorem 7 with a related construction which appeared
previously [15], and which has been used to give lower bounds for several problems [34, 20]. That con-
struction sets A =

(
V√
n

)
, and for every B ∈ A, there is a matroid MB for which rankMB

(A) is roughly
log n if A = B and roughly

√
n if A ∈ A and |A ∩ B| ≥ log n. Intuitively, that construction gives a rank

function which is almost like a uniform matroid except that it has a single, large “valley” centered on B.
Our present construction gives rank functions which are almost like a uniform matroid, except that they can
have a super-polynomial number of large valleys; furthermore, each valley can be independently chosen to
be a valley or not, and the resulting function is still a matroid rank function. The proof of Theorem 7 is
significantly more involved than the earlier construction.

The remainder of this section proves Theorem 5 and Theorem 7. There are many steps, and several of the
proofs are deferred to Appendix E.

4.1 A New Matroid Construction
Let C be a family of sets and let f : C → Z be a function. Consider the family

I = { I : |I ∩ C| ≤ f(C) ∀C ∈ C } .

For any I ∈ I, define T (I) = { C ∈ C : |I ∩ C| = f(C) } to be the set of tight constraints. Suppose that f
has the following uncrossing property:

∀I ∈ I, C1, C2 ∈ T (I) =⇒ (C1 ∪ C2 ∈ T (I)) ∨ (C1 ∩ C2 = ∅). (4.2)

Note that we do not require that C1 ∩ C2 ∈ C. Our first observation is that this uncrossing property is
sufficient to obtain a matroid.
Lemma 8. I is the family of independent sets of a matroid, if it is non-empty.

We will now use this lemma by appropriately choosing a family of sets and a function defined on it. Let
A = {A1, . . . , Ak} be an arbitrary family of sets. Let u1, . . . , uk be integers satisfying 0 ≤ ui < |Ai|. For
convenience, define the notation A(J) = ∪j∈JAj for J ⊆ [k]. Define the function f : 2[k] → Z by

f(J) = |A(J)| −
∑
j∈J

(|Aj | − uj).

We now prove2 the following theorem.
Theorem 9. Let

I := { I : |I ∩A(J)| ≤ f(J) ∀J ⊆ [k] } .

Then I is the family of independent sets of a matroid, if it is non-empty.
This theorem is proven by uncrossing the constraints and applying Lemma 8. It is not a priori obvious that

the constraints can be uncrossed because both the left-hand side |I ∩A(J)| and the right-hand side f(J) are
submodular functions of J . In typical uses of uncrossing, the left-hand side is supermodular.
Proof. We will apply Lemma 8 to the family C = { A(J) : J ⊆ [k] } and the function f ′ : C → Z
defined by f ′(C) = min { f(J) : A(J) = C }. Fix I ∈ I and suppose that C1 and C2 are tight, i.e.,
|I ∩ Ci| = f ′(Ci). For i ∈ {1, 2}, let Ji satisfy Ci = A(Ji) and f ′(Ci) = f(Ji). Define hI : 2[k] → Z by

hI(J) := f(J)− |I ∩A(J)| = |A(J) \ I| −
∑
j∈J

(|Aj | − uj).

2We thank Jan Vondrák for helping us simplify the original proof of this theorem.
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Note that J 7→ |A(J) \ I| is a submodular function of J . (See Theorem 28 in Appendix D.) Since J 7→∑
j∈J(|Aj | − uj) is a modular function of J , we get that hI is submodular as well.
Since I ∈ I we have |I ∩A(J)| ≤ f(J), implying hI ≥ 0. But, for i ∈ {1, 2},

hI(Ji) = f(Ji)− |I ∩A(Ji)| = f ′(Ci)− |I ∩ Ci| = 0,

so J1 and J2 are minimizers of hI . It is well-known that the minimizers of any submodular function are
closed under union and intersection. (See Lemma 29 in Appendix D.) So J1 ∪ J2 and J1 ∩ J2 are also
minimizers, implying that A(J1 ∪ J2) = A(J1) ∪A(J2) = C1 ∪ C2 is also tight.

This shows that Eq. (4.2) holds, so the theorem follows from Lemma 8. �

The family I is non-empty iff f(J) ≥ 0 for all J . This fails whenever k > n since f([k]) ≤ n − k < 0.
So Theorem 9 can only be used to construct matroids with |A| = k ≤ n, which is insufficient for proving
Theorem 7. We now modify the preceding construction by introducing a sort of “truncation” operation which
allows us to take k � n.
Definition 5. Let µ and τ be non-negative integers. The function f is called (µ, τ)-good if

f(J) ≥

{
0 ∀J ⊆ [k], |J | < τ

µ ∀J ⊆ [k], τ ≤ |J | ≤ 2τ − 2.

Define h : 2[k] → Z by

h(J) =

{
f(J) (if |J | < τ )
µ (otherwise).

We now argue that we can replace the function f by h and still obtain a matroid.
Theorem 10. Suppose that f is (µ, τ)-good. Then the family

Ih = { I : |I ∩A(J)| ≤ h(J) ∀J ⊆ [k] }
is the family of independent sets of a matroid.

If we assume that A([k]) = V (or if we apply ordinary matroid truncation to reduce the rank to µ) then
the family Ih can be written

Ih =
{

I : |I| ≤ µ ∧ |I ∩A(J)| ≤ f(J) ∀J ⊆ [k], |J | < τ
}

.

There are several interesting special cases of Theorem 10, which we discuss in Appendix F. In particular,
partition matroids and paving matroids are both special cases.

4.2 Nice Set Systems and a Proof of Theorem 7
Definition 6. Let A := {A1, . . . , Ak} ⊆ 2V , and let µ, τ and u be non-negative integers with τu ≥ 2µ.
The family A is called (µ, τ, u)-nice if

µ/(2d) < |Ai| < µ ∀i ∈ [k] (4.3)∑
j∈J

|Aj | − |A(J)| ≤ |J | · u/2 ∀J ⊆ [k] s.t. |J | ≤ 2τ − 2 (4.4)

|Ai ∩A(J)| ≤ |J | · u/2 ∀i ∈ [k], J ⊆ [k] \ {i} s.t. |J | < τ (4.5)

In fact, Eq. (4.4) implies Eq. (4.5) with a slightly worse constant. So for our purposes, it is sufficient to
find a family satisfying Eq. (4.3) and Eq. (4.4). As was pointed out to us by A. Rudra, such a set system is
precisely a bipartite, nearly-µ-regular, lossless expander graph.
Proposition 11. Suppose that A is (µ, τ, u)-nice. For every B ⊆ [k] define fB : 2B → R by

fB(J) = |A(J)| −
∑
j∈J

(|Aj | − u) ∀J ⊆ B.

Then fB is (µ, τ)-good.
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Lemma 12. Let d be a positive integer with d = o(n1/3). Let the family A be constructed as follows. Set
k = 2d and construct each set Ai by picking each element of V independently with probability p = n−2/3.
Then, with constant probability, A is (µ, τ, u)-nice with parameters

µ = n1/3d, τ = n1/3, and u = 16d.

We remark that a family A with similar parameters can be obtained using known probabilistic construc-
tions of lossless expander graphs. To our knowledge, there is no known explicit construction of a family
matching these parameters.

Proof (of Theorem 7). Construct the family A = {A1, . . . , Ak} as in Lemma 12, where k = 2d. With
constant probability, A is (µ, τ, u)-nice, and thus each |Ai| > n1/3/2. Furthermore, Proposition 11 implies
that, for every B ⊆ A, the function fB is (µ, τ)-good. So Theorem 10 implies that

IB =
{

I : |I| ≤ µ ∧ |I ∩A(J)| ≤ fB(J) ∀J ⊆ B, |J | < τ
}

is the family of independent sets of a matroid, which we call MB.
It remains to analyze rankMB(Ai) for each B ⊆ A and Ai ∈ A. First, suppose that Ai ∈ B. The definition

of IB includes the constraint |I ∩ Ai| ≤ fB({i}). Thus rankMB(Ai) ≤ fB({i}) = u = 16d, as required.
Second, we must show that for all B ⊆ A and all Ai 6∈ B we have rankMB(Ai) = |Ai|. This holds iff
Ai ∈ IB. To prove this, we first observe that |Ai| ≤ µ since A is (µ, τ, u)-nice. Next, for any J ⊆ B with
|J | < τ , we have

|Ai ∩A(J)| ≤ |J | · u/2 ≤ |A(J)| −
∑
j∈J

(|Aj | − u) = fB(J).

Here, the first inequality holds due to Eq. (4.5) and the second holds due to Eq. (4.4). Thus Ai satisfies all
the constraints and hence Ai ∈ IB �

4.3 Proof of Theorem 5
Using the construction in Section 4.2, we prove Theorem 5. For a proof of Theorem 6, see Appendix E.

Proof (of Theorem 5). Let d = ω(log n). Let A and M be the families constructed by Theorem 7. Let
the underlying distribution D on {0, 1}n be the uniform distribution on A. (Note that D is not a product
distribution on V .) Choose a matroid MB ∈ M uniformly at random and let the target function be f∗ =
rankMB . Consider any algorithm which attempts to PMAC-learn f∗; note that the algorithm does not know
B. For any A ∈ A that is not a training example, the algorithm has no information about f∗(A), so it cannot
determine its value better than randomly guessing between the two possible values 16d and |A|. The set
of non-training examples has measure 1 − 2−d+O(log n). So the expected measure of the set on which the
algorithm correctly determines the rank is at most 1/2 + 2−d+O(log n). On the set for which the algorithm
did not correctly determine the rank, its approximation factor can be no better than n1/3/(16d). �

Remarks One can show that our lower bound holds even if the algorithm is told the underlying distribution
and it is given the ability to query the function on inputs of its choice and even if the queries are adaptive. In
other words this lower bound holds even in the PMAC model augmented with value queries. In Appendix H
we show how the results in this section can be used to provide a lower bound on the Rademacher complexity
of monotone submodular functions. a natural measure of the complexity of a class of functions.

5 Matroid Rank Functions and Product Distributions
We consider here the important subclass of matroid rank functions and we show that this subclass can be
PMAC-learned with a much better approximation factor when the distribution on examples is a product
distribution. Formally, we show the following result.
Theorem 13. Let F be the class of matroid rank functions with ground set V and let D be a product
distribution on V . For any sufficiently small ε > 0 and δ > 0, there is an algorithm that PMAC-learns F
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with approximation factor 1200 log(1/ε) using 10n2 log(1/δ)+n log(n/δ)/ε training examples. If E [R ] ≥
450 log(1/ε) then the approximation factor improves to 8.

For a proof see Appendix G. We remark that the main technical lemma required to prove Theorem 13
(which is proven in Appendix G.1) is the following interesting consequence of the Talagrand inequality.
Lemma 14. Let M = (V, I) be a matroid and let D be a product distribution on V . Let R = rankM(X),
where X is a sample from D. If E [R ] ≥ 4000 then, for α ∈ [0, 1],

Pr [ |R−E [R ]| ≥ (α + 1/4)E [R ] ] ≤ 4e−α2 E[ R ]/12.

If E [R ] ≤ 500 log(1/ε) then Pr [R ≥ 1200 log(1/ε) ] ≤ ε.

An interesting special case of Lemma 14 is as follows. Fix a matrix A over any field. Construct a random
submatrix by selecting the ith column of A with probability pi, where these selections are made indepen-
dently. Then the rank of the resulting submatrix is highly concentrated around its expectation. In matrix
analysis, Talagrand’s inequality is primarily used for studying the concentration of the eigenvalues of ma-
trices with random entries [1]. Although Lemma 14 is very natural, we are unaware of it being previously
used, even though its proof is a prototypical application of Talagrand’s inequality.

5.1 An Approximate Characterization of Monotone, Submodular Functions
We present here an interesting consequence of Theorem 13. The following easy construction of submodular
functions is well-known. See, e.g., Lovász [30, pp. 251].
Proposition 15. Let h : R → R be concave. Then f : 2V → R defined by f(S) = h(|S|) is submodular.

This construction yields an extremely restricted class of submodular functions. However, we now show
that, rather surprisingly, an approximate, partial converse is true.
Theorem 16. Let f : 2V → Z+ be the rank function of a matroid with no loops, i.e., f(S) = 0 =⇒ S = ∅.
Fix ε > 0, sufficiently small. There exists a concave function h : [0, n] → R such that, for every k ∈ [n], and
for a 1− 4ε fraction of the sets S ∈

(
V
k

)
, we have

1
400 log(1/ε)

h(k) ≤ f(S) ≤
(
1200 log(1/ε)

)
h(k).

6 Conclusions and Open Questions
In this paper we study submodular function learning in the traditional distributional learning setting. We
prove polynomial upper and lower bounds on the approximability guarantees achievable in the general case
by using only a polynomial number of examples. We also provide improved analyses for important sub-
classes of submodular functions under natural distributional assumptions.

Our work combines central issues in optimization (submodular functions and matroids) with central issues
in learning (learnability of natural but complex classes of functions in a distributional setting). Our analysis
brings a twist on the usual learning theory models and uncovers some interesting structural and extremal
properties of submodular functions, which are likely to be useful in other contexts as well.
Open Questions It would be interesting to close the gap between the O(n1/2) upper bound in Theorem 4
and the Ω̃(n1/3) lower bound in Theorem 5. We suspect that the lower bound can be improved to Ω̃(n1/2). If
such an improved lower bound is possible, the matroids or submodular functions used in its proof are likely
to be very interesting. It would be also be interesting to use the approach in our general

√
n-upper bound for

simplifying the analysis in the upper bound of Goemans et al. [15].
The algorithm in Section 5 applies to matroid rank functions. It trivially extends to L-Lipschitz functions

for any constant L. What if L ≥ n?
Are there particular subclasses of submodular functions for which one can PMAC-learn with approxima-

tion ratio better than O(
√

n), perhaps under additional distributional assumptions? Can one PMAC-learn
other natural classes of real-valued functions, with good approximation ratios?

10



Acknowledgements
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A Boolean Submodular Functions
Proposition 17. The class of monotone, Boolean-valued, submodular functions is efficiently PMAC-learnable
with approximation factor 1.
Proof. Let f : 2[n] → {0, 1} be an arbitrary monotone, submodular function. We claim that f is either
constant or a monotone disjunction.

It is well-known that submodularity is equivalent to the property of decreasing marginal values. Formally,
a function f : 2[n] → R is submodular iff

f(S + x)− f(S) ≥ f(T + x)− f(T ) for all S ⊆ T ⊆ [n], x ∈ [n] \ T . (A.1)

By (A.1), we have f(T ∪ {x})− f(T ) ≤ f(S ∪ {x})− f(S), for S ⊆ T ⊆ [n], x ∈ [n] \ T . Considering
S = ∅, we get

f(T ∪ {x})− f(T ) ≤ f({x}) ∀T ⊆ [n], x ∈ [n] \ T.

This implies that if f({x}) = 0, then f(T ∪ {x}) ≤ f(T ) for all T and all x and by monotonicity, we get
that if f({x}) = 0, then f(T ∪ {x}) = f(T ) for all T and all x. Also by monotonicity, if f({x}) = 1 then
f(T ) = 1 for all T such that x ∈ T . This then implies that f(S) =

∨
xi∈S

xi for all S ∈ 2[n].

This proves the claim. It is well known that the class of disjunctions is easy to learn in the supervised
learning setting [25, 37]. �

Non-monotone, Boolean, submodular functions need not be disjunctions. For example, consider the func-
tion f(S) = 0 if S = ∅ or S = [n] and f(S) = 1; it is submodular, but not a disjunction. However, it
turns out that any submodular boolean functions is a 2-DNF [11]. It is well known that such functions are
efficiently PAC-learnable. We summarize this discussion as follows.
Proposition 18. The class of Boolean, submodular functions is efficiently PMAC-learnable with approxi-
mation factor 1.

B Additional Proofs for the O(
√

n)-approximation algorithm

Algorithm 1 Algorithm for learning subadditive functions.
Input: A sequence of labeled training examples S = {(S1, f

∗(S1)), (S2, f
∗(S2)), . . . (S`, f

∗(S`))}, where
f∗ is a subadditive function.

• Let S6=0 = {(A1, f
∗(A1)), . . . , (Aa, f

∗(Aa))} be the subsequence of S with f∗(Ai) 6= 0 ∀i. Let
S0 = S \ S6=0. Let U0 be the set of indices defined as U0 =

⋃
i≤`

f∗(Si)=0

Si.

• For each 1 ≤ i ≤ a, let yi be the outcome of flipping a fair {+1,−1}-valued coin, each coin flip
independent of the others. Let xi ∈ Rn+1 be the point defined by

xi =

{
(χ(Ai), f∗(Ai)) (if yi = +1)
(χ(Ai), (n + 1) · f∗(Ai)) (if yi = −1).

• Find a linear separator u = (w,−z) ∈ Rn+1, where w ∈ Rn and z ∈ R, such that u is consistent
with the labeled examples (xi, yi) ∀i ∈ [a], and with the additional constraint that wj = 0 ∀j ∈ U0.

Output: The function f defined as f(S) = 1
(n+1)zwTχ(S).

Theorem 3 Let F be the class of non-negative, monotone, subadditive functions over X = 2[n]. There is
an algorithm that PMAC-learns F with approximation factor n + 1. That is, for any distribution D over X ,
for any ε, δ sufficiently small, with probability 1− δ, the algorithm produces a function f that approximates
f∗ within a multiplicative factor of n + 1 on a set of measure 1 − ε with respect to D. The algorithm uses
` = 48n

ε log
(

9n
δε

)
training examples and runs in time poly(n, 1/ε, 1/δ).
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Proof. We will show that Algorithm 1 will produce the desired result. For technical reasons, because of
the multiplicative error allowed by the PMAC-learning model, we will analyze separately the subset of the
instance space where f∗ is zero and the subset of the instance space where f∗ is non-zero. For convenience,
let us define:

P = { S : f∗(S) 6= 0 } and Z = { S : f∗(S) = 0 } .

The main idea of our algorithm is to reduce our learning problem to the standard problem of learning a
binary classifier (in fact, a linear separator) from i.i.d. samples in the passive, supervised learning setting [25,
37] with a slight twist in order to handle the points in Z . The problem of learning a linear separator in the
passive supervised learning setting is one where the instance space is Rm, the samples come from some fixed
and unknown distribution D′ on Rm, and there is a fixed but unknown target function c∗ : Rm → {−1,+1},
c∗(x) = sgn(uTx). The examples induced by D′ and c∗ are called linearly separable since there exists a
vector u such that c∗(x) = sgn(uTx).

The linear separator learning problem we reduce to is defined as follows. The instance space is Rm where
m = n + 1 and the distribution D′ is defined by the following procedure for generating a sample from it.
Repeatedly draw a sample S ⊆ [n] from the distribution D until f∗(S) 6= 0. Next, flip a fair coin. The
sample from D′ is

(χ(S), f∗(S)) (if the coin is heads)
(χ(S), (n + 1) · f∗(S)) (if the coin is tails).

The function c∗ defining the labels is as follows: samples for which the coin was heads are labeled +1, and
the others are labeled −1.

We claim that the distribution over labeled examples induced by D′ and c∗ is linearly separable in Rn+1.
To prove this we use Lemma 1 which says that there exists a linear function f̂(S) = wTχ(S) such that
f̂(S) ≤ f∗(S) ≤ n · f̂(S) for all S ⊆ [n]. Let u = ((n+1/2) ·w,−1) ∈ Rm. For any point x in the support
of D′ we have

x = (χ(S), f∗(S)) =⇒ uTx = (n + 1/2) · f̂(S)− f∗(S) > 0

x = (χ(S), (n + 1) · f∗(S)) =⇒ uTx = (n + 1/2) · f̂(S)− (n + 1) · f∗(S) < 0.

This proves the claim. Moreover, this linear function also satisfies f̂(S) = 0 for every S ∈ Z . In particular,
f̂(S) = 0 for all S ∈ S0 and moreover,

f̂({j}) = wj = 0 for every j ∈ UD where UD =
⋃

Si∈Z
Si.

Our algorithm is now as follows. It first partitions the training set S = {(S1, f
∗(S1)), . . . , (S`, f

∗(S`))}
into two sets S0 and S6=0, where S0 is the subsequence of S with f∗(Si) = 0, and S6=0 = S \ S0. For
convenience, let us denote the sequence S6=0 as

S6=0 =
(
(A1, f

∗(A1)), . . . , (Aa, f
∗(Aa))

)
.

Note that a is a random variable and we can think of the sets the Ai as drawn independently from D,
conditioned on belonging to P . Let

U0 =
⋃
i≤`

f∗(Si)=0

Si and L0 = { S : S ⊆ U0 } .

Using S6=0, the algorithm then constructs a sequence S ′6=0 =
(
(x1, y1), . . . , (xa, ya)

)
of training examples

for the binary classification problem. For each 1 ≤ i ≤ a, let yi be −1 or 1, each with probability 1/2. If
yi = +1 set xi = (χ(Ai), f∗(Ai)); otherwise set xi = (χ(Ai), (n + 1) · f∗(Ai)). The last step of our
algorithm is to solve a linear program in order to find a linear separator u = (w,−z) where w ∈ Rn, z ∈ R
consistent with the labeled examples (xi, yi), i = 1 ≤ i ≤ a, with the additional constraints that wj = 0 for
j ∈ U0. The output hypothesis is f(S) = 1

(n+1)zwTχ(S). See Algorithm 1.
To prove correctness, note first that the linear program is feasible; this follows from our earlier discussion
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using the facts (1) S ′6=0 is a set of labeled examples drawn from D′ and labeled by c∗ and (2) U0 ⊆ UD. It
remains to show that f approximates the target on most of the points. Let Y denote the set of points S ∈ P
such that both of the points (χ(S), f∗(S)) and (χ(S), (n + 1) · f∗(S)) are correctly labeled by sgn(uTx),
the linear separator found by our algorithm. It is easy to show that the function f(S) = 1

(n+1)zwTχ(S)
approximates f∗ to within a factor n + 1 on all the points in the set Y . To see this notice that for any point
S ∈ Y , we have

wTχ(S)− zf∗(S) > 0 and wTχ(S)− z(n + 1)f∗(S) < 0

=⇒ 1
(n + 1)z

wTχ(S) < f∗(S) < (n + 1)
1

(n + 1)z
wTχ(S).

So, for any point in S ∈ Y , the function f(S) = 1
(n+1)zwTχ(S) approximates f∗ to within a factor n + 1.

Moreover, by design the function f correctly labels as 0 all the examples in L0. To finish the proof, we
now prove two important claims: for our choice of ` = 16n

ε log
(

n
δε

)
, with high probability both P \ Y and

Z \ L0 have small measure.
Claim 19. If ` = 16n

ε log
(

n
δε

)
, then with probability at least 1 − 2δ, the set P \ Y has measure at most 2ε

under D.
Proof. Let q = 1− p = PrS∼D [S ∈ P ]. If q < ε then the claim is immediate, since P has measure at most
ε. So assume that q ≥ ε. Let µ = E [ a ] = q`. By assumption µ > 16n log(n/δε) q

ε . Then Chernoff bounds
give that

Pr
[
a < 8n log(n/δε)

q

ε

]
< exp(−n log(n/δ)q/ε) < δ.

So with probability at least 1 − δ, we have a ≥ 8n log(qn/δε) q
ε . By a standard sample complexity argu-

ment [37] (which we reproduce in Theorem 25 in Appendix C), with probability at least 1 − δ, any linear
separator consistent with S ′ will be inconsistent with the labels on a set of measure at most ε/q under D′. In
particular, this property holds for the linear separator c computed by the linear program. So for any set S,
the conditional probability that either (χ(S), f∗(S)) or (χ(S), (n + 1) · f∗(S)) is incorrectly labeled, given
that S ∈ P , is at most 2ε/q. Thus

Pr [S ∈ P ∧ S 6∈ Y ] = Pr [ S ∈ P ] · Pr [S 6∈ Y | S ∈ P ] ≤ q · (2ε/q),

as required. 2

Claim 20. If ` = 16n
ε log

(
n
δε

)
, then with probability at least 1− δ, the set Z \ L0 has measure at most ε.

Proof. For k ≤ `, define

Uk =
⋃
i≤k

f∗(Si)=0

Si and Lk = { S : S ⊆ Uk } .

So L` = L0. By subadditivity, monotonicity, and non-negativity we have Lk ⊆ Z for any k. Suppose that,
for some k, the set Z \Lk has measure at least ε. Define k′ = k +log(n/δ)/ε. Then amongst the subsequent
examples Sk+1, . . . , Sk′ , the probability that none of them lie in Z \ Lk is at most (1 − ε)log(n/δ)/ε ≤ δ/n.
On the other hand, if one of them does lie in Z \ Lk, then |Uk′ | > |Uk|. But |Uk| ≤ n for all k, so this can
happen at most n times. Since ` ≥ n log(n/δ)/ε, with probability at least δ the set Z \ L` has measure at
most ε. 2

In summary, our algorithm produces a hypothesis f that approximates f∗ to within a factor n + 1 on the
set Y ∪L`. The complement of this set is (Z \L`)∪ (P \Y), which has measure at most 3ε, with probability
at least 1− 3δ. �

B.1 Extensions
The algorithm described for learning subadditive and submodular functions in the PMAC model is quite
robust and it can be extended to handle more general cases as well as various forms of noise.
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First, we can extend the results in Theorem 3 and Theorem 4 to the more general case where do not even
assume that the target function is subadditive (or submodular), but that it is within a factor α of a subadditive
(or submodular) function on every point in the instance space. Under this relaxed assumption we are able to
achieve the approximation factor α · (n + 1) (or

√
α · (n + 1)). Specifically:

Theorem 21. Let F be the class of non-negative, monotone, subadditive functions over X = 2[n] and let
F ′ = {f : ∃g ∈ F , g(S) ≤ f(S) ≤ α · g(S) for all S ⊆ [n]},

for some known α > 1. There is an algorithm that PMAC-learns F ′ with approximation factor α(n + 1).
The algorithm uses ` = 48n

ε log
(

9n
δε

)
training examples and runs in time poly(n, 1/ε, 1/δ).

Proof. By assumption, there exists g ∈ F such that g(S) ≤ f∗(S) ≤ α · g(S). Combining this
with Lemma 1, we get that there exists f̂(S) = wTχ(S) such that

wTχ(S) ≤ f∗(S) ≤ n · α · wTχ(S) for all S ⊆ [n].

In order to learn the class of non-negative monotone submodular functions we apply Algorithm 1 with the
following modifications: (1) in the second step if yi = +1 we set xi = (χ(S), f∗(S)) and if yi = −1 we set
xi = (χ(S), α(n + 1) · f∗(S)); (2) we output the function f(S) = 1

α(n+1)zwTχ(S). It is then easy to show
that the distribution over labeled examples induced by D′ and c∗ is linearly separable in Rn+1; in particular,
u = (α(n+1/2) ·w,−1) ∈ Rn+1 defines a good linear separator. The proof then proceeds as in Theorem 3.
�

Theorem 22. Let F be the class of non-negative, monotone, submodular functions over X = 2[n] and let
F ′ = {f : ∃g ∈ F , g(S) ≤ f(S) ≤ α · g(S) for all S ⊆ [n]},

for some known α > 1. There is an algorithm that PMAC-learnsF ′ with approximation factor
√

α · (n + 1).
The algorithm uses ` = 48n

ε log
(

9n
δε

)
training examples and runs in time poly(n, 1/ε, 1/δ).

We can also extend the results in Theorem 3 and Theorem 4 to the agnostic case where we assume that
there exists a subadditive (or a submodular) function that agrees with the target on all but an η fraction
of the points; note that on the η fraction of the points the target can be arbitrarily far from a subadditive
(or a submodular) function. In this case we can still PMAC-learn with a polynomial number of samples
O( n

ε2
log

(
n
δε

)
), but using a potentially computationally inefficient procedure.

Theorem 23. Let F be the class of non-negative, monotone, subadditive functions over X = 2[n]. Let
F ′ = { f : ∃g ∈ F s.t. f(S) = g(S) on more than 1− η fraction of the points } .

There is an algorithm that PMAC-learns F ′ with approximation factor (n + 1). That is, for any distribution
D over X , for any ε, δ sufficiently small, with probability 1 − δ, the algorithm produces a function f that
approximates f∗ within a multiplicative factor of n + 1 on a set of measure 1− ε− η with respect to D. The
algorithm uses O( n

ε2
log

(
n
δε

)
) training examples.

Proof Sketch. The proof proceeds as in Theorem 3. The main difference is that in the new feature space
the best linear separator has error (fraction of mistakes) η. It is well known that even in the agnostic case the
number of samples needed to learn a separator of error at most η + ε is O( n

ε2
log

(
n
δε

)
) (see Theorem 26 in

Appendix C). However, it is NP-hard to minimize the number of mistakes, even approximately [18], so the
resulting procedure uses a polynomial number of samples, but it is computationally inefficient. �

Theorem 24. Let F be the class of non-negative, monotone, submodular functions over X = 2[n]. Let
F ′ = { f : ∃g ∈ F s.t. f(S) = g(S) on more than 1− η fraction of the points } .

There is an algorithm that PMAC-learns F ′ with approximation factor
√

n + 1. That is, for any distribution
D over X , for any ε, δ sufficiently small, with probability 1 − δ, the algorithm produces a function f that
approximates f∗ within a multiplicative factor of

√
n + 1 on a set of measure 1 − ε − η with respect to D.

The algorithm uses O( n
ε2

log
(

n
δε

)
) training examples.
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C Standard Sample Complexity Results
We state here several known sample complexity bounds. We start with the classic VC-dimension based
bounds. See, e.g., [8, 3].
Theorem 25. Let C be a set of functions from X to {−1, 1} with finite VC-dimension D ≥ 1. Let D be
an arbitrary, but fixed probability distribution over X and let c∗ be an arbitrary target function. For any
ε, δ > 0, if we draw a sample from D of size N(ε, δ) = 1

ε

(
4D log

(
1
ε

)
+ 2 log

(
2
δ

))
, then with probability

1− δ, all hypotheses with error ≥ ε are inconsistent with the data.
Theorem 26. Suppose that C is a set of functions from X to {−1, 1} with finite VC-dimension D ≥ 1. For
any distribution D over X , any target function (not necessarily in C), and any ε, δ > 0, if we draw a sample
from D of size

m(ε, δ, D) =
64
ε2

(
2D ln

(
12
ε

)
+ ln

(
4
δ

))
,

then with probability at least 1− δ, we have |err(h)− êrr(h)| ≤ ε for all h ∈ C.
Definition 7. For a sample S = {z1, ..., zm} generated by a distribution D on a set Z and a real-valued
function class F with a domain Z, the empirical Rademacher complexity of F is the random variable:

R̂S(F) = Eσ

[
sup
h∈F

1
m

m∑
i

σi · h(zi)

]
where σ = (σ1, ..., σm) are independent {−1,+1}-valued (Rademacher) random variables.

The (distributional) Rademacher complexity of F is:

Rm(F) = ES [RS(F)].

Let Z = X × Y , where X is the instance space and Y is the label space. With these notations we have:
Theorem 27. Fix F be a class of functions mapping from Z to [a, a + 1]. Let S = {z1, ..., zm} be an i.i.d.
sample from D. Then with probability 1− δ over the random draws of sample of size m we have:

ED[f(z)] ≤ ÊD[f(z)] + Rl(F) +

√
ln(2/δ)

2m
≤ ÊD[f(z)] + R̂S(F) + 3

√
ln(2/δ)

2m
.

D Standard Facts about Submodular Functions
Theorem 28. Given a finite universe U , let S1, S2, . . . , Sn be subsets of U . Define f : 2[n] → R+ by

f(A) = |∪i∈ASi| for A ⊆ [n].

Then f is monotone and submodular. More generally, for any non-negative weight function w : U → R+,
the function f defined by

f(A) = w (∪i∈ASi) for A ⊆ [n]

is monotone and submodular.
Lemma 29. The minimizers of any submodular function are closed under union and intersection.
Proof. Assume that J1 and J2 are minimizers for f . By submodularity we have

f(J1) + f(J2) ≥ f(J1 ∩ J2) + f(J1 ∪ J2).

We also have
f(J1 ∩ J2) + f(J1 ∪ J2) ≥ f(J1) + f(J2),

so f(J1) = f(J2) = f(J1 ∩ J2) = f(J1 ∪ J2), as desired. �
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E Additional Proofs for the General Lower Bound
Let C be a family of sets and let f : C → Z be a function. Consider the family

I = { I : |I ∩ C| ≤ f(C) ∀C ∈ C } . (E.1)

Lemma 8 I is the family of independent sets of a matroid, if it is non-empty.

Proof (of Lemma 8). We will show that I satisfies the required axioms of an independent set family. If
I ⊆ I ′ ∈ I then clearly I ∈ I also. So suppose that I ∈ I, I ′ ∈ I and |I| < |I ′|. Let C1, . . . , Cm be
the maximal sets in T (I) and let C∗ = ∪iCi. Then Ci ∩ Cj = ∅ for i 6= j, otherwise Ci ∪ Cj ∈ T (I)
contradicting maximality. Then

|I ′ ∩ C∗| =
m∑

i=1

|I ′ ∩ Ci| ≤
m∑

i=1

f(Ci) =
m∑

i=1

|I ∩ Ci| = |I ∩ C∗|.

Since |I ′| > |I|, it follows that |I ′ \ C∗| > |I \ C∗|, so there exists x ∈ I ′ \
(
C∗ ∪ I

)
. Then I + x ∈ I

because for every C 3 x we have |I ∩ C| ≤ f(C)− 1. �

We remark that this lemma implies an alternative proof of a result of Edmonds, which we do not use in
this paper. Corollary 30 does not seem to be sufficient to prove Theorem 7.
Corollary 30 (Edmonds [10], Theorem 15). Let C be an intersecting family and f : C → R an intersecting-
submodular function. Then I as defined in Eq. (E.1) is the family of independent sets of a matroid, if it is
non-empty.

Theorem 10 Suppose that f is (µ, τ)-good. Then the family
Ih = { I : |I ∩A(J)| ≤ h(J) ∀J ⊆ [k] }

is the family of independent sets of a matroid.
Proof. Fix I ∈ Ih. Let J1 and J2 satisfy |I ∩A(Ji)| = h(Ji).

Suppose max {|J1|, |J2|} ≥ τ . Without loss of generality, |J1| ≥ |J2|. Then
h(J1 ∪ J2) = µ = h(J1) = |I ∩A(J1)| ≤ |I ∩A(J1 ∪ J2)|.

Otherwise max {|J1|, |J2|} ≤ τ−1, so |J1∪J2| ≤ 2τ−2. We have |I∩A(Ji)| = h(Ji) = f(Ji) for both
i. So, as argued in Theorem 9, we also have |I ∩ A(J1 ∪ J2)| = f(J1 ∪ J2). But f(J1 ∪ J2) ≥ h(J1 ∪ J2)
since f is (µ, τ)-good.

In both cases we have |I ∩A(J1 ∪ J2)| ≥ h(J1 ∪ J2), so the desired result follows from Lemma 8. �

Proposition 11 Suppose that A is (µ, τ, u)-nice. For every B ⊆ [k] define fB : 2B → R by

fB(J) = |A(J)| −
∑
j∈J

(|Aj | − u) ∀J ⊆ B.

Then fB is (µ, τ)-good.

Proof (of Proposition 11). Suppose that |J | ≤ 2τ − 2. Then Eq. (4.4) shows that

fB(J) = |A(J)| −
∑
j∈J

(|Aj | − u) ≥ |J | · u/2.

This is at least µ whenever |J | ≥ τ since Definition 6 requires that τu ≥ 2µ. Thus fB is (µ, τ)-good. �

We now prove Lemma 12, which says that randomly chosen sets give a nice set system. Several steps of
the proof involve simple Chernoff bounds, but some steps require the following concentration inequality.
Lemma 31. Let A1, . . . , A` be random subsets of V where each Ai is chosen by including each element of
V independently with probability p < 1/`. Let Y =

∑`
j=1|Aj | −

∣∣∣∪`
j=1Aj

∣∣∣ . Then

E [Y ] ≤ n(p`)2/2

Pr [Y ≥ t ] ≤ (1 + (p`)2)n · 2−t. (E.2)
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Proof. Clearly E [Ai ] = pn and E
[
∪`

j=1Aj

]
= n(1− (1− p)`). Since (1− p)` ≤ 1− p` + (p`)2/2, we

obtain E [Y ] ≤ n(p`)2/2, as desired.
To prove Eq. (E.2), we write Y as sum of i.i.d. random variables Y =

∑n
i=1 Zi, where Zi are defined as

follows. Let X1, . . . , Xn be independent random variables distributed according to the binomial distribution
with parameters ` and p, Then Zi is defined

Zi =

{
Xi − 1 (if Xi > 0)
0 (otherwise).

We now use the moment generating function method. Fix i. Then

E
[
2Zi

]
= Pr [ Xi = 0 ] +

∑̀
j=1

2j−1 Pr [Xi = j ]

= (1− p)` +
1
2

∑̀
j=1

2j ·
(

`

j

)
· pj · (1− p)`−j

= (1− p)` +
1
2

∑̀
j=0

(
`

j

)
· (2p)j · (1− p)`−j − 1

2
· (1− p)`

=
1
2
(1− p)` +

1
2
(1 + p)`

=
b`/2c∑
j=0

(
`

2j

)
· p2j ≤

b`/2c∑
j=0

`2j

2j
· p2j <

∑
j≥0

(
(p`)2

2

)j

≤ 1
1− (p`)2/2

≤ 1 + (pl)2. (E.3)

So the Markov inequality implies

Pr [Y ≥ t ] = Pr
[
2Y ≥ 2t

]
≤

E
[
2Y

]
2t

=
E

[
2Z

]n

2t
.

Combining this together with Eq. (E.3) we obtain
Pr [Y ≥ t ] ≤ (1 + (pl)2)n · 2−t,

as desired. �

Lemma 12 Let d be a positive integer with d = o(n1/3). Let the family A be constructed as follows. Set
k = 2d and construct each set Ai by picking each element of V independently with probability p = n−2/3.
Then, with constant probability, A is (µ, τ, u)-nice with parameters

µ = n1/3d, τ = n1/3, and u = 16d.

Proof. We show that with high probability Equations (4.3)-(4.4) all hold.
First, consider Eq. (4.3). Since E [ |Ai| ] = pn = n1/3, a simple Chernoff bound shows that

Pr
[
n1/3/2 < |Ai| < 2n1/3

]
≥ 1− exp(−Ω(n1/3)).

Since |A| = 2d = o(exp(n1/3)), a union bound shows that Eq. (4.3) is satisfied with high probability.
Next, consider Eq. (4.5). Fix J ⊆ [k] with |J | < τ , and fix i 6∈ J . For convenience let ` = |J |. We wish

to show that |Ai ∩A(J)| < `u/2. This is trivial for ` = 0, so assume ` ≥ 1. Note that
E [ |Ai ∩A(J)| ] = n · Pr [x∈Ai ∧ x∈A(J) ] = np(1− (1− p)`).

Since p` ≤ 1 we have 1− p` ≤ (1− p)` ≤ 1− p`/2, and therefore
np2`/2 ≤ E [ |Ai ∩A(J)| ] ≤ np2`.
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Note that
(`u/2)/E [ |Ai ∩A(J)| ] ≥ (`u/2)/(np2`/2) = 16dn1/3 ≥ 2e,

so Chernoff bounds show that
Pr [ |Ai ∩A(J)| ≥ `u/2 ] ≤ exp(−`u/4).

Thus, union bounding over all i and J , the probability that Eq. (4.5) is violated is at most

n
τ−1∑
`=1

(
k

`

)
exp(−`u/4) ≤ n

τ−1∑
`=1

exp
(
`(log k − u/4)

)
.

Since log k = d and u = 16d, we have
exp

(
`(log k − u/4)

)
≤ exp

(
− 3 log n

)
= 1/n3.

Thus Eq. (4.5) holds with high probability.
Next, consider Eq. (4.4). Fix J ⊆ [k] with |J | ≤ 2τ − 2. As above, let ` = |J |. The inequality is trivial if

` ≤ 1 so assume ` ≥ 2. Applying Lemma 31,

Pr

∑
j∈J

|Aj | − |A(J)| > `u/2

 ≤ (1 + (p`)2)n · 2−`u/2 ≤ exp
(
`(np2`− u/4)

)
.

This is at most exp(−`(u/4− 2)) since np2` < n−1/3 · 2τ = 2. (Note: this step forces us to choose
p ≤ n−2/3.) Thus, union bounding over all J , the probability that Eq. (4.4) is violated is at most

2τ−2∑
`=2

(
k

`

)
exp(−`(u/4− 2)) <

2τ−2∑
`=2

exp(`(log k − u/4 + 2)) < n exp(−2 log n) = 1/n.

Thus Eq. (4.4) holds with high probability. �

Theorem 6 Suppose that one-way functions exist. For any constant ε > 0, no algorithm can PMAC-learn
the class of non-negative, monotone, submodular functions with approximation factor O(n1/3−ε), even if
the functions are given via polynomial-time algorithms which compute their value on the support of the
distribution.
Proof. The argument follows Kearns-Valiant [24]. Let d = nε. There exists a family of pseudorandom
Boolean functions Fd =

{
fy : y ∈ {0, 1}d

}
, where each function is of the form fy : {0, 1}d → {0, 1}.

Choose an arbitrary bijection between {0, 1}d and A. Then each fy ∈ Fd corresponds to some subfamily
B ⊆ A, and hence to a matroid rank function rankMB . Suppose there is a PMAC-learning algorithm
for this family of functions which achieves approximation ratio better than n1/3/16d on a set of measure
1/2+1/ poly(n). Then this algorithm must be predicting the function fy on a set of size 1/2+1/ poly(n) =
1/2 + 1/ poly(d). This is impossible, since the family Fd is pseudorandom. �

F Special Cases of Theorem 10
The matroid construction of Theorem 10 has several interesting special cases.
Partition Matroids Suppose that the sets A1, . . . , Ak are all disjoint. We claim that the matroid I defined
above is a partition matroid. To see this, note that f(J) =

∑
j∈J uj , since the Aj’s are disjoint, so f is a

modular function. Similarly, |I ∩ A(J)| is a modular function of J . Thus, whenever |J | > 1, the constraint
|I ∩A(J)| ≤ f(J) is redundant — it is implied by the constraints |I ∩Aj | ≤ uj for j ∈ J . So we have

I = { I : |I ∩A(J)| ≤ f(J) ∀J ⊆ [k] } = { I : |I ∩Aj | ≤ uj ∀j ∈ [k] } ,

which is a partition matroid.
Complements of Hamming Balls. We are given sets A1, . . . , Ak and values u1, . . . , uk. Let τ = 2. Note
that for any pair J = {i, j}, we have f(J) = ui + uj − |Ai ∩Aj |. So define

µ = min
J⊆[k], |J |=2

f(J) = min
i,j∈[k]

(ui + uj − |Ai ∩Aj |).
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Then f is (µ, 2)-good. So the family
Ih = { I : |I| ≤ µ ∧ |I ∩Aj | ≤ uj ∀j ∈ [k] }

is the family of independent sets of a matroid. We call such a matroid a bumpy matroid.
As a special case, suppose that we are given A1, . . . , Ak and integers d1, . . . , dk such that

|Aj | = µ ∀j ∈ [k]
0 ≤ dj ≤ |Aj | ∀j ∈ [k]

|Ai ⊕Aj | ≥ 2(di + dj) ∀i, j ∈ [k].
Define uj = µ− dj . Then

|Ai ⊕Aj | ≥ 2(di + dj) =⇒ |Ai ∩Aj | ≤ µ− di − dj =⇒ µ ≤ ui + uj − |Ai ∩Aj |.
We obtain that

B = { B : |B| = µ ∧ |B ⊕Aj | ≥ 2dj ∀j ∈ [k] }

is the family of bases of a matroid. So the bases are the sets of weight µ not contained in any Hamming ball
of radius 2dj − 1 centered at Aj .
Paving Matroids Suppose that we are given A1, . . . , Ak such that

|Aj | = µ ∀j ∈ [k]
|Ai ⊕Aj | ≥ 4 ∀i, j ∈ [k].

As argued above,
B = { B : |B| = µ ∧ |B ⊕Aj | ≥ 2 ∀j ∈ [k] }

is the family of bases of a matroid. Such a matroid is called a paving matroid.

G Product Distributions
In this section we show that matroid rank functions can be PMAC-learned when the distribution on examples
is a product distribution.

G.1 Proof of Lemma 14
We start with a useful technical lemma. Specifically,
Lemma 14 Let M = (V, I) be a matroid and let D be a product distribution on V . Let R = rankM(X),
where X is a sample from D. If E [R ] ≥ 4000 then, for α ∈ [0, 1],

Pr [ |R−E [R ]| ≥ (α + 1/4)E [R ] ] ≤ 4e−α2 E[ R ]/12. (G.1)

If E [R ] ≤ 500 log(1/ε) then
Pr [R ≥ 1200 log(1/ε) ] ≤ ε. (G.2)

To prove Lemma 14, we require the following result [2, §7.7], which follows from Talagrand’s inequality
[35].

Let D be a product distribution on V . Let f : 2V → R be a 1-Lipschitz function. Let c be a function
c : N → N. The function f is called c-certifiable if whenever f(X) ≥ s there exists I ⊆ V with |I| ≤ c(s)
such that all Y ⊆ V with X ∩ I = Y ∩ I also have f(Y ) ≥ s.
Theorem 32 (Talagrand). Let X be drawn from distribution D and let R = f(X). For all b and t ≥ 0,

Pr
[
R ≤ b− t

√
c(b)

]
· Pr [R ≥ b ] ≤ e−t2/4.

Proof (of Lemma 14). Clearly, the rank function rankM is 1-Lipschitz. Moreover, whenever rankM(X) ≥
s, there exists an independent set I ⊆ X with |I| = s. Hence all sets Y ⊇ I have rankM(Y ) ≥ s. This
implies that rankM is c-certifiable with c(s) = s.

Let M be any median of R and let λ ≥ 0. Taking b = M and t = λ/
√

M , Theorem 32 implies

Pr [R ≤ M − λ ] ≤ 2e−λ2/4M .
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Taking b = M + λ and t = λ/
√

M + λ, Theorem 32 implies

Pr [R ≥ M + λ ] ≤ 2e−λ2/4(M+λ).

This shows that R is tightly concentrated around M . The following claim implies that R is also tightly
concentrated around E [R ].
Claim 33. |E [R ]−M | ≤ 15

√
E [R ] + 32.

Proof. This is a standard calculation; see, e.g., [22, §2.5]. Note that

Pr [ |R−M | ≥ λ ] ≤

{
4e−λ2/8M 0 ≤ λ ≤ M

4e−λ/8 λ ≥ M.

Then
|E [R ]−M | ≤ E [ |R−M | ]

=
∫ ∞

0
Pr [ |R−M | ≥ λ ] dλ

=
∫ M

0
4e−λ2/8M dλ +

∫ ∞

M
4e−λ/8 dλ

≤ 4
√

2πM + 32e−M/8.

Since R ≥ 0 we have 0 ≤ M ≤ 2E [R ] (by Markov’s inequality), and the desired result follows. 2

Thus,
Pr [ |R−E [R ]| ≥ λ ] ≤ Pr [ |R−M | ≥ λ− |M −E [R ]| ]

≤ Pr
[
|R−M | ≥ λ− 15

√
E [R ]− 32

]
.

To prove Eq. (G.1), let λ = αE [R ] + 15
√

E [R ] + 32. Then
Pr [ |R−E [R ]| ≥ λ ] ≤ Pr [R ≤ M − αE [R ] ] + Pr [ R ≥ M + αE [R ] ]

≤ 2e−(αE[ R ])2/4M + 2e−(αE[ R ])2/4(M+αE[ R ])

≤ 4e−α2 E[ R ]/12,

since M ≤ 2E [R ]. Now 15
√

E [R ] + 32 ≤ E [R ] /4 since E [R ] ≥ 4000. Thus

Pr [ |R−E [R ]| ≥ (α + 1/4)E [R ] ] ≤ Pr [ |R−E [R ]| ≥ λ ] ≤ 4e−α2 E[ R ]/12.

To prove Eq. (G.2), let b = 1200 log(1/ε) and t = 4
√

log(1/ε). Then b − t
√

c(b) ≥ 1000 log(1/ε) ≥
2E [R ]. By Markov’s inequality, Pr

[
R ≤ b− t

√
c(b)

]
≥ 1/2. So, by Theorem 32, Pr [R ≥ b ] ≤

2 exp(−t2/4) ≤ ε. �

G.2 Improved Approximation under Product Distributions

Theorem 13 Let F be the class of matroid rank functions with ground set V and let D be a product
distribution on V . For any sufficiently small ε > 0 and δ > 0, there is an algorithm that PMAC-learns F
with approximation factor 1200 log(1/ε) using

` + `′ = 10n2 log(1/δ) + n log(n/δ)/ε

training examples.
If E [R ] ≥ 450 log(1/ε) then the approximation factor improves to 8.

Proof. Theorem 13 is proven by analyzing Algorithm 2, using Lemma 14.
To analyze this algorithm, let us first consider the estimate µ. Note that 0 ≤ R ≤ n. Then a Hoeffding
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Algorithm 2 Algorithm for learning a matroid rank function under a product distribution. Its input is a
sequence of labeled training examples (S1, f

∗(S1)), (S2, f
∗(S2)), . . ., where f∗ is a matroid rank function.

• Let µ =
∑`

i=1 f∗(Si)/`, where ` = 10n2 log(1/δ).
• Case 1: If µ ≥ 450 log(1/ε), then return the constant function f = µ/4.
• Case 2: If µ < 450 log(1/ε), then use `′ = n log(n/δ)/ε additional samples to compute the set

U =
⋃

`≤i≤`+`′

f∗(Si)=0

Si.

Return the function f where f(A) = 0 if A ⊆ U and f(A) = 1 otherwise.

bound implies that, with probability at least 1− δ,
µ ≥ 450 log(1/ε) =⇒ E [R ] ≥ 400 log(1/ε) and 5

6 E [R ] ≤ µ ≤ 4
3 E [R ]

µ < 450 log(1/ε) =⇒ E [R ] ≤ 500 log(1/ε).
Case 1: Assume that E [R ] ≥ 400 log(1/ε); this holds with probability at least 1 − δ. If ε is sufficiently

small then E [R ] ≥ 4000, so Eq. (G.1) implies
Pr [µ/4 ≤ R ≤ 2µ ] ≥ Pr

[
1
3 E [R ] ≤ R ≤ 5

3 E [R ]
]

≥ 1− Pr [ |R−E [R ]| ≥ (2/3)E [R ] ]

≥ 1− 4e−E[ R ]/100 ≥ 1− ε.

(G.3)

Therefore, with confidence at least 1 − δ, the algorithm achieves approximation factor 8 on all but an ε
fraction of the distribution.

Case 2: Assume that E [R ] < 500 log(1/ε); this holds with probability at least 1 − δ. The argument
mirrors a portion of the proof of Theorem 3. We have

P = { S : f∗(S) 6= 0 } and Z = { S : f∗(S) = 0 } .

Let S be a sample from D. Let E be the event that S violates the inequality
f(S) ≤ f∗(S) ≤ 1200 log(1/ε)f(S).

Clearly Pr [ E ] = Pr [ E ∧ S∈Z ] + Pr [ E ∧ S∈P ]. First suppose that S ∈ Z , i.e., f∗(S) = 0. Let
L = { S : S ⊆ U }. Since f(T ) = 0 for all T ∈ L, the event E ∧ S ∈Z holds only if S ∈ Z \ L. By
Claim 20, the set Z \ L has measure at most ε, so Pr [ E ∧ S∈Z ] ≤ ε.

Now suppose that S ∈ P , i.e., f∗(S) ≥ 1. Since every T ⊆ U satisfies f∗(T ) = 0, we have S 6⊆ U and
hence f(S) = 1. Therefore the event E ∧ S ∈P occurs only when f∗(S) > 1200 log(1/ε). By Eq. (G.2),
this happens with probability at most ε. This concludes the proof of Theorem 13. �

G.3 An Approximate Characterization of Monotone, Submodular Functions
Theorem 16 Let f : 2V → Z+ be the rank function of a matroid with no loops, i.e., f(S) = 0 =⇒ S = ∅.
Fix ε > 0, sufficiently small. There exists a concave function h : [0, n] → R such that, for every k ∈ [n], and
for a 1− 4ε fraction of the sets S ∈

(
V
k

)
, we have

1
400 log(1/ε)

h(k) ≤ f(S) ≤
(
1200 log(1/ε)

)
h(k).

Henceforth, we will use the following notation. As usual, |V | = n. For p ∈ [0, 1], let R(p) ⊆ V denote
the random variable obtained by choosing each element of V independently with probability p. For k ∈ [n],
let S(k) ⊆ V denote a set of cardinality k chosen uniformly at random. Define the function h′ : [0, 1] → R
by

h′(p) = E [ f(R(p)) ] .

23



For any τ ∈ R, define the functions gτ : [0, 1] → R and g′τ : [n] → R by
gτ (p) = Pr [ f(R(p)) > τ ]
g′τ (k) = Pr [ f(S(k)) > τ ] .

Finally, let us introduce the notation X ∼ Y to denote that random variables X and Y are identically
distributed.
Lemma 34. h′ is concave.
Proof. Fix scalars

0 ≤ δ ≤ α ≤ β ≤ γ ≤ 1 s.t. α + β − δ = γ.

We will show that
h′(α) + h′(β) ≥ h′(γ) + h′(δ), (G.4)

which implies that h′ is concave. (The implication would hold even if we required that α = β = (γ + δ)/2.)
To this end, consider the following process for generating sets. Pick each element of V independently

with probability α and call the resulting set A. Now construct a new set by removing each element of
A independently with probability δ/α and adding each element not in A independently with probability
(β − δ)/(1− α). Call the resulting set B. One may easily verify that

A ∼ R(α) B ∼ R(β) A ∩B ∼ R(δ) A ∪B ∼ R(γ).

Submodularity implies
f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

=⇒ E [ f(A) ] + E [ f(B) ] ≥ E [ f(A ∪B) ] + E [ f(A ∩B) ]
=⇒ E [ f(R(α)) ] + E [ f(R(β)) ] ≥ E [ f(R(γ)) ] + E [ f(R(δ)) ] ,

which implies Eq. (G.4). �

Lemma 35. g′τ is a monotone function.
Proof. Fix k ∈ [n − 1] arbitrarily. Pick a set S = S(k). Construct a new set T by adding to S a
uniformly chosen element of V \ S. By monotonicity of f we have f(S) > τ =⇒ f(T ) > τ . Thus
Pr [ f(S) > τ ] ≤ Pr [ f(T ) > τ ]. Since T ∼ S(k + 1), this implies that gτ (k) ≤ gτ (k + 1), as required. �

Lemma 36. g′τ (k) ≤ 2 · gτ (k/n), for all τ ∈ R and k ∈ [n].
Proof. Let p = k/n. Then

gτ (p) = Pr [ f(R(p)) > τ ]

=
n∑

i=0

Pr [ f(R(p)) > τ | |R(p)| = i ] · Pr [ |R(p)| = i ]

=
n∑

i=0

g′τ (i) Pr [ |R(p)| = i ]

≥
n∑

i=k

g′τ (i) Pr [ |R(p)| = i ]

≥
n∑

i=k

g′τ (k) Pr [ |R(p)| = i ]

= g′τ (k) Pr [ |R(p)| ≥ k ]
≥ g′τ (k)/2,

since the mean k of the binomial distribution B(n, k/n) is also the median. �

Proof (of Theorem 16). For x ∈ [0, n], define h(x) = h′(x/n) = E [ f(R(x/n)) ]. Now fix 1 ≤ k ≤ n
arbitrarily.
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Suppose that h(k) ≥ 400 log(1/ε). As argued in Eq. (G.3),

Pr
[

f(R(k/n)) <
1
3
h(k)

]
≤ ε and Pr

[
f(R(k/n)) >

5
3
h(k)

]
≤ ε.

By Lemma 36, Pr
[
f(S(k)) > 5

3h(k)
]
≤ 2ε. By a symmetric argument, which we omit, one can show that

Pr
[
f(S(k)) < 1

3h(k)
]
≤ 2ε. Thus,

Pr
[

1
3h(k) ≤ f(S(k)) ≤ 5

3h(k)
]
≥ 1− 4ε.

Suppose that h(k) < 400 log(1/ε). Since k ≥ 1, our assumption on f implies that h(k) ≥ 1. By
Eq. (G.2),

Pr
[
f(R(k/n)) >

(
1200 log(1/ε)

)
h(k)

]
≤ Pr [ f(R(k/n)) > 1200 log(1/ε) ] ≤ ε.

By Lemma 36, Pr [ f(S(k)) > 1200 log(1/ε)h(k) ] ≤ 2ε.
Pr

[
f(R(k/n)) < h(k)/

(
400 log(1/ε)

) ]
= Pr [ f(R(k/n)) < 1 ] = 0.

Thus,
Pr

[
h(k)/

(
400 log(1/ε)

)
≤ f(S(k)) ≤

(
1200 log(1/ε)

)
h(k)

]
≥ 1− 2ε,

as required. �

H Rademacher Complexity
We show here how the results in Section 4 can be used to provide a lower bound on the Rademacher com-
plexity of monotone submodular functions, a natural measure of the complexity of a class of functions, which
we review in Appendix C. Let F be the class of monotone submodular functions and let the loss function
Lf (x, y) to be 0 if f(x) ≤ y ≤ αf(x) and 1 otherwise. Let FL be the class of functions induced by the
original class and the loss function.

Take α to be n1/3/(2 log2 n). Let DX be the distribution on {0, 1}n that is uniform on the set A defined
in Theorem 5. Let f∗ be the target function and let D be the induced distribution over {0, 1}n × R by the
distribution DX and the target function f∗.
Theorem 37. For m = poly(n, 1/ε, 1/δ), for any sample S of size m from D, R̂S(FL) ≥ 1/4. Moreover
Rm(FL) ≥ 1/4.
Proof. Let S = {(x1, f

∗(x1)), ..., (xl, f
∗(xl))} be our i.i.d. set of labeled examples. It is easy to show that

m = poly(n, 1/ε, 1/δ), then w.h.p. the points xi are different. Fix a vector σ ∈ {−1, 1}m. If σ(i) is 1
consider hσ(xi) = n1/3 + log2 n− f∗(xi); if σi is −1 consider hσ(xi) = f∗(xi). If we then average over σ
the quantity 1

m

∑m
i=1 σi · hσ(xi), since for each xi there are approximately the same number of +1 as −1 σi

values, we get a large constant ≥ 1/4, as desired. �

25


	Introduction
	Overview of Our Results and Techniques
	Related Work

	A Formal Framework
	Background and Notation: Submodular Functions and Matroids
	Our Learning Framework

	An O(n)-approximation Algorithm
	A General Lower Bound
	A New Matroid Construction
	Nice Set Systems and a Proof of Theorem 7
	Proof of Theorem 5

	Matroid Rank Functions and Product Distributions
	An Approximate Characterization of Monotone, Submodular Functions

	Conclusions and Open Questions
	Boolean Submodular Functions
	Additional Proofs for the O(n)-approximation algorithm
	Extensions

	Standard Sample Complexity Results
	Standard Facts about Submodular Functions
	Additional Proofs for the General Lower Bound
	Special Cases of Theorem 10
	Product Distributions
	Proof of Lemma 14
	Improved Approximation under Product Distributions
	An Approximate Characterization of Monotone, Submodular Functions

	Rademacher Complexity

